1
|
Jin X, Song X. Autophagy Dysfunction: The Kernel of Hair Loss? Clin Cosmet Investig Dermatol 2024; 17:1165-1181. [PMID: 38800357 PMCID: PMC11122274 DOI: 10.2147/ccid.s462294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Autophagy is recognized as a crucial regulatory process, instrumental in the removal of senescent, dysfunctional, and damaged cells. Within the autophagic process, lysosomal digestion plays a critical role in the elimination of impaired organelles, thus preserving fundamental cellular metabolic functions and various biological processes. Mitophagy, a targeted autophagic process that specifically focuses on mitochondria, is essential for sustaining cellular health and energy balance. Therefore, a deep comprehension of the operational mechanisms and implications of autophagy and mitophagy is vital for disease prevention and treatment. In this context, we examine the role of autophagy and mitophagy during hair follicle cycles, closely scrutinizing their potential association with hair loss. We also conduct a thorough review of the regulatory mechanisms behind autophagy and mitophagy, highlighting their interaction with hair follicle stem cells and dermal papilla cells. In conclusion, we investigate the potential of manipulating autophagy and mitophagy pathways to develop innovative therapeutic strategies for hair loss.
Collapse
Affiliation(s)
- Xiaofan Jin
- Zhejiang University School of Medicine, Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Hangzhou, People’s Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Venit T, Sapkota O, Abdrabou WS, Loganathan P, Pasricha R, Mahmood SR, El Said NH, Sherif S, Thomas S, Abdelrazig S, Amin S, Bedognetti D, Idaghdour Y, Magzoub M, Percipalle P. Positive regulation of oxidative phosphorylation by nuclear myosin 1 protects cells from metabolic reprogramming and tumorigenesis in mice. Nat Commun 2023; 14:6328. [PMID: 37816864 PMCID: PMC10564744 DOI: 10.1038/s41467-023-42093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.
Collapse
Affiliation(s)
- Tomas Venit
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Oscar Sapkota
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Wael Said Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Palanikumar Loganathan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Syed Raza Mahmood
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Nadine Hosny El Said
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Shimaa Sherif
- Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sneha Thomas
- Core Technology Platforms, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Salah Abdelrazig
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Shady Amin
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Davide Bedognetti
- Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
3
|
Caielli S, Cardenas J, de Jesus AA, Baisch J, Walters L, Blanck JP, Balasubramanian P, Stagnar C, Ohouo M, Hong S, Nassi L, Stewart K, Fuller J, Gu J, Banchereau JF, Wright T, Goldbach-Mansky R, Pascual V. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 2021; 184:4464-4479.e19. [PMID: 34384544 PMCID: PMC8380737 DOI: 10.1016/j.cell.2021.07.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Emerging evidence supports that mitochondrial dysfunction contributes to systemic lupus erythematosus (SLE) pathogenesis. Here we show that programmed mitochondrial removal, a hallmark of mammalian erythropoiesis, is defective in SLE. Specifically, we demonstrate that during human erythroid cell maturation, a hypoxia-inducible factor (HIF)-mediated metabolic switch is responsible for the activation of the ubiquitin-proteasome system (UPS), which precedes and is necessary for the autophagic removal of mitochondria. A defect in this pathway leads to accumulation of red blood cells (RBCs) carrying mitochondria (Mito+ RBCs) in SLE patients and in correlation with disease activity. Antibody-mediated internalization of Mito+ RBCs induces type I interferon (IFN) production through activation of cGAS in macrophages. Accordingly, SLE patients carrying both Mito+ RBCs and opsonizing antibodies display the highest levels of blood IFN-stimulated gene (ISG) signatures, a distinctive feature of SLE.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | | | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeanine Baisch
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Preetha Balasubramanian
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Cristy Stagnar
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Marina Ohouo
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Seunghee Hong
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lorien Nassi
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katie Stewart
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie Fuller
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinghua Gu
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Tracey Wright
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Wang Q, Xiong Y, Zhang S, Sui Y, Yu C, Liu P, Li H, Guo W, Gao Y, Przepiorski A, Davidson AJ, Guo M, Zhang X. The Dynamics of Metabolic Characterization in iPSC-Derived Kidney Organoid Differentiation via a Comparative Omics Approach. Front Genet 2021; 12:632810. [PMID: 33643392 PMCID: PMC7902935 DOI: 10.3389/fgene.2021.632810] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
The use of differentiating human induced pluripotent stem cells (hiPSCs) in mini-tissue organoids provides an invaluable resource for regenerative medicine applications, particularly in the field of disease modeling. However, most studies using a kidney organoid model, focused solely on the transcriptomics and did not explore mechanisms of regulating kidney organoids related to metabolic effects and maturational phenotype. Here, we applied metabolomics coupled with transcriptomics to investigate the metabolic dynamics and function during kidney organoid differentiation. Not only did we validate the dominant metabolic alteration from glycolysis to oxidative phosphorylation in the iPSC differentiation process but we also showed that glycine, serine, and threonine metabolism had a regulatory role during kidney organoid formation and lineage maturation. Notably, serine had a role in regulating S-adenosylmethionine (SAM) to facilitate kidney organoid formation by altering DNA methylation. Our data revealed that analysis of metabolic characterization broadens our ability to understand phenotype regulation. The utilization of this comparative omics approach, in studying kidney organoid formation, can aid in deciphering unique knowledge about the biological and physiological processes involved in organoid-based disease modeling or drug screening.
