1
|
Wang J, Tao Q, Huang K, Wang Y, Hu L, Ren A, Wang H, Wan Y, Li J, Yi L, Ruan Y, Wanyan Z, Wu F, Zhai Z, Liu C. Chemotherapy-induced cellular senescence promotes stemness of aggressive B-cell non-Hodgkin's lymphoma via CCR7/ARHGAP18/IKBα signaling activation. J Immunother Cancer 2025; 13:e009356. [PMID: 39773566 PMCID: PMC11749403 DOI: 10.1136/jitc-2024-009356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance. METHODS This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells. C-C chemokine receptor 7 (CCR7) expression in patients with aggressive B-NHL was assessed using immunohistochemistry and flow cytometry. Lentiviral transfection was used to target CCR7 expression in Raji and SU-DHL-2 cells. Protein localization was visualized through immunofluorescence, while western blotting and co-immunoprecipitation were used to analyze protein expression and interactions. Cell proliferation was measured with the Cell Counting Kit-8 assay, and senescent cells were detected using senescence-associated β-galactosidase staining. The stemness of cells was evaluated through colony and sphere formation assays. Transwell assays assessed cell migration and invasion. Finally, inhibitors GS143 and Y27632 were used to examine the effect of IKBα and ARHGAP/RhoA inhibition on B-NHL-TIS. RESULTS Here we identified a distinct group of TIS, composed of memory B-cell population characterized by strong positive expression of CCR7, which was significantly elevated in TIS population compared with normal proliferating and autonomously senescent lymphoma cell populations. Additionally, CCR7 expression was significantly upregulated in patients with r/r B-NHL, and was an independent prognostic factor in B-NHL, with high CCR7 expression being strongly associated with poor prognosis. In vitro results indicated that CCL21 induced migration and invasion of B-NHL cells via CCR7, while blocking CCR7 reduced doxorubicin-induced migration and invasion of these cells. Furthermore, B-NHL-TIS regulated by CCR7 and exhibited enhanced phenotypic and functional stemness features, including the upregulation of stemness markers, increased colony-forming, invasive and migratory capabilities. Mechanistically, blocking CCR7 reversed the stemness characteristics of senescent B-NHL cells by inhibiting the activation of ARHGAP18/IKBα signaling. CONCLUSIONS Together, TIS promotes the stemness of B-NHL cells via CCR7/ARHGAP18/IKBα signaling activation and targeting CCR7/ARHGAP18 might overcome the chemoresistance of senescent B-NHL cells by inhibiting stemness acquisition and maintenance.
Collapse
Affiliation(s)
- Jiyu Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianshan Tao
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Keke Huang
- Department of Internal Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yangyang Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linhui Hu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiping Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Wan
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinlan Li
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liuying Yi
- Department of Hematology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanjie Ruan
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhixiang Wanyan
- Department of Emergency, The Third People's Hospital of Hefei, Hefei, Anhui, China
| | - Fan Wu
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Salachan PV, Rasmussen M, Ulhøi BP, Jensen JB, Borre M, Sørensen KD. Spatial whole transcriptome profiling of primary tumor from patients with metastatic prostate cancer. Int J Cancer 2023; 153:2055-2067. [PMID: 37655984 DOI: 10.1002/ijc.34708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease in terms of its molecular makeup and clinical prognosis. The prostate tumor microenvironment (TME) is hypothesized to play an important role in driving disease aggressiveness, but precise mechanisms remain elusive. In our study, we used spatial transcriptomics to explore for the first time the spatial gene expression heterogeneity within primary prostate tumors from patients with metastatic disease. In total, we analyzed 5459 tissue spots from three PCa patients comprising castration-resistant (CRPC) and neuroendocrine (NEPC) disease stages. Within CRPC, we identified a T cell cluster whose activity might be impaired by nearby regulatory T cells, potentially mediating the aggressive disease phenotype. Moreover, we identified Hallmark signatures of epithelial-mesenchymal transition in a cancer-associated fibroblast (CAF) cluster, indicating the aggressive characteristic of the primary TME leading to metastatic dissemination. Within NEPC, we identified active immune-stroma cross-talk exemplified by significant ligand-receptor interactions between CAFs and M2 macrophages. Further, we identified a malignant cell population that was associated with the down-regulation of an immune-related gene signature. Lower expression of this signature was associated with higher levels of genomic instability in advanced PCa patients (SU2C cohort, n = 99) and poor recurrence free survival in early-stage PCa patients (TCGA cohort, n = 395), suggesting prognostic biomarker potential. Taken together, our study reveals the importance of whole transcriptome profiling at spatial resolution for biomarker discovery and for advancing our understanding of tumor biology.
Collapse
Affiliation(s)
- Paul Vinu Salachan
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Gødstrup Hospital, Holstebro, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Cui L, Zhu L, Chen J, Li C, Yu Y, Xu S. Systematic Pan-Cancer Analysis Reveals X-C Motif Chemokine Receptor 1 as a Prognostic and Immunological Biomarker. Genes (Basel) 2023; 14:1961. [PMID: 37895310 PMCID: PMC10606244 DOI: 10.3390/genes14101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Chemokines and their receptors play an important role in immune monitoring and immune defense during tumor growth and metastasis. However, their prognostic roles in pan-cancer have not been elucidated. In this work, we screened all chemokine receptors in pan-cancer and discovered X-C Motif Chemokine Receptor 1 (XCR1) as a reliable immunological and prognostic biomarker in pan-cancer using bioinformation. The TCGA database served as the foundation for the primary research database analysis in this work. XCR1 was downregulated in tumors. Patients with reduced XCR1 showed worse prognoses and a concomitant decrease in immune cell infiltration (DCs and CD8+ T cells). According to a gene enrichment study, XCR1 enhanced immune system performance by promoting T-cell infiltration through the C-X-C Motif Chemokine Ligand 9 (CXCL9)- C-X-C Motif Chemokine Receptor 3 (CXCR3) axis. In addition, XCR1 is mainly expressed in infiltrated DCs and some malignant cells in tumor tissues. Our data revealed the important role of XCR1 in remodeling the tumor microenvironment and predicting the survival prognosis, which could also be used as a sensitive biomarker for tumor immunotherapy.
Collapse
Affiliation(s)
- Likun Cui
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, China; (L.C.); (L.Z.); (J.C.); (C.L.)
| | - Liye Zhu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, China; (L.C.); (L.Z.); (J.C.); (C.L.)
| | - Jie Chen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, China; (L.C.); (L.Z.); (J.C.); (C.L.)
| | - Chunzhen Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, China; (L.C.); (L.Z.); (J.C.); (C.L.)
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, China; (L.C.); (L.Z.); (J.C.); (C.L.)
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, China; (L.C.); (L.Z.); (J.C.); (C.L.)
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
4
|
Witt RN, Nickel KS, Binns JR, Gray AM, Hintz AM, Kofron NF, Steigleder SF, Peterson FC, Veldkamp CT. NMR indicates the N-termini of PSGL1 and CCR7 bind competitively to the chemokine CCL21. Biochem Biophys Rep 2023; 35:101524. [PMID: 37554427 PMCID: PMC10404610 DOI: 10.1016/j.bbrep.2023.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Chemokines are from a family of secreted cytokines that direct the trafficking of immune cells to coordinate immune responses. Chemokines are involved in numerous disease states, including responding to infections, autoimmune disorders, and cancer metastasis. Ther are chemokines, like CCL21, that signal for cellular migration through the activation of G protein-coupled receptors, like CCR7, through interaction with the receptor's extracellular N-terminus, loops, and core of the receptor. CCL21 is involved in routine immune surveillance but can also attract metastasizing cancer cells to lymph nodes. P-selectin glycoprotein ligand 1 (PSGL1) has a role in cellular adhesion during chemotaxis and is a transmembrane signaling molecule. PSGL1 expression enhances chemotactic responses of T cells to CCL21. Here NMR studies indicate the binding sites on CCL21 for the N-termini or PSGL1 and CCR7 overlap, and binding of the N-termini of PSGL1 and CCR7 is competitive.
