1
|
Firouzabadi AM, Henkel R, Tofighi Niaki M, Fesahat F. Adverse Effects of Nicotine on Human Sperm Nuclear Proteins. World J Mens Health 2025; 43:291-303. [PMID: 39028130 PMCID: PMC11937351 DOI: 10.5534/wjmh.240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024] Open
Abstract
The effects of smoking on human health have long been documented. However, only a few studies have highlighted the direct effects of nicotine on sperm function. Nicotine, as a chemical compound found in tobacco, has been shown to modulate different aspects of spermatogenesis and sperm functions. Nicotine can lead to a reduction in the number of sperm, their motility and functionality. It can change the molecular expressions involved in sperm function, including genes encoding sperm nuclear proteins. The most important nuclear proteins that play a critical role in sperm function are known as H2B histone family, member W, testis-specific (H2BFWT), transition protein 1 (TNP1), transition protein 2 (TNP2), protamine-1 (PRM1), and protamine-2 (PRM2). These proteins are involved in sperm chromatin condensation, which in turn affects fertilization and embryonic development. Any alteration in the expression of these genes due to nicotine exposure/usage may lead to adverse implications in couples' fertility and the health of future generations. Since research in this area is still relatively new, it underscores the importance of understanding the potential side effects of environmental factors such as nicotine on reproductive health.
Collapse
Affiliation(s)
- Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma Ltd., Berkshire, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Sahota JS, Sharma B, Guleria K, Sambyal V. Candidate genes for infertility: an in-silico study based on cytogenetic analysis. BMC Med Genomics 2022; 15:170. [PMID: 35918717 PMCID: PMC9347124 DOI: 10.1186/s12920-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background The cause of infertility remains unclear in a significant proportion of reproductive-age couples who fail to conceive naturally. Chromosomal aberrations have been identified as one of the main genetic causes of male and female infertility. Structural chromosomal aberrations may disrupt the functioning of various genes, some of which may be important for fertility. The present study aims to identify candidate genes and putative functional interaction networks involved in male and female infertility using cytogenetic data from cultured peripheral blood lymphocytes of infertile patients. Methods Karyotypic analyses was done in 201 infertile patients (100 males and 101 females) and 201 age and gender matched healthy controls (100 males and 101 females) after 72 h peripheral lymphocyte culturing and GTG banding, followed by bioinformatic analysis using Cytoscape v3.8.2 and Metascape. Results Several chromosomal regions with a significantly higher frequency of structural aberrations were identified in the infertile males (5q2, 10q2, and 17q2) and females (6q2, 16q2, and Xq2). Segregation of the patients based on type of infertility (primary v/s secondary infertility) led to the identification of chromosomal regions with a significantly higher frequency of structural aberrations exclusively within the infertile males (5q2, 17q2) and females (16q2) with primary infertility. Cytoscape identified two networks specific to these regions: a male specific network with 99 genes and a female specific network with 109 genes. The top enriched GO terms within the male and female infertility networks were “skeletal system morphogenesis” and “mRNA transport” respectively. PSME3, PSMD3, and CDC27 were the top 3 hub genes identified within the male infertility network. Similarly, UPF3B, IRF8, and PSMB1 were the top 3 hub genes identified with the female infertility network. Among the hub genes identified in the male- and female-specific networks, PSMB1, PSMD3, and PSME3 are functional components of the proteasome complex. These hub genes have a limited number of reports related to their respective roles in maintenance of fertility in mice model and humans and require validation in further studies. Conclusion The candidate genes predicted in the present study can serve as targets for future research on infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01320-x.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Bhavna Sharma
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
3
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Jean-François Simon
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Sarah Grassi
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger, CP 160/12, 1000 Brussels, Belgium;
| | - Vanessa Arcolia
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology, University of Cologne, Kerpener Strasse 34, 50931 Cologne, Germany
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| |
Collapse
|
4
|
