1
|
Jing Z, Zhang H, Wen Y, Cui S, Ren Y, Liu R, Duan S, Zhao W, Fan L. Epigenetic and transcriptomic alterations in the ClC-3-deficient mice consuming a normal diet. Front Cell Dev Biol 2023; 11:1196684. [PMID: 37287451 PMCID: PMC10242048 DOI: 10.3389/fcell.2023.1196684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Metabolic disorders are an important health concern that threatens life and burdens society severely. ClC-3 is a member of the chloride voltage-gated channel family, and ClC-3 deletion improved the phenotypes of dysglycemic metabolism and the impairment of insulin sensitivity. However, the effects of a healthy diet on transcriptome and epigenetics in ClC-3-/- mice were not explained in detail. Methods: Here, we performed transcriptome sequencing and Reduced Representation Bisulfite Sequencing for the liver of 3 weeks old WT and ClC-3-/- mice consuming a normal diet to insight into the epigenetic and transcriptomic alterations of ClC-3 deficient mice. Results: In the present study, we found that ClC-3-/- mice that were younger than 8 weeks old had smaller bodies compared to ClC-3+/+ mice with ad libitum self-feeding normal diet, and ClC-3-/- mice that were older than 10 weeks old had a similar body weight. Except for the spleen, lung, and kidney, the average weight of the heart, liver, and brain in ClC-3-/- mice was lower than that in ClC-3+/+ mice. TG, TC, HDL, and LDL in fasting ClC-3-/- mice were not significantly different from those in ClC-3+/+ mice. Fasting blood glucose in ClC-3-/- mice was lower than that in ClC-3+/+ mice; the glucose tolerance test indicated the response to blood glucose increasing for ClC-3-/- mice was torpid, but the efficiency of lowering blood glucose was much higher once started. Transcriptomic sequencing and reduced representation bisulfite sequencing for the liver of unweaned mice indicated that ClC-3 deletion significantly changed transcriptional expression and DNA methylation levels of glucose metabolism-related genes. A total of 92 genes were intersected between DEGs and DMRs-targeted genes, of which Nos3, Pik3r1, Socs1, and Acly were gathered in type II diabetes mellitus, insulin resistance, and metabolic pathways. Moreover, Pik3r1 and Acly expressions were obviously correlated with DNA methylation levels, not Nos3 and Socs1. However, the transcriptional levels of these four genes were not different between ClC-3-/- and ClC-3+/+ mice at the age of 12 weeks. Discussion: ClC-3 influenced the methylated modification to regulate glucose metabolism, of which the gene expressions could be driven to change again by a personalized diet-style intervention.
Collapse
Affiliation(s)
- Zhenghui Jing
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haifeng Zhang
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yunjie Wen
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Shiyu Cui
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuhua Ren
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rong Liu
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sirui Duan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wenbao Zhao
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
| | - Lihong Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Chen J, Wang F, Lu Y, Yang S, Chen X, Huang Y, Lin X. CLC-3 and SOX2 regulate the cell cycle in DU145 cells. Oncol Lett 2020; 20:372. [PMID: 33154770 PMCID: PMC7608052 DOI: 10.3892/ol.2020.12235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Sex determining region Y-box 2 (SOX2) is a transcription factor that serves a role in numerous different types of malignant cancer. Altered expression of chloride channel proteins has been described in a variety of malignancies. However, the association between SOX2 and chloride channel proteins is not yet fully understood. The present study investigated the association between SOX2 and chloride voltage-gated channel 3 (CLC-3) in prostate cancer. Flow cytometry demonstrated that the inactivation of CLC-3 or SOX2 arrested cell cycle progression in the G0/G1 phase. Furthermore, CLC-3 was observed to bind to SOX2, and vice versa, by co-immunoprecipitation. SOX2 appears to initiate and maintain prostate cancer tumorigenesis, in part, by modulating the cell cycle. These findings indicate the potential of SOX2 and CLC-3 as targets for the development of multi-targeted therapeutics.