Collapse
Affiliation(s)
- Robin N. Witt
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Kaileigh S. Nickel
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - John R. Binns
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Alexander M. Gray
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Alyssa M. Hintz
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Noah F. Kofron
- Department of Biology, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Steven F. Steigleder
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Christopher T. Veldkamp
- Department of Chemistry, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI, 53190, USA
| |
Collapse
|
5
|
Wenthe J, Eriksson E, Hellström AC, Moreno R, Ullenhag G, Alemany R, Lövgren T, Loskog A. Immunostimulatory gene therapy targeting CD40, 4-1BB and IL-2R activates DCs and stimulates antigen-specific T-cell and NK-cell responses in melanoma models. J Transl Med 2023; 21:506. [PMID: 37501121 PMCID: PMC10373363 DOI: 10.1186/s12967-023-04374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The activation of dendritic cells (DCs) is pivotal for generating antigen-specific T-cell responses to eradicate tumor cells. Hence, immunotherapies targeting this interplay are especially intriguing. Moreover, it is of interest to modulate the tumor microenvironment (TME), as this harsh milieu often impairs adaptive immune responses. Oncolytic viral therapy presents an opportunity to overcome the immunosuppression in tumors by destroying tumor cells and thereby releasing antigens and immunostimulatory factors. These effects can be further amplified by the introduction of transgenes expressed by the virus. METHODS Lokon oncolytic adenoviruses (LOAd) belong to a platform of chimeric serotype Ad5/35 viruses that have their replication restricted to tumor cells, but the expression of transgenes is permitted in all infected cells. LOAd732 is a novel oncolytic adenovirus that expresses three essential immunostimulatory transgenes: trimerized membrane-bound CD40L, 4-1BBL and IL-2. Transgene expression was determined with flow cytometry and ELISA and the oncolytic function was evaluated with viability assays and xenograft models. The activation profiles of DCs were investigated in co-cultures with tumor cells or in an autologous antigen-specific T cell model by flow cytometry and multiplex proteomic analysis. Statistical differences were analyzed with Kruskal-Wallis test followed by Dunn's multiple comparison test. RESULTS All three transgenes were expressed in infected melanoma cells and DCs and transgene expression did not impair the oncolytic activity in tumor cells. DCs were matured post LOAd732 infection and expressed a multitude of co-stimulatory molecules and pro-inflammatory cytokines crucial for T-cell responses. Furthermore, these DCs were capable of expanding and stimulating antigen-specific T cells in addition to natural killer (NK) cells. Strikingly, the addition of immunosuppressive cytokines TGF-β1 and IL-10 did not affect the ability of LOAd732-matured DCs to expand antigen-specific T cells and these cells retained an enhanced activation profile. CONCLUSIONS LOAd732 is a novel immunostimulatory gene therapy based on an oncolytic adenovirus that expresses three transgenes, which are essential for mediating an anti-tumor immune response by activating DCs and stimulating T and NK cells even under imunosuppressive conditions commonly present in the TME. These qualities make LOAd732 an appealing new immunotherapy approach.
Collapse
Affiliation(s)
- Jessica Wenthe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden.
- Lokon Pharma AB, Uppsala, Sweden.
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Lokon Pharma AB, Uppsala, Sweden
| | - Ann-Charlotte Hellström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Rafael Moreno
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gustav Ullenhag
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Ramon Alemany
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Tanja Lövgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Lokon Pharma AB, Uppsala, Sweden
| |
Collapse
|
6
|
High P, Carmon KS. G protein-coupled receptor-targeting antibody-drug conjugates: Current status and future directions. Cancer Lett 2023; 564:216191. [PMID: 37100113 PMCID: PMC11270908 DOI: 10.1016/j.canlet.2023.216191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
In recent years, antibody-drug conjugates (ADCs) have emerged as promising anti-cancer therapeutic agents with several having already received market approval for the treatment of solid tumor and hematological malignancies. As ADC technology continues to improve and the range of indications treatable by ADCs increases, the repertoire of target antigens has expanded and will undoubtedly continue to grow. G protein-coupled receptors (GPCRs) are well-characterized therapeutic targets implicated in many human pathologies, including cancer, and represent a promising emerging target of ADCs. In this review, we will discuss the past and present therapeutic targeting of GPCRs and describe ADCs as therapeutic modalities. Moreover, we will summarize the status of existing preclinical and clinical GPCR-targeted ADCs and address the potential of GPCRs as novel targets for future ADC development.
Collapse
Affiliation(s)
- Peyton High
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Kendra S Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
8
|
Haghshenas MR, Ghaderi H, Daneste H, Ghaderi A. Immunological and biological dissection of normal and tumoral salivary glands. Int Rev Immunol 2023; 42:139-155. [PMID: 34378486 DOI: 10.1080/08830185.2021.1958806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Salivary glands naturally play central roles in oral immunity. The salivary glands microenvironment inevitable may be exposed to exogenous factors consequently triggering the initiation and formation of various malignant and benign tumors. Mesenchymal stem cells are recruited into salivary gland microenvironment, interact with tumor cells, and induce inhibitory cytokines as well as cells with immunosuppressive phenotypes such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). The immune components and tumor immune responses in malignant and benign SGTs are still under investigation. Immune responses may directly play a limiting role in tumor growth and expansion, or may participate in formation of a rich milieu for tumor growth in cooperation with other cellular and regulatory molecules. Immune checkpoint molecules (e.g. PDLs, HLA-G and LAG3) are frequently expressed on tumor cells and/or tumor-infiltrating lymphocytes (TILs) in salivary gland microenvironment, and an increase in their expression is associated with T cell exhaustion, immune tolerance and tumor immune escape. Chemokines and chemokine receptors have influential roles on aggressive behaviors of SGTs, and thereby they could be candidate targets for cancer immunotherapy. To present a broad knowledge on salivary glands, this review first provides a brief description on immunological functions of normal salivary glands, and then describe the SGT's tumor microenvironment, by focusing on mesenchymal stem cells, immune cell subsets, immune checkpoint molecules, chemokines and chemokine receptors, and finally introduces immune checkpoint inhibitors as well as potential targets for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Daneste
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Artinger M, Gerken OJ, Legler DF. Heparin Specifically Interacts with Basic BBXB Motifs of the Chemokine CCL21 to Define CCR7 Signaling. Int J Mol Sci 2023; 24:ijms24021670. [PMID: 36675182 PMCID: PMC9866948 DOI: 10.3390/ijms24021670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Chemokines are critically involved in controlling directed leukocyte migration. Spatiotemporal secretion together with local retention processes establish and maintain local chemokine gradients that guide directional cell migration. Extracellular matrix proteins, particularly glycosaminoglycans (GAGs), locally retain chemokines through electrochemical interactions. The two chemokines CCL19 and CCL21 guide CCR7-expressing leukocytes, such as antigen-bearing dendritic cells and T lymphocytes, to draining lymph nodes to initiate adaptive immune responses. CCL21-in contrast to CCL19-is characterized by a unique extended C-terminus composed of highly charged residues to facilitate interactions with GAGs. Notably, both chemokines can trigger common, but also ligand-biased signaling through the same receptor. The underlying molecular mechanism of ligand-biased CCR7 signaling is poorly understood. Using a series of naturally occurring chemokine variants in combination with newly designed site-specific chemokine mutants, we herein assessed CCR7 signaling, as well as GAG interactions. We demonstrate that the charged chemokine C-terminus does not fully confer CCL21-biased CCR7 signaling. Besides the positively charged C-terminus, CCL21 also possesses specific BBXB motifs comprising basic amino acids. We show that CCL21 variants where individual BBXB motifs are mutated retain their capability to trigger G-protein-dependent CCR7 signaling, but lose their ability to interact with heparin. Moreover, we show that heparin specifically interacts with CCL21, but not with CCL19, and thereby competes with ligand-binding to CCR7 and prevents signaling. Hence, we provide evidence that soluble heparin, but not the other GAGs, complexes with CCL21 to define CCR7 signaling in a ligand-dependent manner.