Collapse
Affiliation(s)
- Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yufei Sui
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cunlai Yu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Peng Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yubo Gao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aneta Przepiorski
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
5
|
Solis MA, Wei YH, Chang CH, Yu CH, Huang LLH. Hyaluronan Induces a Mitochondrial Functional Switch in Fast-Proliferating Human Mesenchymal Stem. Int J Stem Cells 2020; 13:151-162. [PMID: 31910510 PMCID: PMC7119204 DOI: 10.15283/ijsc19004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/23/2019] [Accepted: 04/21/2019] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Hyaluronan preserves the proliferation and differentiation potential of mesenchymal stem cells. Supplementation of low-concentration hyaluronan (SHA) in stem cells culture medium increases its proliferative rate, whereas coated-surface hyaluronan (CHA) maintains cells in a slow-proliferating mode. We have previously demonstrated that in CHA, the metabolic proliferative state of stem cells was influenced by upregulating mitochondrial biogenesis and function. However, the effect of SHA on stem cells' energetic status remains unknown. In this study, we demonstrate the effect that low-concentration SHA at 0.001 mg/ml (SHA0.001) and high-concentration SHA at 5 mg/ml (SHA5) exert on stem cells' mitochondrial function compared with CHA and noncoated tissue culture surface (control). Methods and Results Fast-proliferating human placenta-derived mesenchymal stem cells (PDMSCs) cultured on SHA0.001 exhibited reduced mitochondrial mass, lower mitochondrial DNA copy number, and lower oxygen consumption rate compared with slow-proliferating PDMSCs cultured on CHA at 5.0 (CHA5) or 30 μg/cm2 (CHA30). The reduced mitochondrial biogenesis observed in SHA0.001 was accompanied by a 2-fold increased ATP content and lactate production, suggesting that hyaluronan-induced fast-proliferating PDMSCs may rely less on mitochondrial function as an energy source and induce a mitochondrial functional switch to glycolysis. Conclusions PDMSCs cultured on both CHA and SHA exhibited a reduction in reactive oxygen species levels. The results from this study clarify our understandings on the effect of hyaluronan on stem cells and provide important insights into the effect of distinct supplementation methods used during cell therapies.
