1
|
Surmiak M, Wawrzycka-Adamczyk K, Kosałka-Węgiel J, Włudarczyk A, Sanak M, Musiał J. Activity of granulomatosis with polyangiitis and its correlation with mTOR phosphoproteomics in neutrophils. Front Immunol 2023; 14:1227369. [PMID: 37720230 PMCID: PMC10500300 DOI: 10.3389/fimmu.2023.1227369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Granulomatosis with polyangiitis (GPA) is a small vessel vasculitis with a complex pathomechanism. Organ damage in GPA is also mediated by extracellular trap formation (NETosis). We analyzed the functional status of phosphoproteins modulating NETosis in neutrophils by the mammalian target of rapamycin (mTOR) pathway in GPA along with NETosis biomarkers. Methods Phosphoproteins levels measured in isolated neutrophils from 42 patients with GPA (exacerbation n=21; remission n=21) and 21 healthy controls were compared to serum biomarkers of the disease. Results Neutrophils in active disease manifested lowered levels of phosphorylated mTOR(Ser2448), PTEN(Ser380) and ULK1(Ser555), whereas phosphorylated GSK-3α/β(Ser21/Ser9) was elevated. Exacerbation of GPA was characterized by elevated neutrophil dsDNA in serum, circulating mitochondrial DNA, and DNA-MPO complexes. A significant negative correlation between mTOR or PTEN phosphoproteins and biomarkers of GPA activity was also present, reflecting the clinical activity score of GPA. Positive correlations between phosphorylated GSK-3 α/β and circulating mtDNA, DNA-MPO complexes, neutrophil-released dsDNA, or circulating proteins were also significant. Increased serum levels of IGFBP-2, TFF-3, CD147, and CHI3L1 accompanied GPA exacerbation, whereas DPP-IV levels were the lowest in active GPA. Using a principal component analysis basigin, PTEN and mTOR had the highest loadings on the discrimination function, allowing classification between active, remission, and control subjects with 98% performance. Conclusions We present evidence that inhibited mTOR signaling accompanies NETosis in patients with GPA. The functional status of phosphoproteins suggests simultaneous activation of NETosis and autophagy. These results give rise to the study of autophagy as a mechanism underlying granuloma formation in GPA.
Collapse
Affiliation(s)
- Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | | | - Anna Włudarczyk
- Department of Intensive Care and Perioperative Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Musiał
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Deng S, Yi P, Xu M, Yi Q, Feng J. Dysfunctional gene splicing in glucose metabolism may contribute to Alzheimer's disease. Chin Med J (Engl) 2023; 136:666-675. [PMID: 35830275 PMCID: PMC10129079 DOI: 10.1097/cm9.0000000000002214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT The glucose metabolism is crucial for sustained brain activity as it provides energy and is a carbon source for multiple biomacromolecules; glucose metabolism decreases dramatically in Alzheimer's disease (AD) and may be a fundamental cause for its development. Recent studies reveal that the alternative splicing events of certain genes effectively regulate several processes in glucose metabolism including insulin receptor, insulin-degrading enzyme, pyruvate kinase M, receptor for advanced glycation endproducts, and others, thereby, influencing glucose uptake, glycolysis, and advanced glycation end-products-mediated signaling pathways. Indeed, the discovery of aberrant alternative splicing that changes the proteomic diversity and protein activity in glucose metabolism has been pivotal in our understanding of AD development. In this review, we summarize the alternative splicing events of the glucose metabolism-related genes in AD pathology and highlight the crucial regulatory roles of splicing factors in the alternative splicing process. We also discuss the emerging therapeutic approaches for targeting splicing factors for AD treatment.