Collapse
Affiliation(s)
- Marc Artinger
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Oliver J. Gerken
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
10
|
DiNatale A, Castelli MS, Nash B, Meucci O, Fatatis A. Regulation of Tumor and Metastasis Initiation by Chemokine Receptors. J Cancer 2022; 13:3160-3176. [PMID: 36118530 PMCID: PMC9475358 DOI: 10.7150/jca.72331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor-initiating cells (TICs) are a rare sub-population of cells within the bulk of a tumor that are major contributors to tumor initiation, metastasis, and chemoresistance. TICs have a stem-cell-like phenotype that is dictated by the expression of master regulator transcription factors, including OCT4, NANOG, and SOX2. These transcription factors are expressed via activation of multiple signaling pathways that drive cancer initiation and progression. Importantly, these same signaling pathways can be activated by select chemokine receptors. Chemokine receptors are increasingly being revealed as major drivers of the TIC phenotype, as their signaling can lead to activation of stemness-controlling transcription factors. Additionally, the cell surface expression of chemokine receptors provides a unique therapeutic target to disrupt signaling pathways that control the expression of master regulator transcription factors and the TIC phenotype. This review summarizes the master regulator transcription factors known to dictate the TIC phenotype, along with the complex signaling pathways that can mediate their expression and the chemokine receptors that are most upstream of this phenotype.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present Address: Janssen Oncology, Spring House, PA, USA
| | - Maria Sofia Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Alrumaihi F. The Multi-Functional Roles of CCR7 in Human Immunology and as a Promising Therapeutic Target for Cancer Therapeutics. Front Mol Biosci 2022; 9:834149. [PMID: 35874608 PMCID: PMC9298655 DOI: 10.3389/fmolb.2022.834149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
An important hallmark of the human immune system is to provide adaptive immunity against pathogens but tolerance toward self-antigens. The CC-chemokine receptor 7 (CCR7) provides a significant contribution in guiding cells to and within lymphoid organs and is important for acquiring immunity and tolerance. The CCR7 holds great importance in establishing thymic architecture and function and naïve and regulatory T-cell homing in the lymph nodes. Similarly, the receptor is a key regulator in cancer cell migration and the movement of dendritic cells. This makes the CCR7 an important receptor as a drug and prognostic marker. In this review, we discussed several biological roles of the CCR7 and its importance as a drug and prognostic marker.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
12
|
Integrative network-based approaches identified systems-level molecular signatures associated with gallbladder cancer pathogenesis from gallstone diseases. J Biosci 2022. [DOI: 10.1007/s12038-022-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Shifting CCR7 towards Its Monomeric Form Augments CCL19 Binding and Uptake. Cells 2022; 11:cells11091444. [PMID: 35563750 PMCID: PMC9101108 DOI: 10.3390/cells11091444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/20/2023] Open
Abstract
The chemokine receptor CCR7, together with its ligands, is responsible for the migration and positioning of adaptive immune cells, and hence critical for launching adaptive immune responses. CCR7 is also induced on certain cancer cells and contributes to metastasis formation. Thus, CCR7 expression and signalling must be tightly regulated for proper function. CCR7, like many other members of the G-protein coupled receptor superfamily, can form homodimers and oligomers. Notably, danger signals associated with pathogen encounter promote oligomerisation of CCR7 and is considered as one layer of regulating its function. Here, we assessed the dimerisation of human CCR7 and several single point mutations using split-luciferase complementation assays. We demonstrate that dimerisation-defective CCR7 mutants can be transported to the cell surface and elicit normal chemokine-driven G-protein activation. By contrast, we discovered that CCR7 mutants whose expression are shifted towards monomers significantly augment their capacities to bind and internalise fluorescently labelled CCL19. Modeling of the receptor suggests that dimerisation-defective CCR7 mutants render the extracellular loops more flexible and less structured, such that the chemokine recognition site located in the binding pocket might become more accessible to its ligand. Overall, we provide new insights into how the dimerisation state of CCR7 affects CCL19 binding and receptor trafficking.
Collapse
|
14
|
Decoding Single Cell Morphology in Osteotropic Breast Cancer Cells for Dissecting Their Migratory, Molecular and Biophysical Heterogeneity. Cancers (Basel) 2022; 14:cancers14030603. [PMID: 35158871 PMCID: PMC8833404 DOI: 10.3390/cancers14030603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.
Collapse
|
15
|
Cuesta-Mateos C, Terrón F, Herling M. CCR7 in Blood Cancers - Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Front Oncol 2021; 11:736758. [PMID: 34778050 PMCID: PMC8589249 DOI: 10.3389/fonc.2021.736758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
According to the classical paradigm, CCR7 is a homing chemokine receptor that grants normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more than a facilitator of lymphatic spread of tumor cells. Here, we review published data to catalogue CCR7 expression across blood cancers and appraise which classical and novel roles are attributed to this receptor in the pathogenesis of specific hematologic neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide clinical benefits to patients with CCR7-positive hematopoietic tumors.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto la Princesa (IIS-IP), Madrid, Spain.,Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Fernando Terrón
- Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Marco Herling
- Clinic of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Bule P, Aguiar SI, Aires-Da-Silva F, Dias JNR. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. Int J Mol Sci 2021; 22:9804. [PMID: 34575965 PMCID: PMC8464715 DOI: 10.3390/ijms22189804] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that coordinates immune cell trafficking. In cancer, they have a pivotal role in the migration pattern of immune cells into the tumor, thereby shaping the tumor microenvironment immune profile, often towards a pro-tumorigenic state. Furthermore, chemokines can directly target non-immune cells in the tumor microenvironment, including cancer, stromal and vascular endothelial cells. As such, chemokines participate in several cancer development processes such as angiogenesis, metastasis, cancer cell proliferation, stemness and invasiveness, and are therefore key determinants of disease progression, with a strong influence in patient prognosis and response to therapy. Due to their multifaceted role in the tumor immune response and tumor biology, the chemokine network has emerged as a potential immunotherapy target. Under the present review, we provide a general overview of chemokine effects on several tumoral processes, as well as a description of the currently available chemokine-directed therapies, highlighting their potential both as monotherapy or in combination with standard chemotherapy or other immunotherapies. Finally, we discuss the most critical challenges and prospects of developing targeted chemokines as therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joana Nunes Ribeiro Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal; (P.B.); (S.I.A.); (F.A.-D.-S.)
| |
Collapse
|
17
|
Li R, Berglund A, Zemp L, Dhillon J, Putney R, Kim Y, Jain RK, Grass GD, Conejo-Garcia J, Mulé JJ. The 12-CK Score: Global Measurement of Tertiary Lymphoid Structures. Front Immunol 2021; 12:694079. [PMID: 34267760 PMCID: PMC8276102 DOI: 10.3389/fimmu.2021.694079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
There is emerging evidence that the adaptive anti-tumor activity may be orchestrated by secondary lymphoid organ-like aggregates residing in the tumor microenvironment. Known as tertiary lymphoid structures, these lymphoid aggregates serve as key outposts for lymphocyte recruitment, priming and activation. They have been linked to favorable outcomes in many tumor types, and more recently, have been shown to be effective predictors of response to immune checkpoint blockade. We have previously described a 12-chemokine (12-CK) transcriptional score which recapitulates an overwhelming enrichment for immune-related and inflammation-related genes in colorectal carcinoma. Subsequently, the 12-CK score was found to prognosticate favorable survival in multiple tumors types including melanoma, breast cancer, and bladder cancer. In the current study, we summarize the discovery and validation of the 12-CK score in various tumor types, its relationship to TLSs found within the tumor microenvironment, and explore its potential role as both a prognostic and predictive marker in the treatment of various cancers.