Collapse
Affiliation(s)
- Mairim Alexandra Solis
- Gorgas Memorial Institute for Health Studies, Panama, Panama.,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Hsin Chang
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Hsiang Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, Taiwan
| | - Lynn L H Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Prieto J, Ponsoda X, Izpisua Belmonte JC, Torres J. Mitochondrial dynamics and metabolism in induced pluripotency. Exp Gerontol 2020; 133:110870. [PMID: 32045634 DOI: 10.1016/j.exger.2020.110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
7
|
Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 2019; 20:34-48. [PMID: 30464208 DOI: 10.1038/s41583-018-0091-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Harris
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Pacelli C, Rotundo G, Lecce L, Menga M, Bidollari E, Scrima R, Cela O, Piccoli C, Cocco T, Vescovi AL, Mazzoccoli G, Rosati J, Capitanio N. Parkin Mutation Affects Clock Gene-Dependent Energy Metabolism. Int J Mol Sci 2019; 20:ijms20112772. [PMID: 31195749 PMCID: PMC6600341 DOI: 10.3390/ijms20112772] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Growing evidence highlights a tight connection between circadian rhythms, molecular clockworks, and mitochondrial function. In particular, mitochondrial quality control and bioenergetics have been proven to undergo circadian oscillations driven by core clock genes. Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a selective loss of dopaminergic neurons. Almost half of the autosomal recessive forms of juvenile parkinsonism have been associated with mutations in the PARK2 gene coding for parkin, shown to be involved in mitophagy-mediated mitochondrial quality control. The aim of this study was to investigate, in fibroblasts from genetic PD patients carrying parkin mutations, the interplay between mitochondrial bioenergetics and the cell autonomous circadian clock. Using two different in vitro synchronization protocols, we demonstrated that normal fibroblasts displayed rhythmic oscillations of both mitochondrial respiration and glycolytic activity. Conversely, in fibroblasts obtained from PD patients, a severe damping of the bioenergetic oscillatory patterns was observed. Analysis of the core clock genes showed deregulation of their expression patterns in PD fibroblasts, which was confirmed in induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) derived thereof. The results from this study support a reciprocal interplay between the clockwork machinery and mitochondrial energy metabolism, point to a parkin-dependent mechanism of regulation, and unveil a hitherto unappreciated level of complexity in the pathophysiology of PD and eventually other neurodegenerative diseases.
Collapse
Affiliation(s)
- Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Giovannina Rotundo
- Cell Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Lucia Lecce
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Marta Menga
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Eris Bidollari
- Cell Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy.
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, Bicocca University of Milan, 20126 Milan, Italy.
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Jessica Rosati
- Cell Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| |
Collapse
|
9
|
Son MJ, Jeong JK, Kwon Y, Ryu JS, Mun SJ, Kim HJ, Kim SW, Yoo S, Kook J, Lee H, Kim J, Chung KS. A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming. Exp Mol Med 2018; 50:1-15. [PMID: 30523246 PMCID: PMC6283868 DOI: 10.1038/s12276-018-0185-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/15/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Targeting hair follicle regeneration has been investigated for the treatment of hair loss, and fundamental studies investigating stem cells and their niche have been described. However, knowledge of stem cell metabolism and the specific regulation of bioenergetics during the hair regeneration process is currently insufficient. Here, we report the hair regrowth-promoting effect of a newly synthesized novel small molecule, IM176OUT05 (IM), which activates stem cell metabolism. IM facilitated stemness induction and maintenance during an induced pluripotent stem cell generation process. IM treatment mildly inhibited mitochondrial oxidative phosphorylation and concurrently increased glycolysis, which accelerated stemness induction during the early phase of reprogramming. More importantly, the topical application of IM accelerated hair follicle regeneration by stimulating the progression of the hair follicle cycle to the anagen phase and increased the hair follicle number in mice. Furthermore, the stem cell population with a glycolytic metabotype appeared slightly earlier in the IM-treated mice. Stem cell and niche signaling involved in the hair regeneration process was also activated by the IM treatment during the early phase of hair follicle regeneration. Overall, these results show that the novel small molecule IM promotes tissue regeneration, specifically in hair regrowth, by restructuring the metabolic configuration of stem cells. A compound that establishes metabolic conditions favorable for sustaining stem cells may also offer a safe drug for promoting hair regrowth. Drugs that inhibit mitochondrial activity help lock stem cells into a pluripotent state that allows them to actively divide and repair various tissues, but many of these drugs are toxic. Researchers led by Myung Jin Son of the Korea Research Institute of Bioscience and Biotechnology, Daejeon and ImmunoMet, USA have identified a new compound that safely achieves the same effect. This potential drug helped promote stemness in diverse stem cell types, including the highly proliferative cells that comprise hair follicles. Topical application proved more effective at promoting hair regrowth in female mice than the baldness drug minoxidil, and matched its performance in males, demonstrating its potency as a stem cell modulator.