Collapse
Affiliation(s)
- Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuli Lu
- Department of Epidemiology and Health Statistics, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shangqi Yang
- Department of Epidemiology and Health Statistics, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Youwei Huang
- Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Key Laboratory for Environmental Exposure and Health, Environment College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
3
|
Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application. Rev Physiol Biochem Pharmacol 2020; 181:375-427. [PMID: 32789787 DOI: 10.1007/112_2020_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (Kv) channels (i.e. Kv3.4, Kv10.1 and Kv11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
Collapse
|
4
|
Deng Z, Li W, Alahdal M, Zhang N, Xie J, Hu X, Chen Y, Fang H, Duan L, Gu L, Wang D. Overexpression of ClC-3 Chloride Channel in Chondrosarcoma: An In Vivo Immunohistochemical Study with Tissue Microarray. Med Sci Monit 2019; 25:5044-5053. [PMID: 31281178 PMCID: PMC6637820 DOI: 10.12659/msm.917382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Recently, ClC-3 chloride channel expression has been noted to be high in some tumors. In chondrosarcoma, which is a malignant tumor with a high incidence in the bone, there has been no previous literature regarding ClC-3 chloride channel expression. Here we evaluated the expression of ClC-3 chloride channel in chondrosarcoma and explored its clinical significance. Material/Methods In this study, 75 chondrosarcoma and 5 normal cartilage tissues were collected. Thereafter, tissue microarray was performed. Immunohistochemistry was also used to observe the level of ClC-3 chloride channel expression between normal and chondrosarcoma tissues. Results Results showed that the expression of ClC-3 chloride channel in the normal chondrocyte was thinner, since it showed distinct differentiation among chondrosarcoma specimens. Interestingly, we noticed that the moderately-differentiated chondrosarcoma (MDC) and the poorly-differentiated chondrosarcoma (PDC) exhibited 94.44% of ClC-3 chloride channel. Besides, the subcellular localization of ClC-3 chloride channel was changed in association with malignant degree changes. The subcellular localization of ClC-3 chloride channel in the MDC and PDC tissue was localized in the cytoplasm and both nucleus and cytoplasm: 83.33% (5 out of 6 cases) and 91.66% (11 out of 12 cases) respectively. On the other hand, we noticed that patient age and gender could have a relation with ClC-3 chloride channel expression; 30- to 60-year-old males showed more expression. Conclusions These results demonstrated a high frequency of ClC-3 chloride channel overexpression and subcellular localization differences in MDC and PDC tissue, suggesting a specific role of ClC-3 chloride channel in the pathogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Wencui Li
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Murad Alahdal
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Ningfeng Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Junxiong Xie
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Xiaotian Hu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Yang Chen
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Huankun Fang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Liqiang Gu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
5
|
Guan YT, Xie Y, Zhou H, Shi HY, Zhu YY, Zhang XL, Luan Y, Shen XM, Chen YP, Xu LJ, Lin ZQ, Wang G. Overexpression of chloride channel-3 (ClC-3) is associated with human cervical carcinoma development and prognosis. Cancer Cell Int 2019; 19:8. [PMID: 30636929 PMCID: PMC6325671 DOI: 10.1186/s12935-018-0721-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background Cervical carcinoma is a major gynecological cancer and causes cancer-related deaths in worldwide, the latent pathogenesis and progress of cervical cancer is still under research. ClC-3 may be an important promoter for aggressive metastasis of malignant tumors. In this research, we explore the ClC-3 expression in cervical carcinoma and its underlying clinical significance, trying to illuminate ClC-3 probable function in the neoplasm malignant behavior, development and prognosis. Methods Paraffin-embedded cervical (n = 168) and lymph node (n = 100) tissue specimens were analysed by immunohistochemistry. Fresh human cervical tissue specimens (n = 165) and four human cervical cell lines were tested for ClC-3 mRNA and protein expression levels by quantitative real-time PCR and western blotting. The relationship between the expression levels of ClC-3, the pathological characteristics of the carcinoma, and the clinical prognosis were statistically analysed. Results In normal and precancerous (LSIL, HSIL) cervical tissues as well as cervical carcinoma tissues, both ClC-3 mRNA and protein expression levels increased significantly (p < 0.05). The expression level of ClC-3 was closely-related to the histological differentiation (p = 0.029), tumour staging (p = 0.016), tumour size (p = 0.039), vascular invasion (p = 0.045), interstitial infiltration depth (p = 0.012), lymphatic metastasis (p = 0.036), and HPV infection (p = 0.022). In an in vitro experiment, ClC-3 mRNA and protein were found to be overexpressed both in the HeLa and SiHa cell lines, but low expression levels were detected in the C-33A and H8 cell lines (p < 0.05). Furthermore, the high expression levels of ClC-3 was significantly correlated to poor survival in cervical carcinoma patients (Log-rank test, p = 0.046). Conclusions These data suggest that overexpression of ClC-3 is closely associated with human cervical carcinoma progression and poor prognosis; this suggests that ClC-3 may function as a patent tumour biomarker and a latent therapeutic target for cervical carcinoma patients.