Collapse
Affiliation(s)
- Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States.,Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Logan Zemp
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ryan Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - José Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - James J Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
18
|
Takacs GP, Flores-Toro JA, Harrison JK. Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy. Pharmacol Ther 2021; 222:107790. [PMID: 33316289 PMCID: PMC8122077 DOI: 10.1016/j.pharmthera.2020.107790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Chemokines are a large subfamily of cytokines known for their ability to facilitate cell migration, most notably leukocytes, throughout the body. Chemokines are necessary for a functioning immune system in both health and disease and have received considerable attention for their roles in orchestrating temporal-spatial regulation of immune cell populations in cancer. Gliomas comprise a group of common central nervous system (CNS) primary tumors that are extremely challenging to treat. Immunotherapy approaches for highly malignant brain tumors offer an exciting new avenue for therapeutic intervention but so far, have seen limited successful clinical outcomes. Herein we focus on important chemokine/chemokine receptor systems in the regulation of pro- and anti-tumor mechanisms, highlighting potential therapeutic advantages of modulating these systems in malignant gliomas and other cancers.
Collapse
Affiliation(s)
- Gregory P Takacs
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joseph A Flores-Toro
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jeffrey K Harrison
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
19
|
Wang Q, Zou H, Wang Y, Shang J, Yang L, Shen J. CCR7-CCL21 axis promotes the cervical lymph node metastasis of tongue squamous cell carcinoma by up-regulating MUC1. J Craniomaxillofac Surg 2021; 49:562-569. [PMID: 33966967 DOI: 10.1016/j.jcms.2021.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 02/07/2021] [Indexed: 12/24/2022] Open
Abstract
This study aims at investigating the potential role of MUC1 in CCR7-CCL21 axis-induced metastasis of tongue squamous cell carcinoma (TSCC). TSCC patients were selected for epidemiologic trends. The expression of CCR7 and MUC1 was detected via immunohistochemistry. SCC15 and CAL27 cells were induced by CCL21 and specific antibody to CCR7. Gene and protein expression was detected using qRT-PCR and western blotting. Migration and invasion capacities of TSCC cells were determined using wound healing and Transwell invasion assays. The male:female ratio of 78 patients was 1.6:1. Metastasis rate of cervical lymph nodes (CLNs) was 42.3%. CLN metastasis significantly correlated with T staging (P = 0.026), clinical staging (P = 0.024), and depth of invasion (DOI, P = 0.001). DOI significantly influenced CLN metastasis (P = 0.033, OR = 10.919) of TSCC, as did CCR7 (P = 0.041) and MUC1 (P = 0.026). The consistency of CCR7 and MUC1 expression was fairly good (Kappa = 0.683, P < 0.001). Reduced survival was significantly associated with higher expression of CCR7 (P = 0.039) and MUC1 (P = 0.030). CCL21 up-regulated MUC1 in SCC15 cells, which was inhibited when CCR7 was blocked. MUC1 positively correlated with TSCC cell migration and invasion. CCR7-CCL21 axis might promote CLN metastasis of TSCC by up-regulating MUC1. CCR7 and MUC1 show promise as potential biomarkers for TSCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Huiru Zou
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Yue Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Medical College of Nankai University, Tianjin, 300071, China
| | - Jianwei Shang
- Department of Oral Pathology, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Jun Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin Haihe Hospital, Tianjin, 300350, China.
| |
Collapse
|
20
|
A Versatile Toolkit for Semi-Automated Production of Fluorescent Chemokines to Study CCR7 Expression and Functions. Int J Mol Sci 2021; 22:ijms22084158. [PMID: 33923834 PMCID: PMC8072677 DOI: 10.3390/ijms22084158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chemokines guide leukocyte migration in different contexts, including homeostasis, immune surveillance and immunity. The chemokines CCL19 and CCL21 control lymphocyte and dendritic cell migration and homing to lymphoid organs. Thereby they orchestrate adaptive immunity in a chemokine receptor CCR7-dependent manner. Likewise, cancer cells that upregulate CCR7 expression are attracted by these chemokines and metastasize to lymphoid organs. In-depth investigation of CCR7 expression and chemokine-mediated signaling is pivotal to understand their role in health and disease. Appropriate fluorescent probes to track these events are increasingly in demand. Here, we present an approach to cost-effectively produce and fluorescently label CCL19 and CCL21 in a semi-automated process. We established a versatile protocol for the production of recombinant chemokines harboring a small C-terminal S6-tag for efficient and site-specific enzymatic labelling with an inorganic fluorescent dye of choice. We demonstrate that the fluorescently labeled chemokines CCL19-S6Dy649P1 and CCL21-S6Dy649P1 retain their full biological function as assessed by their abilities to mobilize intracellular calcium, to recruit β-arrestin to engaged receptors and to attract CCR7-expressing leukocytes. Moreover, we show that CCL19-S6Dy649P1 serves as powerful reagent to monitor CCR7 internalization by time-lapse confocal video microscopy and to stain CCR7-positive primary human and mouse T cell sub-populations.
Collapse
|
21
|
Cuesta-Mateos C, Brown JR, Terrón F, Muñoz-Calleja C. Of Lymph Nodes and CLL Cells: Deciphering the Role of CCR7 in the Pathogenesis of CLL and Understanding Its Potential as Therapeutic Target. Front Immunol 2021; 12:662866. [PMID: 33841445 PMCID: PMC8024566 DOI: 10.3389/fimmu.2021.662866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
The lymph node (LN) is an essential tissue for achieving effective immune responses but it is also critical in the pathogenesis of chronic lymphocytic leukemia (CLL). Within the multitude of signaling pathways aberrantly regulated in CLL the homeostatic axis composed by the chemokine receptor CCR7 and its ligands is the main driver for directing immune cells to home into the LN. In this literature review, we address the roles of CCR7 in the pathophysiology of CLL, and how this chemokine receptor is of critical importance to develop more rational and effective therapies for this malignancy.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Biomarkers, Tumor
- Chemotaxis/genetics
- Chemotaxis/immunology
- Disease Susceptibility
- Gene Expression
- Humans
- Immune Tolerance
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Ligands
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Molecular Targeted Therapy
- Protein Binding
- Receptors, CCR7/antagonists & inhibitors
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Tumor Microenvironment
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics BV, Lelystad, Netherlands
| | - Jennifer R. Brown
- Chronic Lymphocytic Leukemia (CLL) Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics BV, Lelystad, Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain
- School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
22
|
El Hafny-Rahbi B, Brodaczewska K, Collet G, Majewska A, Klimkiewicz K, Delalande A, Grillon C, Kieda C. Tumour angiogenesis normalized by myo-inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response. J Cell Mol Med 2021; 25:3284-3299. [PMID: 33624446 PMCID: PMC8034441 DOI: 10.1111/jcmm.16399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023] Open
Abstract
Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo-inositol-trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2 ) and stabilizes vessel normalization through activation of endothelial Phosphatase-and-Tensin-homologue (PTEN). Here, we show that the tumour reduction due to the ITPP-induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage-type proportions, increased proportions of NK and CD8+ T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+ NK cells to tumour cells is due to their adhesion to PD-L1+ /PD-L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD-L1/PD-L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA-4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
| | | | - Guillaume Collet
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, WIM, Warsaw, Poland.,Postgraduate School of Molecular Medicine (SMM), Warsaw Medical University, Warsaw, Poland
| | - Krzysztof Klimkiewicz
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France.,Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anthony Delalande
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France
| | - Claudine Kieda
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France.,Laboratory of Molecular Oncology and Innovative Therapies, WIM, Warsaw, Poland
| |
Collapse
|
23
|