Collapse
Affiliation(s)
- Myung Jin Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Jae Kap Jeong
- HanAll Biopharma, Bongeunsaro114-gil 12, 9th Floor, Kangnam-gu, Seoul, Republic of Korea.,SCAS-BTT Bioanalysis Co., Ltd, Ochang Scientific Complex 53, Yengudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28115, Republic of Korea
| | - Youjeong Kwon
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Center for Biomolecular Sciences, University of Illinois at Chicago, 900 South Ashland Ave. 3018, Chicago, IL, 60607, USA
| | - Jae-Sung Ryu
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon Ju Mun
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hye Jin Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Eco-Friendly and New Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Sung-Wuk Kim
- HanAll Biopharma, Bongeunsaro114-gil 12, 9th Floor, Kangnam-gu, Seoul, Republic of Korea.,ImmunoMet Therapeutics Inc., JLABS at Texas Medical Center, 2450 Holcombe Blvd, Houston, TX, 77021, USA
| | - Sanghee Yoo
- ImmunoMet Therapeutics Inc., JLABS at Texas Medical Center, 2450 Holcombe Blvd, Houston, TX, 77021, USA
| | - Jiae Kook
- ImmunoMet Therapeutics Inc., JLABS at Texas Medical Center, 2450 Holcombe Blvd, Houston, TX, 77021, USA
| | - Hongbum Lee
- ImmunoMet Therapeutics Inc., JLABS at Texas Medical Center, 2450 Holcombe Blvd, Houston, TX, 77021, USA
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113, Republic of Korea. .,Biomedical Translational Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Perestrelo T, Correia M, Ramalho-Santos J, Wirtz D. Metabolic and Mechanical Cues Regulating Pluripotent Stem Cell Fate. Trends Cell Biol 2018; 28:1014-1029. [DOI: 10.1016/j.tcb.2018.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
|
11
|
Shekari F, Baharvand H, Salekdeh GH. Organellar proteomics of embryonic stem cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:215-30. [PMID: 24985774 DOI: 10.1016/b978-0-12-800453-1.00007-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic stem cells (ESCs) are undifferentiated cells with two common remarkable features known as self-renewal and differentiation. Proteomics plays an increasingly important role in understanding molecular mechanisms underlying self-renewal and pluripotency of ESCs and their applications in cell therapy and developmental biology studies. As the function of a protein is strongly associated with its localization in cell, a complete and accurate picture of the proteome of ESCs cannot be achieved without knowing the subcellular locations of proteins. Subcellular fractionation allows enrichment of low abundant proteins and signaling complexes and reduces the complexity of the sample. It also provided insight into tracking proteins that shuttle between different compartments. Despite the substantial interest and efforts in ESC subcellular proteomics area, progress has been relatively limited. In this review, we present an overview on current status of ESCs organelle proteomics research and discuss challenges in subcellular proteomics.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| |
Collapse
|
12
|
Serum depletion induced cancer stem cell-like phenotype due to nitric oxide synthesis in oncogenic HRas transformed cells. Oncotarget 2018; 7:75221-75234. [PMID: 27655692 PMCID: PMC5342736 DOI: 10.18632/oncotarget.12117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cells rewire their metabolism and mitochondrial oxidative phosphorylation (OXPHOS) to promote proliferation and maintenance. Cancer cells use multiple adaptive mechanisms in response to a hypo-nutrient environment. However, little is known about how cancer mitochondria are involved in the ability of these cells to adapt to a hypo-nutrient environment. Oncogenic HRas leads to suppression of the mitochondrial oxygen consumption rate (OCR), but oxygen consumption is essential for tumorigenesis. We found that in oncogenic HRas transformed cells, serum depletion reversibly increased the OCR and membrane potential. Serum depletion promoted a cancer stem cell (CSC)-like phenotype, indicated by an increase in CSC markers expression and resistance to anticancer agents. We also found that nitric oxide (NO) synthesis was significantly induced after serum depletion and that NO donors modified the OCR. An NOS inhibitor, SEITU, inhibited the OCR and CSC gene expression. It also reduced anchorage-independent growth by promoting apoptosis. In summary, our data provide new molecular findings that serum depletion induces NO synthesis and promotes mitochondrial OXPHOS, leading to tumor progression and a CSC phenotype. These results suggest that mitochondrial OCR inhibitors can be used as therapy against CSC.