Collapse
Affiliation(s)
- Shengfeng Deng
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Peng Yi
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingliang Xu
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Affiliated Xinhui Hospital, Southern Medical University (People's Hospital of Xinhui District), Jiangmen, Guangdong 529100, China
| |
Collapse
|
3
|
van Opbergen CJM, den Braven L, Delmar M, van Veen TAB. Mitochondrial Dysfunction as Substrate for Arrhythmogenic Cardiomyopathy: A Search for New Disease Mechanisms. Front Physiol 2019; 10:1496. [PMID: 31920701 PMCID: PMC6914828 DOI: 10.3389/fphys.2019.01496] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial heart disease, associated with ventricular arrhythmias, fibrofatty replacement of the myocardial mass and an increased risk of sudden cardiac death (SCD). Malignant ventricular arrhythmias and SCD largely occur in the pre-clinical phase of the disease, before overt structural changes occur. To prevent or interfere with ACM disease progression, more insight in mechanisms related to electrical instability are needed. Currently, numerous studies are focused on the link between cardiac arrhythmias and metabolic disease. In line with that, a potential role of mitochondrial dysfunction in ACM pathology is unclear and mitochondrial biology in the ACM heart remains understudied. In this review, we explore mitochondrial dysfunction in relation to arrhythmogenesis, and postulate a link to typical hallmarks of ACM. Mitochondrial dysfunction depletes adenosine triphosphate (ATP) production and increases levels of reactive oxygen species in the heart. Both metabolic changes affect cardiac ion channel gating, electrical conduction, intracellular calcium handling, and fibrosis formation; all well-known aspects of ACM pathophysiology. ATP-mediated structural remodeling, apoptosis, and mitochondria-related alterations have already been shown in models of PKP2 dysfunction. Yet, the limited amount of experimental evidence in ACM models makes it difficult to determine whether mitochondrial dysfunction indeed precedes and/or accompanies ACM pathogenesis. Nevertheless, current experimental ACM models can be very useful in unraveling ACM-related mitochondrial biology and in testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Chantal J M van Opbergen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lyanne den Braven
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mario Delmar
- Division of Cardiology, NYU School of Medicine, New York, NY, United States
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
Cerrone M, van Opbergen CJM, Malkani K, Irrera N, Zhang M, Van Veen TAB, Cronstein B, Delmar M. Blockade of the Adenosine 2A Receptor Mitigates the Cardiomyopathy Induced by Loss of Plakophilin-2 Expression. Front Physiol 2018; 9:1750. [PMID: 30568602 PMCID: PMC6290386 DOI: 10.3389/fphys.2018.01750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Mutations in plakophilin-2 (PKP2) are the most common cause of familial Arrhythmogenic Right Ventricular Cardiomyopathy, a disease characterized by ventricular arrhythmias, sudden death, and progressive fibrofatty cardiomyopathy. The relation between loss of PKP2 expression and structural cardiomyopathy remains under study, though paracrine activation of pro-fibrotic intracellular signaling cascades is a likely event. Previous studies have indicated that ATP release into the intracellular space, and activation of adenosine receptors, can regulate fibrosis in various tissues. However, the role of this mechanism in the heart, and in the specific case of a PKP2-initiated cardiomyopathy, remains unexplored. Objectives: To investigate the role of ATP/adenosine in the progression of a PKP2-associated cardiomyopathy. Methods: HL1 cells were used to study PKP2- and Connexin43 (Cx43)-dependent ATP release. A cardiac-specific, tamoxifen-activated PKP2 knock-out murine model (PKP2cKO) was used to define the effect of adenosine receptor blockade on the progression of a PKP2-dependent cardiomyopathy. Results: HL1 cells silenced for PKP2 showed increased ATP release compared to control. Knockout of Cx43 in the same cells blunted the effect. PKP2cKO transcriptomic data revealed overexpression of genes involved in adenosine-receptor cascades. Istradefylline (an adenosine 2A receptor blocker) tempered the progression of fibrosis and mechanical failure observed in PKP2cKO mice. In contrast, PSB115, a blocker of the 2B adenosine receptor, showed opposite effects. Conclusion: Paracrine adenosine 2A receptor activation contributes to the progression of fibrosis and impaired cardiac function in animals deficient in PKP2. Given the limitations of the animal model, translation to the case of patients with PKP2 deficiency needs to be done with caution.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology, NYU School of Medicine, New York, NY, United States