Cuesta-Mateos C, Juárez-Sánchez R, Mateu-Albero T, Loscertales J, Mol W, Terrón F, Muñoz-Calleja C. Targeting cancer homing into the lymph node with a novel anti-CCR7 therapeutic antibody: the paradigm of CLL. MAbs 2021; 13:1917484. [PMID: 33944659 PMCID: PMC8098074 DOI: 10.1080/19420862.2021.1917484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Lymph node (LN) is a key tissue in the pathophysiology of mature blood cancers, especially for chronic lymphocytic leukemia (CLL). Within the multiple de-regulated pathways affecting CLL homeostasis, the CC-chemokine receptor 7 (CCR7) grants homing of CLL cells into the LN where protective environments foster tumor progression. To cover the lack of specific therapies targeting the CCR7-dependence of CLL to enter into the LN, and aiming to displace the disease from LN, we generated CAP-100, an antibody that specifically binds to hCCR7 and neutralizes its ligand-binding site and signaling. In various in vitro and in vivo preclinical models CAP-100 strongly inhibited CCR7-induced migration, extravasation, homing, and survival in CLL samples. Moreover, it triggered potent tumor cell killing, mediated by host immune mechanisms, and was effective in xenograft models of high-risk disease. Additionally, CAP-100 showed a favorable toxicity profile on relevant hematopoietic subsets. Our results validated CAP-100 as a novel therapeutic tool to prevent the access of CLL cells, and other neoplasia with nodal-dependence, into the LN niches, thus hitting a central hub in the pathogenesis of cancer. The first-in-human clinical trial (NCT04704323), which will evaluate this novel therapeutic approach in CLL patients, is pending.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immed S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics, Lelystad, The Netherlands
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Raquel Juárez-Sánchez
- Immed S.L., Immunological and Medicinal Products, Madrid, Spain
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Tamara Mateu-Albero
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Javier Loscertales
- Hematology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Wim Mol
- Catapult Therapeutics, Lelystad, The Netherlands
- Pepscan, Lelystad, The Netherlands
| | - Fernando Terrón
- Immed S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics, Lelystad, The Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
- Medicine Faculty, Universidad Autónoma De Madrid, Madrid, Spain
| |
Collapse
|
24
|
Ma Y, Zhou Y, Zhang H, Su X. Immune Response-Related Genes - STAT4, IL8RA and CCR7 Polymorphisms in Lung Cancer: A Case-Control Study in China. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:511-519. [PMID: 33116765 PMCID: PMC7585862 DOI: 10.2147/pgpm.s271983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
Purpose This study aimed to evaluate the associations between immune response-related genes – STAT4, IL8RA and CCR7 polymorphisms and risk of lung cancer. Methods Seven polymorphisms of STAT4, IL8RA and CCR7 were genotyped in 350 cases and 350 controls using a MassARRAY platform. Results The STAT4 rs1400656-G and rs7574865-T alleles may decrease the susceptibility to lung cancer (prs1400656= 0.020; prs7574865= 0.014); while IL8RA rs1008562-C and CCR7 rs3136685-T alleles may increase the risk of disease (prs1008562< 0.001; prs3136685= 0.018). The STAT4 rs1400656-GA and rs7574865-GT genotypes were determined as protective genotypes against lung cancer risk (prs1400656= 0.048; prs7574865= 0.042). However, IL8RA rs1008562-CG/GG and CCR7 rs3136685-TT genotypes were significantly associated with an elevated risk of disease (prs1008562< 0.0001; prs3136685= 0.020). Genetic model analysis revealed that STAT4 rs1400656 and rs7574865 were relate to a declining risk of disease under dominant and log-additive models (rs1400656: pdominant = 0.014, plog-additive= 0.016; rs7574865: pdominant = 0.013, plog-additive= 0.013). In contrast, IL8RA rs1008562 exhibited a strong correlation with an elevated risk of lung cancer under all three models (pdominant < 0.0001, precessive = 0.011, plog-additive< 0.0001). Moreover, CCR7 rs3136685 was correlated with an increased risk of disease under recessive and log-additive models (precessive = 0.007, plog-additive= 0.019); and CCR7 rs17708087 was also identified as a risk factor in the dominant model (p = 0.038). Conclusion These results widen the scope of knowledge about the association between STAT4, IL8RA and CCR7 polymorphisms and risk of lung cancer.
Collapse
Affiliation(s)
- Yunfan Ma
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, People's Republic of China
| | - Yinxi Zhou
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, People's Republic of China
| | - Huixin Zhang
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, People's Republic of China
| | - Xiaoan Su
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, People's Republic of China
| |
Collapse
|
25
|
Cuesta-Mateos C, Fuentes P, Schrader A, Juárez-Sánchez R, Loscertales J, Mateu-Albero T, Vega-Piris L, Espartero-Santos M, Marcos-Jimenez A, Sánchez-López BA, Pérez-García Y, Jungherz D, Oberbeck S, Wahnschaffe L, Kreutzman A, Andersson EI, Mustjoki S, Faber E, Urzainqui A, Fresno M, Stamatakis K, Alfranca A, Terrón F, Herling M, Toribio ML, Muñoz-Calleja C. CCR7 as a novel therapeutic target in t-cell PROLYMPHOCYTIC leukemia. Biomark Res 2020; 8:54. [PMID: 33110606 PMCID: PMC7585232 DOI: 10.1186/s40364-020-00234-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a poor prognostic disease with very limited options of efficient therapies. Most patients are refractory to chemotherapies and despite high response rates after alemtuzumab, virtually all patients relapse. Therefore, there is an unmet medical need for novel therapies in T-PLL. As the chemokine receptor CCR7 is a molecule expressed in a wide range of malignancies and relevant in many tumor processes, the present study addressed the biologic role of this receptor in T-PLL. Furthermore, we elucidated the mechanisms of action mediated by an anti-CCR7 monoclonal antibody (mAb) and evaluated whether its anti-tumor activity would warrant development towards clinical applications in T-PLL. Our results demonstrate that CCR7 is a prognostic biomarker for overall survival in T-PLL patients and a functional receptor involved in the migration, invasion, and survival of leukemic cells. Targeting CCR7 with a mAb inhibited ligand-mediated signaling pathways and induced tumor cell killing in primary samples. In addition, directing antibodies against CCR7 was highly effective in T-cell leukemia xenograft models. Together, these findings make CCR7 an attractive molecule for novel mAb-based therapeutic applications in T-PLL, a disease where recent drug screen efforts and studies addressing new compounds have focused on chemotherapy or small molecules.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain.,IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Patricia Fuentes
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Raquel Juárez-Sánchez
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain.,IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Javier Loscertales
- Hematology Department, Hospital Universitario de La Princesa, IIS-IP, Madrid, Spain
| | - Tamara Mateu-Albero
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Lorena Vega-Piris
- Methodology Unit, Hospital Universitario de La Princesa, IIS-IP, Madrid, Spain
| | - Marina Espartero-Santos
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Ana Marcos-Jimenez
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Blanca Andrea Sánchez-López
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Yaiza Pérez-García
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Dennis Jungherz
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Sebastian Oberbeck
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Anna Kreutzman
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Emma I Andersson
- Department of Hematology, Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Satu Mustjoki
- Department of Hematology, Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Edgar Faber
- Department of Hemato-Oncology, Faculty Hospital Olomouc, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Ana Urzainqui
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Manuel Fresno
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Kostantino Stamatakis
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Wang M, Liu S, Zhou B, Wang J, Ping H, Xing N. RRBP1 is highly expressed in bladder cancer and is associated with migration and invasion. Oncol Lett 2020; 20:203. [PMID: 32963609 PMCID: PMC7491031 DOI: 10.3892/ol.2020.12066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Ribosome-binding protein 1 (RRBP1) is a marker for colorectal, lung, esophageal and prostate cancer. However, the association between RRBP1 and bladder cancer is not completely understood. The present study aimed to evaluate the expression and function of RRBP1 in bladder cancer. The association between RRBP1 expression and clinicopathological characteristics, as well as the prognosis of bladder cancer was analyzed. RRBP1 expression was further analyzed in bladder cancer cell lines via reverse transcription-quantitative PCR and western blotting. RRBP1 knockdown was established using short hairpin RNAs to investigate the function of RRBP1 in T24 cells. Compared with healthy bladder tissue, RRBP1 expression levels were significantly upregulated in bladder cancer tissue. High RRBP1 expression was associated with tumor stage, lymph node metastasis and shorter overall survival time. RRBP1 protein was highly expressed in bladder cancer cell lines compared with normal SV-HUC-1 cells. Compared with the control group, RRBP1 knockdown inhibited T24 migration and invasion by downregulating the expression of C-C chemokine receptor type 7 (CCR7) protein. In conclusion, the present study indicated that RRBP1 was associated with bladder cancer migration, invasion and prognosis, and CCR7 might serve a role in the process.