Alenzi MJ. Synergetic effect of hookah smoking on varicocele-associated male reproductive impairment in the Saudi community in Al Jouf region, Saudi Arabia. Urol Ann 2021; 13:205-209. [PMID: 34421252 PMCID: PMC8343288 DOI: 10.4103/ua.ua_68_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/25/2020] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The aim of this study is to explore the clinical relationship between the varicocele-associated male infertility with hookah smoking practice in the Saudi community in the al Jouf region. MATERIALS AND METHODS A total of 192 patients were categorized into two groups; varicocele with (Varicocele-Associated Hooka (VH) group; n = 100) and without smoking (NHV group; n = 92). Laboratory investigations such as hormonal (follicle-stimulating hormone, and luteinizing hormone [LH]), semen analysis were performed. Ultrasonography-based varicocele screening was performed. Data were analyzed with SPSS version 21.0. P < 0.05 was considered statistically significant. RESULTS Increased prevalence of varicocele Grade 2 (57%) and Grade 3 (52.5%) in HV groups. In contrast, Grade 1 was increased in NHV group (55.6%). A significant (P = 0.05) decrease in testosterone levels in the HV group (2.83 ± 0.21) as compared to NHV group (2.33 ± 0.07) observed. Decreased levels of sperm count (21.96 ± 6.31) and sperm morphology (14.09 ± 0.45) were observed in HV groups as compared to NHV group (22.5 ± 5.49, 14.51 ± 5.02, respectively). HV groups showed the increased diameter of the testicular vein (3.52 ± 0.71) as compared to NHV group (3.42 ± 0.72). Chronic smoking revealed a statistically significant effect on testosterone (P = 0.015) and LH levels (P < 0.041) in the HV group. In addition, hookah smoking sessions per week affect sperm motility (P = 0.02) in the HV group. A significant correlation was observed in sperm count (r = 0.24, P < 0.016) and motility (r = 0.25, P = 0.010) in HV group. CONCLUSION Chronic hookah smoking significantly affects the reproductive hormonal and semen parameters in varicocele patients as compared to people with varicocele without smoking. This implies that hookah has an adverse effect on male reproductive and infertility.
Collapse
Affiliation(s)
- Mohammed Jayed Alenzi
- Department of Surgery, College of Medicine, Jouf University, Skaka, Al Jouf, Saudi Arabia
| |
Collapse
|
5
|
Zhou L, Li L, Hao G, Li B, Yang S, Wang N, Liang J, Sun H, Ma S, Yan L, Zhao C, Wei Y, Niu Y, Zhang R. Sperm mtDNA copy number, telomere length, and seminal spermatogenic cells in relation to ambient air pollution: Results of a cross-sectional study in Jing-Jin-Ji region of China. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124308. [PMID: 33257117 DOI: 10.1016/j.jhazmat.2020.124308] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Evidences on the association of air pollutants and semen quality were limited and mechanism-based biomarkers were sparse. We enrolled 423 men at a fertility clinic in Shijiazhuang, China to evaluate associations between air pollutants and semen quality parameters including the conventional ones, sperm mitochondrial DNA copy number (mtDNAcn), sperm telomere length (STL) and seminal spermatogenic cells. PM2.5, PM10, CO, SO2, NO2 and O3 exposure during lag0-90, lag0-9, lag10-14 and lag70-90 days were evaluated with ordinary Kringing model. The exposure-response correlations were analyzed with multiple linear regression models. CO, PM2.5 and PM10 were adversely associated with conventional semen parameters including sperm count, motility and morphology. Besides, CO was positively associated with seminal primary spermatocyte (lag70-90, 0.49; 0.14, 0.85) and mtDNAcn (lag0-90, 0.37; 0.12, 0.62, lag10-14, 0.31; 0.12, 0.49), negatively associated with STL (lag0-9, -0.30; -0.57, -0.03). PM2.5 was positively associated with mtDNAcn (0.50; 0.24, 0.75 and 0.38; 0.02, 0.75 for lag0-90 and lag70-90) while negatively associated with STL (lag70-90, -0.49; -0.96, -0.01). PM10 and NO2 were positively associated with mtDNAcn. Our findings indicate CO and PM might impair semen quality testicularly and post-testicularly while seminal spermatogenic cell, STL and mtDNAcn change indicate necessity for more attention on these mechanisms.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Lipeng Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Sujuan Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ning Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiaming Liang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hongyue Sun
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shitao Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lina Yan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chunfang Zhao
- Department of Histology and Embryology, Schoolof Basic Medical Science, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yanjing Wei
- Department of Laboratory Diagnostics, School of Basic Medical Science, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
6
|
Burgara-Estrella AJ, Acosta-Elías MA, Álvarez-Bajo O, Silva-Campa E, Angulo-Molina A, Rodríguez-Hernández IDC, Sarabia-Sainz HM, Escalante-Lugo VM, Pedroza-Montero MR. Atomic force microscopy and Raman spectra profile of blood components associated with exposure to cigarette smoking. RSC Adv 2020; 10:11971-11981. [PMID: 35496627 PMCID: PMC9050830 DOI: 10.1039/d0ra01384f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 11/21/2022] Open
Abstract
Tobacco smoke contains several compounds with oxidant and pro-oxidant properties with the capability of producing structural changes in biomolecules, as well as cell damage. This work aimed to describe and analyse the effect of tobacco smoke on human blood components, red blood cell (RBC) membrane, haemoglobin (Hb) and blood plasma by Atomic Force Microscopy (AFM) and Raman spectroscopy. Our results indicate that tobacco induced RBC membrane nano-alterations characterized by diminished RBC diameter and increased nano-vesicles formation, and RBC fragility. The Raman spectra profile suggests modifications in chemical composition specifically found in peaks 1135 cm-1, 1156 cm-1, 1452 cm-1 and intensity relation of peaks 1195 cm-1 and 1210 cm-1 of blood plasma and by change of peaks 1338 cm-1, 1357 cm-1, 1549 cm-1 and 1605 cm-1 associated with the pyrrole ring of Hb. The relevance of these results lies in the identification of a profile of structural and chemical alterations that serves as a biomarker of physiological and pathological conditions in the human blood components induced by tobacco exposure using AFM and the Raman spectroscopy as tools for monitoring them.