Collapse
|
13
|
Dahan P, Lu V, Nguyen RMT, Kennedy SAL, Teitell MA. Metabolism in pluripotency: Both driver and passenger? J Biol Chem 2018; 294:5420-5429. [PMID: 29463682 DOI: 10.1074/jbc.tm117.000832] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) are highly proliferative cells characterized by robust metabolic demands to power rapid division. For many years considered a passive component or "passenger" of cell-fate determination, cell metabolism is now starting to take center stage as a driver of cell fate outcomes. This review provides an update and analysis of our current understanding of PSC metabolism and its role in self-renewal, differentiation, and somatic cell reprogramming to pluripotency. Moreover, we present evidence on the active roles metabolism plays in shaping the epigenome to influence patterns of gene expression that may model key features of early embryonic development.
Collapse
Affiliation(s)
- Perrine Dahan
- From the Departments of Pathology and Laboratory Medicine and
| | - Vivian Lu
- Molecular and Medical Pharmacology and
| | | | - Stephanie A L Kennedy
- From the Departments of Pathology and Laboratory Medicine and.,the Department of Biology, California State University at Northridge, Northridge, California 91330
| | - Michael A Teitell
- From the Departments of Pathology and Laboratory Medicine and .,the California NanoSystems Institute.,Department of Bioengineering, and.,Molecular Biology Institute, UCLA, Los Angeles, California 90095, and.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, California 90095.,the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095
| |
Collapse
|
14
|
Abstract
Mitochondrial activity in cells must be tightly controlled in response to changes in intracellular circumstances. Despite drastic changes in intracellular conditions and mitochondrial morphology, it is not clear how mitochondrial activity is controlled during M phase of the cell cycle. Here, we show that mitochondrial activity is drastically changed during M phase. Mitochondrial membrane potential changed during M phase progression. Mitochondria were polarized until metaphase to the same extent as mitochondria in interphase cells, but were depolarized at around telophase and cytokinesis. After cytokinesis, mitochondrial membrane potential was recovered. In addition, the generation of superoxide anions in mitochondria was significantly reduced at metaphase even in the presence of antimycin A, an inhibitor of complex III. These results suggest that the electron supply to the mitochondrial electron transfer chain is suppressed during M phase. This suppression might decrease the reactive oxygen species generated by the fragmentation of mitochondria during M phase.
Collapse
|
15
|
Vazquez-Martin A, Van den Haute C, Cufí S, Corominas-Faja B, Cuyàs E, Lopez-Bonet E, Rodriguez-Gallego E, Fernández-Arroyo S, Joven J, Baekelandt V, Menendez JA. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging (Albany NY) 2017; 8:1330-52. [PMID: 27295498 PMCID: PMC4993334 DOI: 10.18632/aging.100976] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022]
Abstract
Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine.
Collapse
Affiliation(s)
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Sílvia Cufí
- Josep Carreras Leukemia Research Institute, Stem Cell Lab, Barcelona, Spain
| | - Bruna Corominas-Faja
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Catalonia, Spain
| | - Esther Rodriguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| |
Collapse
|
16
|
Gascón S, Masserdotti G, Russo GL, Götz M. Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell 2017; 21:18-34. [DOI: 10.1016/j.stem.2017.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Son MJ, Ryu JS, Kim JY, Kwon Y, Chung KS, Mun SJ, Cho YS. Upregulation of mitochondrial NAD + levels impairs the clonogenicity of SSEA1 + glioblastoma tumor-initiating cells. Exp Mol Med 2017; 49:e344. [PMID: 28604662 PMCID: PMC5519015 DOI: 10.1038/emm.2017.74] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD+) metabolism. However, the functional role of NAD+ metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD+ levels affect the characteristics of glioma-driven SSEA1+ TICs, including clonogenic growth potential. An increase in the mitochondrial NAD+ levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD+ levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.
Collapse
Affiliation(s)
- Myung Jin Son
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jae-Sung Ryu
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jae Yun Kim
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Youjeong Kwon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon Ju Mun
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yee Sook Cho
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
18
|
Cellular Metabolism and Induced Pluripotency. Cell 2016; 166:1371-1385. [PMID: 27610564 DOI: 10.1016/j.cell.2016.08.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/19/2023]
Abstract
The discovery of induced pluripotent stem cells (iPSCs) a decade ago, which we are celebrating in this issue of Cell, represents a landmark discovery in biomedical research. Together with somatic cell nuclear transfer, iPSC generation reveals the remarkable plasticity associated with differentiated cells and provides an unprecedented means for modeling diseases using patient samples. In addition to transcriptional and epigenetic remodeling, cellular reprogramming to pluripotency is also accompanied by a rewiring of metabolic pathways, which ultimately leads to changes in cell identities.