Collapse
Affiliation(s)
- Mingshuai Wang
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Sai Liu
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bolin Zhou
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jianwen Wang
- Department of Urology, Institute of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Nianzeng Xing
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
27
|
Li S, Xu W. Mining TCGA database for screening and identification of hub genes in kidney renal clear cell carcinoma microenvironment. J Cell Biochem 2020; 121:3952-3960. [PMID: 31697440 DOI: 10.1002/jcb.29511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
To evaluate the diagnosis and prognosis of the tumor microenvironment (immunization and stromal cells) in kidney renal clear cell carcinoma (KIRC), KIRC cases selected from The Cancer Genome Atlas database were divided into two groups according to the ESTIMATE algorithm-derived immune scores. Our data suggested that the Von Hippel-Lindau mutations and pathologic grades are associated with immune scores. Importat ntly, we identified 173 differential expression genes (DEGs) associated with prognosis in patients with KIRC. Consequently, Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these DEGs, which included immune response, defense response, intrinsic to the plasma membrane, positive regulation of immune system process, and cytokine binding. Next, the protein-protein interaction network of DEGs and the most significant module was constructed. Five hub genes were identified and analyzed using biological analysis. The survival analysis of the hub genes showed that KIRC patients with high gene expression of C2, MXRA8, TNFSF13B, and X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) had worse overall survival, and MXRA8, TNFSF13B, and XAF1 alteration were significantly associated with disease-free survival (DFS). In addition, high gene expression of XAF1 alteration showed better DFS. Conclusion: we identified a list of microenvironment-related genes that are useful for understanding the molecular mechanisms and prognosis of KIRC.
Collapse
Affiliation(s)
- Song Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Weibo Xu
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
28
|
Murphy DA, Rini BI, Escudier B, Motzer RJ, Wang P, Li S, Williams JA, Tarazi JC, Martini JF. Angiogenic and immunomodulatory biomarkers in axitinib-treated patients with advanced renal cell carcinoma. Future Oncol 2020; 16:1199-1210. [PMID: 32363929 PMCID: PMC8459336 DOI: 10.2217/fon-2020-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aim: Immunomodulatory mechanisms contributing to angiogenic inhibition in renal tumors are not well characterized. We report associations between efficacy and tumor-associated immune cells and mRNA/miRNA expression in patients from AXIS. Materials & methods: Immunohistochemistry (n = 52) and mRNA/miRNA expression analyses (n = 72) were performed on tumor samples. Results: In axitinib-treated patients, higher CXCR4 and TLR3 expression, respectively, was associated with longer progression-free survival (hazard ratio; 95% CI: 0.3; 0.1–0.8 and 0.4; 0.2–0.9) and showed interaction with treatment (p = 0.029 and p < 0.001); lower CCR7 expression was associated with objective response (odds ratio: 0.1; 95% CI: 0.01–1.0) and longer overall survival (hazard ratio: 3.9; 95% CI: 1.4–10.3). Conclusion: CCR7, CXCR4 and TLR3 expression levels may be prognostic/predictive of clinical benefit with axitinib. Clinical trial identifier:ClinicalTrials.gov NCT00678392.
Collapse
Affiliation(s)
| | - Brian I Rini
- Department of Hematology & Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Bernard Escudier
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | - Robert J Motzer
- Department of Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Sherry Li
- Pfizer Oncology, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
29
|
Rizeq B, Malki MI. The Role of CCL21/CCR7 Chemokine Axis in Breast Cancer Progression. Cancers (Basel) 2020; 12:E1036. [PMID: 32340161 PMCID: PMC7226115 DOI: 10.3390/cancers12041036] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths worldwide, predominantly caused by metastasis. It is generally accepted that the pattern of breast cancer metastasis is largely determined by the interaction between the chemokine receptors on cancer cells and the chemokines expressed at the sites of metastatic disease. Chemokine receptors belong to the G-protein-coupled receptors (GPCRs) family that appear to be implicated in inflammatory diseases, tumor growth and metastasis. One of its members, C-C Chemokine receptor 7 (CCR7), binds chemokines CCL19 and CCL21, which are important for tissue homeostasis, immune surveillance and tumorigenesis. These receptors have been shown to induce the pathobiology of breast cancer due to their ability to induce cellular proliferation and migration upon the binding of the cognate chemokine receptors. The underlying signaling pathways and exact cellular interactions within this biological system are not fully understood and need further insights. Thus, in this review, we summarize the essential roles of CCR7 and its receptors in breast cancer progression. Furthermore, we discuss the mechanisms of regulation that may lead to novel opportunities for therapeutic intervention. Despite the enormous advances in our knowledge of the nature of the chemokines in breast cancer metastasis, research about the involvement of CCR7 in cancer progression is still limited. Therefore, further studies are essential to illustrate the distinct roles of CCR7 in cancer progression and validate its potential as a preventive bio-factor for human breast cancer metastasis by targeting chemokine receptor genes.
Collapse
Affiliation(s)
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P. O. Box. 2713, Doha, Qatar;
| |
Collapse
|
30
|
Do HTT, Lee CH, Cho J. Chemokines and their Receptors: Multifaceted Roles in Cancer Progression and Potential Value as Cancer Prognostic Markers. Cancers (Basel) 2020; 12:E287. [PMID: 31991604 PMCID: PMC7072521 DOI: 10.3390/cancers12020287] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022] Open
Abstract
Chemokines are chemotactic cytokines that mediate immune cell chemotaxis and lymphoid tissue development. Recent advances have indicated that chemokines and their cognate receptors play critical roles in cancer-related inflammation and cancer progression. On the basis of these findings, the chemokine system has become a new potential drug target for cancer immunotherapy. In this review, we summarize the essential roles of the complex network of chemokines and their receptors in cancer progression. Furthermore, we discuss the potential value of the chemokine system as a cancer prognostic marker. The chemokine system regulates the infiltration of immune cells into the tumor microenvironment, which induces both pro- and anti-immunity and promotes or suppresses tumor growth and proliferation, angiogenesis, and metastasis. Increasing evidence indicates the promising prognostic value of the chemokine system in cancer patients. While CCL2, CXCL10, and CX3CL1/CX3CR1 can serve as favorable or unfavorable prognostic factors depending on the cancer types, CCL14 and XCL1 possess good prognostic value. Other chemokines such as CXCL1, CXCL8, and CXCL12 are poor prognostic markers. Despite vast advances in our understanding of the complex nature of the chemokine system in tumor biology, knowledge about the multifaceted roles of the chemokine system in different types of cancers is still limited. Further studies are necessary to decipher distinct roles within the chemokine system in terms of cancer progression and to validate their potential value in cancer prognosis.
Collapse
Affiliation(s)
| | | | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (C.H.L.)
| |
Collapse
|
31
|
Langsten KL, Kim JH, Sarver AL, Dewhirst M, Modiano JF. Comparative Approach to the Temporo-Spatial Organization of the Tumor Microenvironment. Front Oncol 2019; 9:1185. [PMID: 31788448 PMCID: PMC6854022 DOI: 10.3389/fonc.2019.01185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complex ecosystem in which tumor cells reside and interact, termed the tumor microenvironment (TME), encompasses all cells and components associated with a neoplasm that are not transformed cells. Interactions between tumor cells and the TME are complex and fluid, with each facet coercing the other, largely, into promoting tumor progression. While the TME in humans is relatively well-described, a compilation and comparison of the TME in our canine counterparts has not yet been described. As is the case in humans, dog tumors exhibit greater heterogeneity than what is appreciated in laboratory animal models, although the current level of knowledge on similarities and differences in the TME between dogs and humans, and the practical implications of that information, require further investigation. This review summarizes some of the complexities of the human and mouse TME and interjects with what is known in the dog, relaying the information in the context of the temporo-spatial organization of the TME. To the authors' knowledge, the development of the TME over space and time has not been widely discussed, and a comprehensive review of the canine TME has not been done. The specific topics covered in this review include cellular invasion and interactions within the TME, metabolic derangements in the TME and vascular invasion, and the involvement of the TME in tumor spread and metastasis.