| | - Chantal J M van Opbergen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kabir Malkani
- Leon H. Charney Division of Cardiology, NYU School of Medicine, New York, NY, United States
| | - Natasha Irrera
- Division of Translational Medicine, NYU School of Medicine, New York, NY, United States.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mingliang Zhang
- Leon H. Charney Division of Cardiology, NYU School of Medicine, New York, NY, United States
| | - Toon A B Van Veen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bruce Cronstein
- Division of Translational Medicine, NYU School of Medicine, New York, NY, United States
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Lithium + Colchicine: A Potential Strategy to Reduce Pro-inflammatory Effects of Lithium Treatment. J Clin Psychopharmacol 2018; 38:80-85. [PMID: 29232311 DOI: 10.1097/jcp.0000000000000830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Rosenblat and McIntyre (Acta Psychiatr Scand. 2015;132: 180-191) propose that immune disorders are important mediators between bipolar disorders and medical comorbidities. Rosenblat et al (Bipolar Disord. 2016;18:89-101) present a meta-analysis showing that adjunctive anti-inflammatory agents could evoke moderate antidepressant responses in bipolar disorders. We propose using the anti-inflammatory drug colchicine to improve the long-term safety and efficacy of lithium treatment for bipolar disorders. METHODS This report is based on searches of the PubMed and Web of Science databases. RESULTS Bipolar disorders are associated with significant medical comorbidities such as hypertension, overweight/obesity, diabetes mellitus, metabolic syndrome, and arteriosclerosis, accompanied by enhanced release of pro-inflammatory markers during changes in mood state. During lithium therapy, granulocyte-colony stimulating factor, CD34+ hematopoietic stem/progenitor cells, and neutrophil elastase enter the circulation with activated neutrophils to promote the extravascular migration of activated neutrophils and enhance tissue inflammation. Concurrent treatment with lithium and low-dose colchicine could facilitate the responsiveness of bipolar patients to lithium by reducing leukocyte tissue emigration, the release of neutrophil elastase, and the release of leukocyte pro-inflammatory cytokines such as IL-1β that are regulated by the NLRP3 inflammasome assembly complex. CONCLUSIONS Concurrent therapy with lithium and low-dose colchicine could reduce complications involving leukocyte-mediated inflammatory states in bipolar patients and promote patient acceptance and responsiveness to lithium therapy.
Collapse
|
6
|
Chien T, Weng YT, Chang SY, Lai HL, Chiu FL, Kuo HC, Chuang DM, Chern Y. GSK3β negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Mol Psychiatry 2018; 23:2375-2390. [PMID: 29298990 PMCID: PMC6294740 DOI: 10.1038/s41380-017-0007-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
Translin-associated protein X (TRAX) is a scaffold protein with various functions and has been associated with mental illnesses, including schizophrenia. We have previously demonstrated that TRAX interacts with a Gsα protein-coupled receptor, the A2A adenosine receptor (A2AR), and mediates the function of this receptor in neuritogenesis. In addition, stimulation of the A2AR markedly ameliorates DNA damage evoked by elevated oxidative stress in neurons derived from induced pluripotent stem cells (iPSCs). Here, we report that glycogen synthase kinase 3 beta (GSK3β) and disrupted-in-schizophrenia 1 (DISC1) are two novel interacting proteins of TRAX. We present evidence to suggest that the stimulation of A2AR markedly facilitated DNA repair through the TRAX/DISC1/GSK3β complex in a rat neuronal cell line (PC12), primary mouse neurons, and human medium spiny neurons derived from iPSCs. A2AR stimulation led to the inhibition of GSK3β, thus dissociating the TRAX/DISC1/GSK3β complex and facilitating the non-homologous end-joining pathway (NHEJ) by enhancing the activation of a DNA-dependent protein kinase via phosphorylation at Thr2609. Similarly, pharmacological inhibition of GSK3β by SB216763 also facilitated the TRAX-mediated repair of oxidative DNA damage. Collectively, GSK3β binds with TRAX and negatively affects its ability to facilitate NHEJ repair. The suppression of GSK3β by A2AR activation or a GSK3β inhibitor releases TRAX for the repair of oxidative DNA damage. Our findings shed new light on the molecular mechanisms underlying diseases associated with DNA damage and provides a novel target (i.e., the TRAX/DISC1/GSK3β complex) for future therapeutic development for mental disorders.