Collapse
Affiliation(s)
| | | | - Osiris Álvarez-Bajo
- CONACYT-Departamento de Investigación en Física, Universidad de Sonora Hermosillo Mexico
| | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora Hermosillo Mexico
| | - Aracely Angulo-Molina
- Departamento de Investigación en Física, Universidad de Sonora Hermosillo Mexico
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora Hermosillo Mexico
| | | | - Héctor M Sarabia-Sainz
- Departamento de Ciencias del Deporte y de la Actividad Física, Universidad de Sonora Hermosillo Mexico
| | | | | |
Collapse
|
7
|
Boe-Hansen GB, Rêgo JPA, Satake N, Venus B, Sadowski P, Nouwens A, Li Y, McGowan M. Effects of increased scrotal temperature on semen quality and seminal plasma proteins in Brahman bulls. Mol Reprod Dev 2020; 87:574-597. [PMID: 32083367 DOI: 10.1002/mrd.23328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Environmental temperature has effects on sperm quality with differences in susceptibility between cattle subspecies and breeds, but very little is known about the seminal plasma protein (SPP) changes resulting from testicular heat stress. Scrotal insulation (SI) for 48 hr was applied to Brahman (Bos indicus) bulls. Semen was collected at 3-day intervals from before, until 74 days post-SI. The changes in sperm morphology and motility following SI were comparable to previously reported and differences were detected in measures of sperm chromatin conformation as early as 8 days post-SI. New proteins spots, in the SPP two-dimensional (2-D) gels, were apparent when comparing pre-SI with 74 days post-SI, and SPP identified as associated with mechanisms of cellular repair and protection. Similar trends between 2-D gel and Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) data was observed, with SWATH-MS able to quantify individual SPP that otherwise were not resolved on 2-D gel. The SPP assessment at peak sperm damage (21-24 days) showed a significant difference in 29 SPP (adjusted p < .05), and identified six proteins with change in abundance in the SI group. In conclusion both spermatozoa and SPP composition of bulls are susceptible to temperature change incurred by SI, and SPP markers for testicular heat insults may be detected.