Collapse
Affiliation(s)
- Kendall L Langsten
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Aaron L Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Mark Dewhirst
- Radiation Oncology Department, Duke University Medical School, Durham, NC, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
32
|
Liu YX, Bai JX, Li T, Fu XQ, Chen YJ, Zhu PL, Chou JY, Yin CL, Li JK, Wang YP, Wu JY, Yu ZL. MiR-let-7a/f-CCR7 signaling is involved in the anti-metastatic effects of an herbal formula comprising Sophorae Flos and Lonicerae Japonicae Flos in melanoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153084. [PMID: 31514083 DOI: 10.1016/j.phymed.2019.153084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Metastasized melanoma is extremely difficult to treat. Activation of C-C chemokine receptor type 7 (CCR7) has been linked to melanoma metastasis. CCR7 can be directly regulated by miR-let-7. We have previously shown that an ethanolic extract of an herbal formula comprising Sophorae Flos and Lonicerae Japonicae Flos (SLE) inhibits melanoma cell migration and invasion. PURPOSE In this study, we determined whether SLE suppresses melanoma metastasis, and whether regulation of miR-let-7a/f-CCR7 signaling is involved in the effect. STUDY DESIGN AND METHODS Small RNA sequencing was conducted to compare miRNA expression profiles of B16F10 tumors dissected from SLE-treated or untreated mice. Western blot and RT-qPCR analyses were employed to examine protein and miRNA levels, respectively. A B16F10 melanoma lung metastasis mouse model was used to evaluate the effects of SLE on melanoma metastasis. MiR-let-7a/f-knockdown and CCR7-overexpression cell models were used to investigate the involvement of miR-let-7a/f-CCR7 signaling in the anti-metastatic effects of SLE. RESULTS It was found that SLE upregulated levels of miR-let-7a/f in B16F10 melanoma tissues. SLE significantly elevated levels of miR-let-7a/f, lowered the protein level of CCR7, inhibited the phosphorylation of CCR7 downstream molecules p38 and JNK in B16F10 and A375 melanoma cells. SLE inhibited B16F10 melanoma lung metastasis in mice. SLE upregulated levels of miR-let-7a/f, and lowered protein levels of CCR7, MMP-2, MMP-9, phospho-p38 (Thr180/Tyr182) and phospho-JNK (Thr183/Tyr185) in melanoma-invaded lung tissues. Knockdown of miR-let-7a/f diminished the effects of SLE on CCR7 signaling in, and invasion of, melanoma cells. Overexpression of CCR7 lessened the effects of SLE in inhibiting the phosphorylation of p38 and JNK in, and the invasive capability of, melanoma cells. CONCLUSION We for the first time demonstrated that SLE inhibits melanoma metastasis in mice, and that regulation of the miR-let-7a/f-CCR7 pathway contributes to the anti-metastatic mechanisms of SLE. These findings provide a pharmacological basis for developing SLE as a modern agent for treating metastatic melanoma. Additionally and importantly, this study suggests that regulating the miR-let-7a/f-CCR7 pathway is a novel strategy for controlling melanoma metastasis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cell Movement/drug effects
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lonicera
- Lung Neoplasms/drug therapy
- Lung Neoplasms/secondary
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Sophora/chemistry
Collapse
Affiliation(s)
- Yu-Xi Liu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jing-Xuan Bai
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ting Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun-Kui Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ya-Ping Wang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jia-Ying Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
33
|
Laufer JM, Hauser MA, Kindinger I, Purvanov V, Pauli A, Legler DF. Chemokine Receptor CCR7 Triggers an Endomembrane Signaling Complex for Spatial Rac Activation. Cell Rep 2019; 29:995-1009.e6. [DOI: 10.1016/j.celrep.2019.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/09/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
|
34
|
Feng C, So HI, Yin S, Su X, Xu Q, Wang S, Duan W, Zhang E, Sun C, Xu Z. MicroRNA-532-3p Suppresses Malignant Behaviors of Tongue Squamous Cell Carcinoma via Regulating CCR7. Front Pharmacol 2019; 10:940. [PMID: 31555130 PMCID: PMC6727182 DOI: 10.3389/fphar.2019.00940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022] Open
Abstract
To provide better therapeutic avenues for treating tongue squamous cell carcinoma (TSCC), a series of experiments about the effects of microRNA (miR)-532-3p on TSCC malignant behaviors were carried out. The result showed that miR-532-3p was down-regulated and C-C chemokine receptor 7 (CCR7) was up-regulated in the tumor tissues compared with those in the paired paratumor tissues. Further, expression of miR-532-3p was detected in four TSCC cell lines, TSCCA, TCA8113, CAL-27, and SCC-25. The miR-532-3p mimics and inhibitor were transfected into the CAL-27 and TCA8113 cell lines which were the relatively lowest and highest miR-532-3p expressions, respectively. It was found that the overexpression of miR-532-3p suppressed TSCC cell proliferation, migration, invasion, and promoted apoptosis in vitro, whilst the knockdown of miR-532-3p reversed these behaviors. The bioinformatics predicted that CCR7 was a downstream gene of miR-532-3p, which was confirmed via luciferase assay. Following, the decline of CCR7 in the miR-532-3p mimics group and the rise of CCR7 in the miR-532-3p inhibitor group were also verified. In addition, enhanced cell proliferation, migration and invasion induced by CCR7 were partly restrained by miR-532-3p in TSCC cell. Meanwhile, miR-532-3p attenuated tumourigenesis in vivo due to the reduction of tumor volume and Ki-67 positive rate and the increase of apoptotic cells. Taken together, these findings reveal a pivotal role for the miR-532-3p/CCR7 axis in regulating TSCC, and this novel axis could be suitable for therapeutic intervention in TSCC disease.
Collapse
Affiliation(s)
- Cuijuan Feng
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Hyon Il So
- Department of Oral and Maxillofacial Surgery, Pyongyang Medical College, Kim IL Sung University, Pyongyang, North Korea
| | - Shoucheng Yin
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Xingzhou Su
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Qiang Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Simin Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Weiyi Duan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Enjiao Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Changfu Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Zhongfei Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Marx S, Dal Maso T, Chen JW, Bury M, Wouters J, Michiels C, Le Calvé B. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol 2019; 60:96-106. [PMID: 31454669 DOI: 10.1016/j.semcancer.2019.08.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023]
Abstract
The majority of cancer-associated deaths are related to secondary tumor formation. This multistep process involves the migration of cancer cells to anatomically distant organs. Metastasis formation relies on cancer cell dissemination and survival in the circulatory system, as well as adaptation to the new tissue notably through genetic and/or epigenetic alterations. A large number of proteins are clearly identified to play a role in the metastatic process but the structures and modes of action of these proteins are essentially unknown or poorly described. In this review, we detail the involvement of members of the transmembrane (TMEM) protein family in the formation of metastases or in the mechanisms leading to cancer cell dissemination such as migration and extra-cellular matrix remodelling. While the phenotype associated with TMEM over or down-expression is clear, the mechanisms by which these proteins allow cancer cell spreading remain, for most of them, unclear. In parallel, the 3D structures of these proteins are presented. Moreover, we proposed that TMEM proteins could be used as prognostic markers in different types of cancers and could represent potential targets for cancer treatment. A better understanding of this heterogeneous family of poorly characterized proteins thus opens perspectives for better cancer patient care.