Collapse
Affiliation(s)
- Yu-Tao Guan
- 1Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,2Department of Obstetrics and Gynaecology, The First People's Hospital of Foshan, Foshan, China
| | - Yong Xie
- 2Department of Obstetrics and Gynaecology, The First People's Hospital of Foshan, Foshan, China
| | - Hui Zhou
- 1Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hai-Yan Shi
- 3Department of Pathology, The First People's Hospital of Foshan, Foshan, China
| | - Yu-Yuan Zhu
- 2Department of Obstetrics and Gynaecology, The First People's Hospital of Foshan, Foshan, China
| | - Xiao-Lu Zhang
- 2Department of Obstetrics and Gynaecology, The First People's Hospital of Foshan, Foshan, China
| | - Yi Luan
- 1Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi-Ming Shen
- 4Department of Pathology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang-Ping Chen
- 2Department of Obstetrics and Gynaecology, The First People's Hospital of Foshan, Foshan, China
| | - Li-Jiang Xu
- 2Department of Obstetrics and Gynaecology, The First People's Hospital of Foshan, Foshan, China
| | - Zhong-Qiu Lin
- 1Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Wang
- 2Department of Obstetrics and Gynaecology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
6
|
Zhang H, Deng Z, Zhang D, Li H, Zhang L, Niu J, Zuo W, Fu R, Fan L, Ye JH, She J. High expression of leucine‑rich repeat‑containing 8A is indicative of a worse outcome of colon cancer patients by enhancing cancer cell growth and metastasis. Oncol Rep 2018; 40:1275-1286. [PMID: 30015914 PMCID: PMC6072393 DOI: 10.3892/or.2018.6556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
Abstract
To survive, cells need to avoid excessive volume change that jeopardizes structural integrity and stability of the intracellular milieu. Searching for the molecular identity of volume‑regulated anion channel (VRAC) has yielded multiple potential candidates, but none has been confirmed. Recently, it is reported that leucine‑rich repeat‑containing 8A (LRRC8A) is a main molecular determinant of VRAC current. The biological functions of LRRC8 family proteins are poorly understood, particularly in cancer. In the present study, we investigated LRRC8A in the most common cancers of the digestive system. LRRC8A proteins were found to be abundantly expressed in the esophagus, stomach, duodenum, colon, rectum, liver and pancreas. LRRC8A was elevated in 60% of colorectal cancer patient tissues, which was higher than that in patients with cancer of the esophagus, stomach, duodenum, liver and pancreas. Colon cancer patients with high‑ expressed LRRC8A had a survival time of 54.9±5.5 months, shorter than that of patients with low‑expressed LRRC8A (77.1±3.7). Moreover, survival time (52.6±7.3 months) of patients with metastases in the lymph nodes was shorter than that of patients without positive lymph nodes (72.2±3.6); patients with positive lymph nodes and an elevated LRRC8A expression had the highest mortality rate (~80%). These rates were not observed in rectal cancer. After LRRC8A protein was knocked down in colon cancer HCT116 cells, VRAC currents, migration and tumorigenesis in nude mice were significantly inhibited. In conclusion, we propose that LRRC8A could be a novel prognostic biomarker for colon cancer patient survival, and that the elevated expression of LRRC8A may enhance cancer cell growth and metastasis, and worsen the outcome of patients.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Pathology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhiqin Deng
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Dongxia Zhang
- Department of Surgical Medicine, The 541 General Hospital, Shanxi Medical University, Yuncheng, Shanxi 043801, P.R. China
| | - Huarong Li
- Department of Physiology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lei Zhang
- Department of Surgical Medicine, The 541 General Hospital, Shanxi Medical University, Yuncheng, Shanxi 043801, P.R. China
| | - Jin Niu
- Department of Surgical Medicine, The 541 General Hospital, Shanxi Medical University, Yuncheng, Shanxi 043801, P.R. China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Lihong Fan
- Department of Internal Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Junjun She
- Department of Surgical Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Yang H, Ma L, Wang Y, Zuo W, Li B, Yang Y, Chen Y, Chen L, Wang L, Zhu L. Activation of ClC-3 chloride channel by 17β-estradiol relies on the estrogen receptor α expression in breast cancer. J Cell Physiol 2017; 233:1071-1081. [PMID: 28419445 DOI: 10.1002/jcp.25963] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/14/2017] [Indexed: 11/11/2022]
Abstract