Collapse
Affiliation(s)
- Gry Brandt Boe-Hansen
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - João Paulo A Rêgo
- Federal Institute of Education, Science and Technology of Ceará, Boa Viagem Campus, Fortaleza, Brazil
| | - Nana Satake
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bronwyn Venus
- Agri-Science Department of Agriculture, Fisheries and Forestry, Brisbane, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Yutao Li
- CSIRO Agriculture and Food, St. Lucia, QLD, Australia
| | - Michael McGowan
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Zhang M, Zhang D, Dai J, Cao Y, Xu W, He G, Wang Z, Wang L, Li R, Qiao Z. Paternal nicotine exposure induces hyperactivity in next-generation via down-regulating the expression of DAT. Toxicology 2020; 431:152367. [DOI: 10.1016/j.tox.2020.152367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/29/2019] [Accepted: 01/12/2020] [Indexed: 11/29/2022]
|
9
|
Karna KK, Shin YS, Choi BR, Kim HK, Park JK. The Role of Endoplasmic Reticulum Stress Response in Male Reproductive Physiology and Pathology: A Review. World J Mens Health 2019; 38:484-494. [PMID: 31385474 PMCID: PMC7502313 DOI: 10.5534/wjmh.190038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/23/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, defined as prolonged disturbances in protein folding and accumulation of unfolded proteins in the ER. Perturbation of the ER, such as distribution of oxidative stress, iron imbalance, Ca2+ leakage, protein overload, and hypoxia, can cause ER stress. The cell reacts to ER stress by activating protective pathways, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed for maintaining cellular homeostasis or, in case of excessively severe stress, at the initiation of cellular apoptosis. The three UPR signaling pathways from the ER stress sensors are initiated by activating transcription factor 6, inositol requiring enzyme 1, and protein kinase RNA-activated-like ER kinase. A number of physiological and pathological conditions, environmental toxicants and variety of pharmacological agents showed disruption of proper ER functions and thereby cause ER stress in male reproductive organ in rat model. The present review summarizes the existing data concerning the molecular and biological mechanism of ER stress in male reproduction and male infertility. ER stress initiated cell death pathway has been related to several diseases, including hypoxia, heath disease, diabetes, and Parkinson's disease. Although there is not enough evidence to prove the relationship between ER stress and male infertility in human, most studies in this review found that ER stress was correlated with male reproduction and infertility in animal models. The ER stress could be novel signaling pathway of regulating male reproductive cellular apoptosis. Infertility might be a result of disturbing the ER stress response during the process of male reproduction.
Collapse
Affiliation(s)
- Keshab Kumar Karna
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju, Korea
| | - Yu Seob Shin
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju, Korea
| | - Bo Ram Choi
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju, Korea
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - Jong Kwan Park
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
10
|
Nicotine induced autophagy of Leydig cells rather than apoptosis is the major reason of the decrease of serum testosterone. Int J Biochem Cell Biol 2018; 100:30-41. [DOI: 10.1016/j.biocel.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
|
11
|
Cadmium effects on sperm morphology and semenogelin with relates to increased ROS in infertile smokers: An in vitro and in silico approach. Reprod Biol 2018; 18:189-197. [DOI: 10.1016/j.repbio.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
|
12
|
Abstract
PURPOSE OF REVIEW The purpose is to provide a summary of the effects of cigarette smoking on steroid hormone metabolism and how it affects female fertility. RECENT FINDINGS Components of tobacco smoke such as polycyclic aromatic hydrocarbons lead to transcriptional upregulation of a number of genes, including members of the cytochrome P450 (CYP) family, in particular CYP1B1 and CYP1A1. In humans, CYP1A1 and CYP1A2 are the primary enzymes catalyzing the 2-hydroxylation of estradiol. This pathway shunts available estrogen away from the more estrogenically potent 16α-hydroxylation to the production of catechol estrogens, mainly 2 and 4 hydroxyestradiol. SUMMARY Smoking has multiple effects on hormone secretion and metabolism. These effects are mainly mediated by the pharmacological action of tobacco alkaloids (nicotine and its metabolite cotinine). A strong body of evidence indicates that the negative effects of cigarette smoking on fertility compromises nearly every system involved in the reproductive process.
Collapse
|
13
|
Dai J, Wang Z, Xu W, Zhang M, Zhu Z, Zhao X, Zhang D, Nie D, Wang L, Qiao Z. Paternal nicotine exposure defines different behavior in subsequent generation via hyper-methylation of mmu-miR-15b. Sci Rep 2017; 7:7286. [PMID: 28779169 PMCID: PMC5544724 DOI: 10.1038/s41598-017-07920-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 07/05/2017] [Indexed: 01/06/2023] Open
Abstract
The neurobehavioral effects of paternal smoking and nicotine use have not been widely reported. In the present study, nicotine exposure induced depression in the paternal generation, but reduced depression and promoted hyperactivity in F1 offspring. While this intergenerational effect was not passed down to the F2 generation. Further studies revealed that nicotine induced the down-regulation of mmu-miR-15b expression due to hyper-methylation in the CpG island shore region of mmu-miR-15b in both the spermatozoa of F0 mice and the brains of F1 mice. As the target gene of mmu-miR-15b, Wnt4 expression was elevated in the thalamus of F1 mice due to the inheritance of DNA methylation patterns from the paternal generation. Furthermore, the increased expression of Wnt4 elevated the phosphorylation level of its downstream protein GSK-3 through the canonical WNT4 pathway which involved in the behavioral alterations observed in F1 mice. Moreover, in vivo stereotaxic brain injections were used to induce the overexpression of mmu-miR-15b and WNT4 and confirm the neurobehavioral effects in vitro. The behavioral phenotype of the F1 mice resulting from paternal nicotine exposure could be attenuated by viral manipulation of mmu-miR-15b in the thalamus.