Collapse
Affiliation(s)
- Ting Chien
- 0000 0004 0634 0356grid.260565.2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan ,0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Weng
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 2287 1366grid.28665.3fProgram in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Shu-Yung Chang
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 0425 5914grid.260770.4Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Lin Lai
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - De-Maw Chuang
- 0000 0004 0464 0574grid.416868.5Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Gray RD, Hardisty G, Regan KH, Smith M, Robb CT, Duffin R, Mackellar A, Felton JM, Paemka L, McCullagh BN, Lucas CD, Dorward DA, McKone EF, Cooke G, Donnelly SC, Singh PK, Stoltz DA, Haslett C, McCray PB, Whyte MKB, Rossi AG, Davidson DJ. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax 2017; 73:134-144. [PMID: 28916704 PMCID: PMC5771859 DOI: 10.1136/thoraxjnl-2017-210134] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/05/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease is defined by large numbers of neutrophils and associated damaging products in the airway. Delayed neutrophil apoptosis is described in CF although it is unclear whether this is a primary neutrophil defect or a response to chronic inflammation. Increased levels of neutrophil extracellular traps (NETs) have been measured in CF and we aimed to investigate the causal relationship between these phenomena and their potential to serve as a driver of inflammation. We hypothesised that the delay in apoptosis in CF is a primary defect and preferentially allows CF neutrophils to form NETs, contributing to inflammation. METHODS Blood neutrophils were isolated from patients with CF, CF pigs and appropriate controls. Neutrophils were also obtained from patients with CF before and after commencing ivacaftor. Apoptosis was assessed by morphology and flow cytometry. NET formation was determined by fluorescent microscopy and DNA release assays. NET interaction with macrophages was examined by measuring cytokine generation with ELISA and qRT-PCR. RESULTS CF neutrophils live longer due to decreased apoptosis. This was observed in both cystic fibrosis transmembrane conductance regulator (CFTR) null piglets and patients with CF, and furthermore was reversed by ivacaftor (CFTR potentiator) in patients with gating (G551D) mutations. CF neutrophils formed more NETs and this was reversed by cyclin-dependent kinase inhibitor exposure. NETs provided a proinflammatory stimulus to macrophages, which was enhanced in CF. CONCLUSIONS CF neutrophils have a prosurvival phenotype that is associated with an absence of CFTR function and allows increased NET production, which can in turn induce inflammation. Augmenting neutrophil apoptosis in CF may allow more appropriate neutrophil disposal, decreasing NET formation and thus inflammation.
Collapse
Affiliation(s)
- Robert D Gray
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Gareth Hardisty
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Kate H Regan
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Maeve Smith
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Calum T Robb
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Annie Mackellar
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jennifer M Felton
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Lily Paemka
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brian N McCullagh
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher D Lucas
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - David A Dorward
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Edward F McKone
- Department of Respiratory Medicine, St Vincent's Hospital, Dublin, Ireland
| | - Gordon Cooke
- Department of Medicine, Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| | - Pradeep K Singh
- Department of Microbiology, Washington University Medical School, Seattle, Washington, USA
| | - David A Stoltz
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher Haslett
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Paul B McCray
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Moira K B Whyte
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Donald J Davidson
- UoE/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
di Gesso JL, Kerr JS, Zhang Q, Raheem S, Yalamanchili SK, O'Hagan D, Kay CD, O'Connell MA. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Mol Nutr Food Res 2015; 59:1143-54. [PMID: 25801720 PMCID: PMC4973837 DOI: 10.1002/mnfr.201400799] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/12/2022]
Abstract
Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites.