Collapse
|
19
|
Liu Y, Muñoz N, Tsai AC, Logan TM, Ma T. Metabolic Reconfiguration Supports Reacquisition of Primitive Phenotype in Human Mesenchymal Stem Cell Aggregates. Stem Cells 2016; 35:398-410. [DOI: 10.1002/stem.2510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Yijun Liu
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
| | - Nathalie Muñoz
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
| | - Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
| | - Timothy M. Logan
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee Florida USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
| |
Collapse
|
20
|
Marín-Hernández Á, Gallardo-Pérez JC, Hernández-Reséndiz I, Del Mazo-Monsalvo I, Robledo-Cadena DX, Moreno-Sánchez R, Rodríguez-Enríquez S. Hypoglycemia Enhances Epithelial-Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids. J Cell Physiol 2016; 232:1346-1359. [PMID: 27661776 DOI: 10.1002/jcp.25617] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
The accelerated growth of solid tumors leads to episodes of both hypoxia and hypoglycemia (HH) affecting their intermediary metabolism, signal transduction, and transcriptional activity. A previous study showed that normoxia (20% O2 ) plus 24 h hypoglycemia (2.5 mM glucose) increased glycolytic flux whereas oxidative phosphorylation (OxPhos) was unchanged versus normoglycemia in HeLa cells. However, the simultaneous effect of HH on energy metabolism has not been yet examined. Therefore, the effect of hypoxia (0.1-1% O2 ) plus hypoglycemia on the energy metabolism of HeLa cells was analyzed by evaluating protein content and activity, along with fluxes of both glycolysis and OxPhos. Under hypoxia, in which cell growth ceased and OxPhos enzyme activities, ΔΨm and flux were depressed, hypoglycemia did not stimulate glycolytic flux despite increasing H-RAS, p-AMPK, GLUT1, GLUT3, and HKI levels, and further decreasing mitochondrial enzyme content. The impaired mitochondrial function in HH cells correlated with mitophagy activation. The depressed OxPhos and unchanged glycolysis pattern was also observed in quiescent cells from mature multicellular tumor spheroids, suggesting that these inner cell layers are similarly subjected to HH. The principal ATP supplier was glycolysis for HH 2D monolayer and 3D quiescent spheroid cells. Accordingly, the glycolytic inhibitors iodoacetate and gossypol were more effective than mitochondrial inhibitors in decreasing HH-cancer cell viability. Under HH, stem cell-, angiogenic-, and EMT-biomarkers, as well as glycoprotein-P content and invasiveness, were also enhanced. These observations indicate that HH cancer cells develop an attenuated Warburg and pronounced EMT- and invasive-phenotype. J. Cell. Physiol. 232: 1346-1359, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
21
|
Abstract
The Nobel prized discovery of nuclear reprogramming is swiftly providing mechanistic evidence of a role for metabolism in the generation of cancer stem cells (CSC). Traditionally, the metabolic demands of tumors have been viewed as drivers of the genetic programming detected in cancer tissues. Beyond the energetic requirements of specific cancer cell states, it is increasingly recognized that metabolism per se controls epi-transcriptional networks to dictate cancer cell fate, i.e., metabolism can define CSC. Here I review the CSC-related metabolic features found in induced pluripotent stem (iPS) cells to provide an easily understandable framework in which the infrastructure and functioning of cellular metabolism might control the efficiency and kinetics of reprogramming in the re-routing of non-CSC to CSC-like cellular states. I suggest exploring how metabolism-dependent regulation of epigenetics can play a role in directing CSC states beyond conventional energetic demands of stage-specific cancer cell states, opening a new dimension of cancer in which the "physiological state" of CSC might be governed not only by cell-autonomous cues but also by local micro-environmental and systemic metabolo-epigenetic interactions. Forthcoming studies should decipher how specific metabolites integrate and mediate the overlap between the CSC-intrinsic "micro-epigenetics" and the "upstream" local and systemic "macro-epigenetics," thus paving the way for targeted epigenetic regulation of CSCs through metabolic modulation including "smart foods" or systemic "metabolic nichotherapies."