Collapse
Affiliation(s)
- Jingbo Dai
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,College of Medicine, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Zhaoxia Wang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wangjie Xu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Meixing Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zijue Zhu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xianglong Zhao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Dong Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Dongsheng Nie
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lianyun Wang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Zhongdong Qiao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Brain Science and Technology Research Centre, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of reproductive medicine, School of medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
14
|
Aquino-Cortez A, Pinheiro BQ, Lima DBC, Silva HVR, Mota-Filho AC, Martins JAM, Rodriguez-Villamil P, Moura AA, Silva LDM. Proteomic characterization of canine seminal plasma. Theriogenology 2017; 95:178-186. [PMID: 28460673 DOI: 10.1016/j.theriogenology.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
The present study was conducted to identify the major proteome of the sperm-rich fraction and prostatic fraction of canine seminal plasma. Three semen samples from four healthy dogs were obtained by digital manipulation. The pre-sperm fraction, sperm-rich fraction and prostatic fraction were separated from each ejaculate. Immediately after sperm analysis, a protease inhibitor was added to the sperm-rich fraction and prostatic fraction, and the fractions were separately centrifuged and frozen at -80 °C. The samples were thawed, re-centrifuged, and the total protein concentration was determined. Samples were subjected to 1D SDS-PAGE and Coomassie-blue stained gels, were analyzed by Quantity One 1D Analysis Software. Bands detected in the gels were excised and proteins subjected to digestion with trypsin. Proteins were identified by nano-HPLC-MS and tools of bioinformatics. Tandem mass spectrometry allowed the detection of 268 proteins in the gels of sperm-rich fraction and prostatic fraction of canine ejaculate. A total of 251 proteins were common to the sperm-rich and prostatic fractions, while 17 proteins were present in the sperm-rich fraction and absent in the prostatic fraction. The intensity of the bands detected in range 1 and 2 represented 46.5% of all of the band intensities detected in the 1D gels for proteins of the sperm-rich fraction and 53.0% of all bands in the prostatic fraction. Arginine esterase and lactotransferrin precursor were the protein with the highest intensity observed in the both fractions. Among the proteins present only in the sperm-rich fraction, the proteins UPF0764 protein C16orf89 homolog and epididymal-specific lipocalin-9 were the most abundant. In conclusion, canine sperm-rich fraction and prostatic fraction express a very diverse set of proteins, with unique biochemical properties and functions. Moreover, although most proteins are common to both sperm-rich fraction and prostatic fraction, there are some exclusive proteins in sperm-rich fraction.
Collapse
Affiliation(s)
- Annice Aquino-Cortez
- Laboratory of Carnivores Reproduction, State University of Ceara, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The Epigenetic Consequences of Paternal Exposure to Environmental Contaminants and Reproductive Toxicants. Curr Environ Health Rep 2016; 3:202-13. [DOI: 10.1007/s40572-016-0101-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Dai J, Xu W, Zhao X, Zhang M, Zhang D, Nie D, Bao M, Wang Z, Wang L, Qiao Z. Protein profile screening: reduced expression of Sord in the mouse epididymis induced by nicotine inhibits tyrosine phosphorylation level in capacitated spermatozoa. Reproduction 2015; 151:227-37. [PMID: 26647419 DOI: 10.1530/rep-15-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/08/2015] [Indexed: 11/08/2022]
Abstract
Many studies have revealed the hazardous effects of cigarette smoking and nicotine exposure on male fertility, but the actual, underlying molecular mechanism remains relatively unclear. To evaluate the detrimental effects of nicotine exposure on the sperm maturation process, two-dimensional gel electrophoresis and mass spectrometry analyses were performed to screen and identify differentially expressed proteins from the epididymal tissue of mice exposed to nicotine. Data mining analysis indicated that 15 identified proteins were mainly involved in the molecular transportation process and the polyol pathway, indicating impaired epididymal secretory functions. Experiments in vitro confirmed that nicotine inhibited tyrosine phosphorylation levels in capacitated spermatozoa via the downregulated seminal fructose concentration. Sord, a key gene encoding sorbitol dehydrogenase, was further investigated to reveal that nicotine induced hyper-methylation of the promoter region of this gene. Nicotine-induced reduced expression of Sord could be involved in impaired secretory functions of the epididymis and thus prevent the sperm from undergoing proper maturation and capacitation, although further experiments are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Jingbo Dai
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wangjie Xu
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xianglong Zhao