Collapse
Affiliation(s)
- Jessica L di Gesso
- School of Pharmacy, University of East Anglia, Norwich, UK.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Jason S Kerr
- School of Pharmacy, University of East Anglia, Norwich, UK.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Qingzhi Zhang
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Saki Raheem
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | | | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Colin D Kay
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
9
|
Kogut MH, Swaggerty CL, Chiang HI, Genovese KJ, He H, Zhou H, Arsenault RJ. Critical Role of Glycogen Synthase Kinase-3β in Regulating the Avian Heterophil Response to Salmonella enterica Serovar Enteritidis. Front Vet Sci 2014; 1:10. [PMID: 26664916 PMCID: PMC4672156 DOI: 10.3389/fvets.2014.00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/29/2014] [Indexed: 11/13/2022] Open
Abstract
A microarray-assisted gene expression screen of chicken heterophils revealed glycogen synthase kinase-3β (GSK-3β), a multifunctional Ser/Thr kinase, to be consistently upregulated 30–180 min following stimulation with Salmonella enterica serovar Enteritidis (S. Enteritidis). The present study was designed to delineate the role of GSK-3β in regulating the innate function of chicken heterophils in response to S. Enteritidis exposure. Using a specific GSK-3β ELISA assay, 30 min after infection with S. Enteritidis, heterophils had a significant decrease (p ≤ 0.05) in total GSK-3β, but a significant increase (p ≤ 0.05) in phosphorylated GSK-3β (Ser9). By 60 min post-infection, there was no difference in the amount of phosphorylated GSK-3β (Ser9) in either the uninfected and infected heterophils. S. Enteritidis interaction with heterophils alters GSK-3β activity by stimulating phosphorylation at Ser9 and that peaks by 30 min post-infection. Further, inhibition of GSK3β with lithium chloride resulted in a significant decrease (p ≤ 0.05) in NF-κB activation and expression of IL-6, but induces a significant increase (p ≤ 0.05) in the expression of the anti-inflammatory cytokine, IL-10. Using a phospho-specific antibody array confirmed the phosphorylation of GSK-3β (Ser9) as well as the phosphorylation of the downstream cytokine-activated intracellular signaling pathway involved in stimulating immune responses, IκB, the IκB subunit IKK-β, and the NF-κB subunits p105, p65, and c-Rel. Our data revealed that the phosphorylation of GSK-3β (Ser9) is responsible for inducing and controlling an innate response to the bacteria. Our findings suggest that the repression of GSK-3 activity is beneficial to the host cell and may act as a target for treatment in controlling intestinal colonization in chickens. Further experiments will define the in vivo modulation of GSK-3 as a potential alternative to antibiotics in salmonella and other intestinal bacterial infections.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture , College Station, TX , USA
| | - Christina L Swaggerty
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture , College Station, TX , USA
| | - Hsin-I Chiang
- Department of Animal Sciences, National Chung Hsing University , Taichung , Taiwan
| | - Kenneth J Genovese
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture , College Station, TX , USA
| | - Haiqi He
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture , College Station, TX , USA
| | - Huaijun Zhou
- Department of Animal Science, University of California Davis , Davis, CA , USA
| | - Ryan J Arsenault
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture , College Station, TX , USA
| |
Collapse
|
10
|
Giambelluca MS, Bertheau‐Mailhot G, Laflamme C, Rollet‐Labelle E, Servant MJ, Pouliot M. TNF‐α expression in neutrophils and its regulation by glycogen synthase kinase‐3: A potentiating role for lithium. FASEB J 2014; 28:3679-90. [DOI: 10.1096/fj.14-251900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miriam S. Giambelluca
- Centre de Recherche du Centre Hospitalier Universitaire de QuébecQuebec CityQuebecCanada
- Faculty of MedicineUniversité LavalQuebec CityQuebecCanada
| | - Geneviève Bertheau‐Mailhot
- Centre de Recherche du Centre Hospitalier Universitaire de QuébecQuebec CityQuebecCanada
- Faculty of MedicineUniversité LavalQuebec CityQuebecCanada
| | - Cynthia Laflamme
- Centre de Recherche du Centre Hospitalier Universitaire de QuébecQuebec CityQuebecCanada
- Faculty of MedicineUniversité LavalQuebec CityQuebecCanada
| | - Emmanuelle Rollet‐Labelle
- Centre de Recherche du Centre Hospitalier Universitaire de QuébecQuebec CityQuebecCanada
- Faculty of MedicineUniversité LavalQuebec CityQuebecCanada
| | - Marc J. Servant
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
| | - Marc Pouliot
- Centre de Recherche du Centre Hospitalier Universitaire de QuébecQuebec CityQuebecCanada
- Faculty of MedicineUniversité LavalQuebec CityQuebecCanada
| |
Collapse
|