Although extensively studied, the mechanisms by which estrogen promotes breast cancer growth remain to be fully elucidated. Tamoxifen, an antiestrogen agent to treat ERα+ breast cancer, is also a high-affinity blocker of the chloride channels. In this study, we explored the involvement of the chloride channels in the action of estrogen in breast cancer. We found that 17β-estradiol (17β-E2) concentration-dependently activated the chloride currents in ERα+ breast cancer MCF-7 cells. Extracellular hypertonic challenge and chloride channel blockers, NPPB and DIDS inhibited the 17β-E2-activated chloride currents. Decreased the ClC-3 protein expression caused the depletion of the 17β-E2-activated chloride currents. 17β-E2-activated chloride currents which relied on the ERα expression were demonstrated by the following evidences. Firstly, 17β-E2-activated chloride currents could not be observed in ERα- breast cancer MDA-MB-231 cells. Secondly, ER antagonists, tamoxifen and ICI 182,780, and downregulation of ERα expression inhibited or abolished the 17β-E2-activated chloride currents. Thirdly, ERα expression was induced in MDA-MB-231 cells by ESR1 gene transfection, and then 17β-E2-activated chloride currents could be observed. In MCF-7 cells, ERα and ClC-3 mainly located in nucleus and translocated to cell plasma and membrane with respect to co-localization following treatment of 17β-E2. Downregulation of ERα expression could decrease the expression of ClC-3 protein. Conversely, downregulation of ClC-3 expression did not influence the ERα expression. Taken together, our findings demonstrated that ClC-3 is a potential target of 17β-E2 and is modulated by the ERα in breast cancer cell. Pharmacological modulation of ClC-3 may provide a deep understanding in antiestrogen treatment of breast cancer patients.
Collapse
Affiliation(s)
- Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lianshun Ma
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yawei Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Wanhong Zuo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Bingxue Li
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yaping Yang
- Analysis and Test Center, Jinan University, Guangzhou, China
| | - Yehui Chen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixin Chen
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Deng Z, Peng S, Zheng Y, Yang X, Zhang H, Tan Q, Liang X, Gao H, Li Y, Huang Y, Zhu L, Jacob TJC, Chen L, Wang L. Estradiol activates chloride channels via estrogen receptor-α in the cell membranes of osteoblasts. Am J Physiol Cell Physiol 2017; 313:C162-C172. [PMID: 28468943 DOI: 10.1152/ajpcell.00014.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022]
Abstract
Estrogen plays important roles in regulation of bone formation. Cl- channels in the ClC family are expressed in osteoblasts and are associated with bone physiology and pathology, but the relationship between Cl- channels and estrogen is not clear. In this study the action of estrogen on Cl- channels was investigated in the MC3T3-E1 osteoblast cell line. Our results show that 17β-estradiol could activate a current that reversed at a potential close to the Cl- equilibrium potential, with a sequence of anion selectivity of I- > Br- > Cl- > gluconate, and was inhibited by the Cl- channel blockers 5-nitro-2-(3-phenylpropylamino)-benzoate and 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid. Knockdown of ClC-3 Cl- channel expression by a specific small interfering RNA to ClC-3 attenuated activation of the 17β-estradiol-induced Cl- current. Extracellular application of membrane-impermeable 17β-estradiol-albumin conjugates activated a similar current. The estrogen-activated Cl- current could be inhibited by the estrogen receptor (ER) antagonist fulvestrant (ICI 182780). The selective ERα agonist, but not ERβ agonist, activated a Cl- current similar to that induced by 17β-estradiol. Silencing ERα expression prevented activation of estrogen-induced currents. Immunofluorescence and coimmunoprecipitation experiments demonstrated that ClC-3 Cl- channels and ERα were colocalized and closely related in cells. Estrogen promoted translocation of ClC-3 and ERα to the cell membrane from the nucleus. In conclusion, our findings show that Cl- channels can be activated by estrogen via ERα on the cell membrane and suggest that the ClC-3 Cl- channel may be one of the targets of estrogen in the regulation of osteoblast activity.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Shuang Peng
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China.,Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yanfang Zheng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Xiaoya Yang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Haifeng Zhang
- Department of Pathology, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qiuchan Tan