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Meixing Zhang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Dong Zhang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Dongsheng Nie
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Min Bao
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhaoxia Wang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lianyun Wang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhongdong Qiao
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
17
|
Dai JB, Wang ZX, Qiao ZD. The hazardous effects of tobacco smoking on male fertility. Asian J Androl 2015; 17:954-60. [PMID: 25851659 PMCID: PMC4814952 DOI: 10.4103/1008-682x.150847] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/13/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
The substantial harmful effects of tobacco smoking on fertility and reproduction have become apparent but are not generally appreciated. Tobacco smoke contains more than 4000 kinds of constituents, including nicotine, tar, carbonic monoxide, polycyclic aromatic hydrocarbons, and heavy metals. Because of the complexity of tobacco smoke components, the toxicological mechanism is notably complicated. Most studies have reported reduced semen quality, reproductive hormone system dysfunction and impaired spermatogenesis, sperm maturation, and spermatozoa function in smokers compared with nonsmokers. Underlying these effects, elevated oxidative stress, DNA damage, and cell apoptosis may play important roles collaboratively in the overall effect of tobacco smoking on male fertility. In this review, we strive to focus on both the phenotype of and the molecular mechanism underlying these harmful effects, although current studies regarding the mechanism remain insufficient.
Collapse
Affiliation(s)
- Jing-Bo Dai
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhao-Xia Wang
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhong-Dong Qiao
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Wong MK, Barra NG, Alfaidy N, Hardy DB, Holloway AC. Adverse effects of perinatal nicotine exposure on reproductive outcomes. Reproduction 2015; 150:R185-93. [PMID: 26432348 DOI: 10.1530/rep-15-0295] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Nicotine exposure during pregnancy through cigarette smoking, nicotine replacement therapies or e-cigarette use continues to be a widespread public health problem, impacting both fetal and postnatal health. Yet, at this time, there remains limited data regarding the safety and efficacy in using these nicotine products during pregnancy. Notably, reports assessing the effect of nicotine exposure on postnatal health outcomes in humans, including reproductive health, are severely lacking. Our current understanding regarding the consequences of nicotine exposure during pregnancy is limited to a few animal studies, which do not comprehensively address the underlying cellular mechanisms involved. This paper aims to critically review the current knowledge from human and animal studies regarding the direct and indirect effects (e.g. obesity) of maternal nicotine exposure, regardless of its source, on reproductive outcomes in pregnancy and postnatal life. Furthermore, this review highlights several key cellular mechanisms involved in these adverse reproductive deficits including oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. By understanding the interplay of the cellular mechanisms involved, further strategies could be developed to prevent the reproductive abnormalities resulting from exposure to nicotine in utero and influence informed clinical guidelines for pregnant women.
Collapse
Affiliation(s)
| | | | - Nadia Alfaidy
- Departments of Obstetrics and Gynecology Physiology and Pharmacology, Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada University of Grenoble-Alpes 38000; INSERM U 1036, Grenoble, France; iRTSV-Biology of Cancer and Infection, Grenoble, France Department of Obstetrics and Gynecology McMaster University, RM HSC-3N52, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | - Alison C Holloway
- Departments of Obstetrics and Gynecology Physiology and Pharmacology, Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada University of Grenoble-Alpes 38000; INSERM U 1036, Grenoble, France; iRTSV-Biology of Cancer and Infection, Grenoble, France Department of Obstetrics and Gynecology McMaster University, RM HSC-3N52, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
19
|
Dai J, Zhan C, Xu W, Wang Z, Nie D, Zhao X, Zhang D, Gu Y, Wang L, Chen Z, Qiao Z. Nicotine elevates sperm motility and inducesPfn1promoter hypomethylation in mouse testis. Andrology 2015; 3:967-78. [DOI: 10.1111/andr.12072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- J. Dai
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - C. Zhan
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - W. Xu
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Z. Wang
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - D. Nie
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - X. Zhao
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - D. Zhang
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Y. Gu
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - L. Wang
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Z. Chen
- Department of Urology; Shanghai 6th People's Hospital; Shanghai Jiao Tong University; Shanghai China
| | - Z. Qiao
- School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|