Collapse
Affiliation(s)
- Javier A Menendez
- a Metabolism & Cancer Group; Translational Research Laboratory ; Catalan Institute of Oncology ; Girona , Spain.,b Molecular Oncology Group ; Girona Biomedical Research Institute ; Girona , Spain
| |
Collapse
|
22
|
Son MJ, Kwon Y, Son T, Cho YS. Restoration of Mitochondrial NAD + Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. Stem Cells 2016; 34:2840-2851. [PMID: 27428041 DOI: 10.1002/stem.2460] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/27/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022]
Abstract
The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD+ levels appear to be susceptible to aging. In aged cells, mitochondrial NAD+ levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD+ levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD+ levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851.
Collapse
Affiliation(s)
- Myung Jin Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-Gu, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science & Technology (UST), Yuseong-Gu, Daejeon, Republic of Korea
| | - Youjeong Kwon
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-Gu, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science & Technology (UST), Yuseong-Gu, Daejeon, Republic of Korea
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yee Sook Cho
- Department of Functional Genomics, University of Science & Technology (UST), Yuseong-Gu, Daejeon, Republic of Korea.,Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, KRIBB, Yuseong-Gu, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Energy Metabolism Plays a Critical Role in Stem Cell Maintenance and Differentiation. Int J Mol Sci 2016; 17:253. [PMID: 26901195 PMCID: PMC4783982 DOI: 10.3390/ijms17020253] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Various stem cells gradually turned to be critical players in tissue engineering and regenerative medicine therapies. Current evidence has demonstrated that in addition to growth factors and the extracellular matrix, multiple metabolic pathways definitively provide important signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of each type of stem cell can vary according to the properties of each cell type, and they share some common points. Clearly defining the metabolic flux alterations in stem cells may help to shed light on stemness features and differentiation pathways that control the fate of stem cells.
Collapse
|
24
|
Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases? Mol Neurobiol 2016; 54:1858-1873. [PMID: 26892627 DOI: 10.1007/s12035-016-9714-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cells (PSCs) are powerful cellular tools that can generate all the different cell types of the body, and thus overcome the often limited access to human disease tissues; this becomes highly relevant when aiming to investigate cellular (dys)function in diseases affecting the central nervous system. Recent studies have demonstrated that PSC and differentiated cells show altered mitochondrial function and metabolic profiles and production of reactive oxygen species. This raises an emerging paradigm about the role of mitochondria in stem cell biology and urges the need to identify mitochondrial pathways involved in these processes. In this respect, this review focuses on the metabolic profile of PSC and how mitochondrial function can influence the reprogramming and differentiation processes. Indeed, both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) favor the glycolytic pathway as a major source of energy production over oxidative phosphorylation. PSC mitochondria are characterized by a spherical shape, low copy number of mitochondrial DNA, and a hyperpolarized state. Indeed, mitochondria appear to have a crucial role in reprogramming iPSC, in the maintenance of a pluripotent state, and in differentiation. Moreover, an increase in mitochondrial oxidative phosphorylation has to occur for differentiation to succeed. Therefore, in vitro differentiation of neural stem cells (NSCs) into neurons can be compromised if those mechanisms are impaired. Future research should shed light on how mitochondrial impairment occurring in pre differentiation neural stages (e.g., in NSC or premature neurons) may contribute for the etiopathogenesis of neurodevelopmental and neurological disorders.
Collapse
|
25
|
Ying Z, Chen K, Zheng L, Wu Y, Li L, Wang R, Long Q, Yang L, Guo J, Yao D, Li Y, Bao F, Xiang G, Liu J, Huang Q, Wu Z, Hutchins AP, Pei D, Liu X. Transient Activation of Mitoflashes Modulates Nanog at the Early Phase of Somatic Cell Reprogramming. Cell Metab 2016; 23:220-6. [PMID: 26549484 DOI: 10.1016/j.cmet.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/12/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
Abstract
The mechanisms of somatic cell reprogramming have been revealed at multiple levels. However, the lack of tools to monitor different reactive oxygen species (ROS) has left their distinct signals and roles in reprogramming unknown. We hypothesized that mitochondrial flashes (mitoflashes), recently identified spontaneous bursts of mitochondrial superoxide signaling, play a role in reprogramming. Here we show that the frequency of mitoflashes transiently increases, accompanied by flash amplitude reduction, during the early stages of reprogramming. This transient activation of mitoflashes at the early stage enhances reprogramming, whereas sustained activation impairs reprogramming. The reprogramming-promoting function of mitoflashes occurs via the upregulation of Nanog expression that is associated with decreases in the methylation status of the Nanog promoter through Tet2 occupancy. Together our findings provide a previously unknown role for superoxide signaling mediated epigenetic regulation in cell fate determination.