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Xiechou Liang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Hong Gao
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Li
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yanqing Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China; and
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Tim J C Jacob
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China; .,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,International School, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells. Sci Rep 2016; 6:30276. [PMID: 27451945 PMCID: PMC4959003 DOI: 10.1038/srep30276] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022] Open
Abstract
It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression.
Collapse
|
10
|
The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 2016; 72:89-99. [PMID: 26794461 DOI: 10.1016/j.biocel.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
Abstract
Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.
Collapse
|
11
|
Ampofo E, Später T, Müller I, Eichler H, Menger MD, Laschke MW. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs 2015; 13:6774-91. [PMID: 26569265 PMCID: PMC4663553 DOI: 10.3390/md13116774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
Background: The marine-derived kinase inhibitor fascaplysin down-regulates the PI3K pathway in cancer cells. Since this pathway also plays an essential role in platelet signaling, we herein investigated the effect of fascaplysin on thrombosis. Methods: Fascaplysin effects on platelet activation, platelet aggregation and platelet-leukocyte aggregates (PLA) formation were analyzed by flow cytometry. Mouse dorsal skinfold chambers were used to determine in vivo the effect of fascaplysin on photochemically induced thrombus formation and tail-vein bleeding time. Results: Pre-treatment of platelets with fascaplysin reduced the activation of glycoprotein (GP)IIb/IIIa after protease-activated receptor-1-activating peptide (PAR-1-AP), adenosine diphosphate (ADP) and phorbol-12-myristate-13-acetate (PMA) stimulation, but did not markedly affect the expression of P-selectin. This was associated with a decreased platelet aggregation. Fascaplysin also decreased PLA formation after PMA but not PAR-1-AP and ADP stimulation. This may be explained by an increased expression of CD11b on leukocytes in PAR-1-AP- and ADP-treated whole blood. In the dorsal skinfold chamber model of photochemically induced thrombus formation, fascaplysin-treated mice revealed a significantly extended complete vessel occlusion time when compared to controls. Furthermore, fascaplysin increased the tail-vein bleeding time. Conclusion: Fascaplysin exerts anti-thrombotic activity, which represents a novel mode of action in the pleiotropic activity spectrum of this compound.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Isabelle Müller
- Institute for Hemostasiology and Transfusion Medicine, Saarland University, 66421 Homburg/Saar, Germany.
| | - Hermann Eichler
- Institute for Hemostasiology and Transfusion Medicine, Saarland University, 66421 Homburg/Saar, Germany.
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
12
|
Cai S, Zhang T, Zhang D, Qiu G, Liu Y. Volume-sensitive chloride channels are involved in cisplatin treatment of osteosarcoma. Mol Med Rep 2014; 11:2465-70. [PMID: 25503821 PMCID: PMC4337627 DOI: 10.3892/mmr.2014.3068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/14/2014] [Indexed: 01/23/2023] Open
Abstract
Chemotherapy is the most common therapeutic strategy used to treat osteosarcoma. The present study aimed to investigate the effects of functionally activated chloride channels on cisplatin-induced apoptosis of MG-63 human osteosarcoma cells. An MTT assay and flow cytometry were used to detect proliferation and apoptosis of the cells, respectively. Live cell imaging was used to detect volume changes in response to treatment with cisplatin and/or chloride channel blockers. The effects of these treatments on chloride currents were also assayed using the patch-clamp technique. The results of the present study indicate that chloride channel blockers may suppress cisplatin-induced apoptosis. The MG-63 cells cultured with cisplatin demonstrated an apoptotic volume decrease, as well as suppression of cell proliferation; which were reversed by co-treatment with chloride channel blockers. These results suggest that cisplatin may activate chloride channels, and that channel activation is an early signal in the pathways that lead to cisplatin-induced apoptosis and inhibition of proliferation in MG-63 cells. In conclusion, these results indicate that chloride channels have an important role in cisplatin treatment of osteosarcoma.