Collapse
Affiliation(s)
- Zhongfu Ying
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Keshi Chen
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lingjun Zheng
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Health Sciences, Anhui University, Heifei 230601, China
| | - Yi Wu
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Linpeng Li
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Rui Wang
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Long
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liang Yang
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyi Guo
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230027, China
| | - Deyang Yao
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230027, China
| | - Yong Li
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Feixiang Bao
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230027, China
| | - Ge Xiang
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinglei Liu
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qiaoying Huang
- Department of Pharmacology and the Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiming Wu
- Department of Urology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China
| | - Andrew Paul Hutchins
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Duanqing Pei
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingguo Liu
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
26
|
Son MJ, Kwon Y, Son MY, Seol B, Choi HS, Ryu SW, Choi C, Cho YS. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ 2015; 22:1957-69. [PMID: 25882047 DOI: 10.1038/cdd.2015.43] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/29/2022] Open
Abstract
Cell reprogramming technology has allowed the in vitro control of cell fate transition, thus allowing for the generation of highly desired cell types to recapitulate in vivo developmental processes and architectures. However, the precise molecular mechanisms underlying the reprogramming process remain to be defined. Here, we show that depleting p53 and p21, which are barriers to reprogramming, yields a high reprogramming efficiency. Deletion of these factors results in a distinct mitochondrial background with low expression of oxidative phosphorylation subunits and mitochondrial fusion proteins, including mitofusin 1 and 2 (Mfn1/2). Importantly, Mfn1/2 depletion reciprocally inhibits the p53-p21 pathway and promotes both the conversion of somatic cells to a pluripotent state and the maintenance of pluripotency. Mfn1/2 depletion facilitates the glycolytic metabolic transition through the activation of the Ras-Raf and hypoxia-inducible factor 1α (HIF1α) signaling at an early stage of reprogramming. HIF1α is required for increased glycolysis and reprogramming by Mfn1/2 depletion. Taken together, these results demonstrate that Mfn1/2 constitutes a new barrier to reprogramming, and that Mfn1/2 ablation facilitates the induction of pluripotency through the restructuring of mitochondrial dynamics and bioenergetics.
Collapse
Affiliation(s)
- M J Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.,Department of Functional genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Y Kwon
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.,Department of Functional genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - M-Y Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - B Seol
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - H-S Choi
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - S-W Ryu
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - C Choi
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Y S Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.,Department of Functional genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333, Republic of Korea
| |
Collapse
|
27
|
Abstract
Recent studies link changes in energy metabolism with the fate of pluripotent stem cells (PSCs). Safe use of PSC derivatives in regenerative medicine requires an enhanced understanding and control of factors that optimize in vitro reprogramming and differentiation protocols. Relative shifts in metabolism from naïve through "primed" pluripotent states to lineage-directed differentiation place variable demands on mitochondrial biogenesis and function for cell types with distinct energetic and biosynthetic requirements. In this context, mitochondrial respiration, network dynamics, TCA cycle function, and turnover all have the potential to influence reprogramming and differentiation outcomes. Shifts in cellular metabolism affect enzymes that control epigenetic configuration, which impacts chromatin reorganization and gene expression changes during reprogramming and differentiation. Induced PSCs (iPSCs) may have utility for modeling metabolic diseases caused by mutations in mitochondrial DNA, for which few disease models exist. Here, we explore key features of PSC energy metabolism research in mice and man and the impact this work is starting to have on our understanding of early development, disease modeling, and potential therapeutic applications.
Collapse
Affiliation(s)
- Tara Teslaa
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Michael A Teitell
- Molecular Biology Institute, University of California, Los Angeles, CA, USA Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA Department of Bioengineering, University of California, Los Angeles, CA, USA Department of Pediatrics, University of California, Los Angeles, CA, USA California NanoSystems Institute, University of California, Los Angeles, CA, USA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| |
Collapse
|