Collapse
Affiliation(s)
- Siyi Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Tao Zhang
- Department of Internal Medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Dandan Zhang
- Department of Histology and Embryology, Medical College of Jinan University; Guangzhou, Guangdong 510632, P.R. China
| | - Guixing Qiu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Yong Liu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| |
Collapse
|
13
|
Zhang H, Li H, Liu E, Guang Y, Yang L, Mao J, Zhu L, Chen L, Wang L. The AQP-3 water channel and the ClC-3 chloride channel coordinate the hypotonicity-induced swelling volume in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 2014; 57:96-107. [DOI: 10.1016/j.biocel.2014.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022]
|
14
|
Hong S, Bi M, Wang L, Kang Z, Ling L, Zhao C. CLC-3 channels in cancer (review). Oncol Rep 2014; 33:507-14. [PMID: 25421907 DOI: 10.3892/or.2014.3615] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 11/06/2022] Open
Abstract
Ion channels are involved in regulating cell proliferation and apoptosis (programed cell death). Since increased cellular proliferation and inhibition of apoptosis are characteristic features of tumorigenesis, targeting ion channels is a promising strategy for treating cancer. CLC-3 is a member of the voltage-gated chloride channel superfamily and is expressed in many cancer cells. In the plasma membrane, CLC-3 functions as a chloride channel and is associated with cell proliferation and apoptosis. CLC-3 is also located in intracellular compartments, contributing to their acidity, which increases sequestration of drugs and leads to chemotherapy drug resistance. In this review, we summarize the recent findings concerning the involvement of CLC-3 in cancer and explore its potential in cancer therapy.
Collapse
Affiliation(s)
- Sen Hong
- Department of Physiology, The Basic Medical College, Jilin University, Changchun 130021, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, The China‑Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, P.R. China
| | - Lei Wang
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Zhenhua Kang
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Limian Ling
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Chunyan Zhao
- Department of Physiology, The Basic Medical College, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
15
|
Zhang H, Li H, Yang L, Deng Z, Luo H, Ye D, Bai Z, Zhu L, Ye W, Wang L, Chen L. The ClC-3 chloride channel associated with microtubules is a target of paclitaxel in its induced-apoptosis. Sci Rep 2014; 3:2615. [PMID: 24026363 PMCID: PMC3770968 DOI: 10.1038/srep02615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Recent evidences show that cationic fluxes play a pivotal role in cell apoptosis. In this study, the roles of Cl− channels in paclitaxel-induced apoptosis were investigated in nasopharyngeal carcinoma CNE-2Z cells. Chloride current and apoptosis were induced by paclitaxel and inhibited by chloride channel blockers. Paclitaxel-activated current possessed similar properties to volume-activated chloride current. After ClC-3 was knocked-down by ClC-3-siRNA, hypotonicity-activated and paclitaxel-induced chloride currents were obviously decreased, indicating that the chloride channel involved in paclitaxel-induced apoptosis may be ClC-3. In early apoptotic cells, ClC-3 was up-regulated significantly; over-expressed ClC-3 was accumulated in cell membrane to form intercrossed filaments, which were co-localized with α-tubulins; changes of ultrastructures and decrease of flexibility in cell membrane were detected by atomic force microscopy. These suggest that ClC-3 is a critical target of paclitaxel and the involvement of ClC-3 in apoptosis may be associated with its accumulation with membrane microtubules and its over activation.
Collapse
Affiliation(s)
- Haifeng Zhang
- 1] Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China [2] Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China [3]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|