Collapse
Affiliation(s)
- Sébastien Marx
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thomas Dal Maso
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Jia-Wei Chen
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Marina Bury
- de Duve Institute, 75 Avenue Hippocrate, 1200 Bruxelles, Belgium
| | - Johan Wouters
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Carine Michiels
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Benjamin Le Calvé
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
36
|
Jakobs BD, Spannagel L, Purvanov V, Uetz-von Allmen E, Matti C, Legler DF. Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7. Int J Mol Sci 2019; 20:E2597. [PMID: 31137829 PMCID: PMC6566259 DOI: 10.3390/ijms20102597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023] Open
Abstract
The chemokine receptor CCR7 plays a pivotal role in health and disease. In particular, CCR7 controls homing of antigen-bearing dendritic cells and T cells to lymph nodes, where adaptive immune responses are initiated. However, CCR7 also guides T cells to inflamed synovium and thereby contributes to rheumatoid arthritis and promotes cancer cell migration and metastasis formation. Nanobodies have recently emerged as versatile tools to study G-protein-coupled receptor functions and are being tested in diagnostics and therapeutics. In this study, we designed a strategy to engineer novel nanobodies recognizing human CCR7. We generated a nanobody library based on a solved crystal structure of the nanobody Nb80 recognizing the β2-adrenergic receptor (β2AR) and by specifically randomizing two segments within complementarity determining region 1 (CDR1) and CDR3 of Nb80 known to interact with β2AR. We fused the nanobody library to one half of split-YFP in order to identify individual nanobody clones interacting with CCR7 fused to the other half of split-YFP using bimolecular fluorescence complementation. We present three novel nanobodies, termed Nb1, Nb5, and Nb38, that recognize human CCR7 without interfering with G-protein-coupling and downstream signaling. Moreover, we were able to follow CCR7 trafficking upon CCL19 triggering using Nb1, Nb5, and Nb38.
Collapse
Affiliation(s)
- Barbara D Jakobs
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland.
| | - Lisa Spannagel
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
- Faculty of Biology, University of Konstanz, D-78464 Konstanz, Germany.
| |
Collapse
|
37
|
Emerging Roles of the Endoplasmic Reticulum Associated Unfolded Protein Response in Cancer Cell Migration and Invasion. Cancers (Basel) 2019; 11:cancers11050631. [PMID: 31064137 PMCID: PMC6562633 DOI: 10.3390/cancers11050631] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) proteostasis is often altered in tumor cells due to intrinsic (oncogene expression, aneuploidy) and extrinsic (environmental) challenges. ER stress triggers the activation of an adaptive response named the Unfolded Protein Response (UPR), leading to protein translation repression, and to the improvement of ER protein folding and clearance capacity. The UPR is emerging as a key player in malignant transformation and tumor growth, impacting on most hallmarks of cancer. As such, the UPR can influence cancer cells’ migration and invasion properties. In this review, we overview the involvement of the UPR in cancer progression. We discuss its cross-talks with the cell migration and invasion machinery. Specific aspects will be covered including extracellular matrix (ECM) remodeling, modification of cell adhesion, chemo-attraction, epithelial-mesenchymal transition (EMT), modulation of signaling pathways associated with cell mobility, and cytoskeleton remodeling. The therapeutic potential of targeting the UPR to treat cancer will also be considered with specific emphasis in the impact on metastasis and tissue invasion.
Collapse
|
38
|
Zu G, Luo B, Yang Y, Tan Y, Tang T, Zhang Y, Chen X, Sun D. Meta-analysis of the prognostic value of C-C chemokine receptor type 7 in patients with solid tumors. Cancer Manag Res 2019; 11:1881-1892. [PMID: 30881115 PMCID: PMC6396671 DOI: 10.2147/cmar.s190510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Expression of C-C chemokine receptor type 7 (CCR7) is associated with the prognosis of several cancers. The aim of this study was to conduct the meta-analysis to determine the prognostic value of CCR7 expression in solid tumors. Materials and methods We searched for relevant literature in the PubMed, Embase, and Cochrane Library databases (last updated on January 15, 2018). The associations of CCR7 expression with overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progress-free survival (PFS), and disease-specific survival (DSS) were estimated. Results In total, 30 qualified studies including 3,413 patients were enrolled. The results revealed that higher expression of CCR7 predicted poorer OS (pooled HR =1.79; 95% CI =1.49–2.16; P<0.001) and PFS (pooled HR =2.18; 95% CI =1.49–3.18; P<0.001), but was not associated with DFS (pooled HR =1.69; 95% CI =0.79–3.61; P=0.175), RFS (pooled HR =1.29; 95% CI =0.48–3.44; P=0.618), or DSS (pooled HR =3.06; 95% CI =0.38–24.83; P<0.294). Conclusion From this meta-analysis, we concluded that high expression of CCR7 in tumor tissue is associated with poor survival in patients with solid tumors, and may be a prognostic biomarker for tumor progression.
Collapse
Affiliation(s)
- Guangchen Zu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Baoyang Luo
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Yong Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Yuwei Tan
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| |
Collapse
|
39
|
Curcumae Radix Extract Decreases Mammary Tumor-Derived Lung Metastasis via Suppression of C-C Chemokine Receptor Type 7 Expression. Nutrients 2019; 11:nu11020410. [PMID: 30781353 PMCID: PMC6412318 DOI: 10.3390/nu11020410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Curcumae radix is the dry root of Curcuma longa L. (turmeric) that can be used either as a spice or traditional medicine. The aim of this study was to investigate the survival benefits and the anti-metastatic activity of curcumae radix extract (CRE) in MCF7 cells and in MMTV-PyMT transgenic mice—a mouse model of breast cancer metastasis. In vitro wound scratch assay revealed that CRE treatment inhibited cell motility and cell migration in a dose-dependent manner. To investigate the effect of CRE in breast cancer metastasis, MMTV-PyMT transgenic female virgin mice were used and randomly divided into two groups. For survival curve analysis, CRE was administered in a dose of 50 mg/kg to 8–20-week-old mice. Interestingly, CRE treatment significantly increased the median and prolonged survival of MMTV-PyMT mice. Furthermore, CRE treatment decreased tumor burden and inhibited cell proliferation in primary breast tumor, and also suppressed mammary tumor-derived lung metastasis. The size of the lung metastases substantially decreased in the CRE-treated group compared with the ones in the control group. Curcumae radix extract showed anti-metastatic activity through regulating the expression of metastasis markers including C-C Chemokine Receptor Type 7, Matrix Metalloproteinase 9 and the proto-oncogenes c-fos and c-jun. We demonstrated that these metastatic regulators were decreased when CCR7 expression was suppressed in MCF7 cells transfected with CCR7 siRNA. The results of this study show that curcumae radix exerts antitumor and anti-metastatic activities, and we suggest that curcumae radix might be a potential supplement for the treatment and prevention of breast cancer metastasis.
Collapse
|
40
|
Fluorescently Tagged CCL19 and CCL21 to Monitor CCR7 and ACKR4 Functions. Int J Mol Sci 2018; 19:ijms19123876. [PMID: 30518137 PMCID: PMC6321256 DOI: 10.3390/ijms19123876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/17/2023] Open
Abstract
Chemokines are essential guidance cues orchestrating cell migration in health and disease. Cognate chemokine receptors sense chemokine gradients over short distances to coordinate directional cell locomotion. The chemokines CCL19 and CCL21 are essential for recruiting CCR7-expressing dendritic cells bearing pathogen-derived antigens and lymphocytes to lymph nodes, where the two cell types meet to launch an adaptive immune response against the invading pathogen. CCR7-expressing cancer cells are also recruited by CCL19 and CCL21 to metastasize in lymphoid organs. In contrast, atypical chemokine receptors (ACKRs) do not transmit signals required for cell locomotion but scavenge chemokines. ACKR4 is crucial for internalizing and degrading CCL19 and CCL21 to establish local gradients, which are sensed by CCR7-expressing cells. Here, we describe the production of fluorescently tagged chemokines by fusing CCL19 and CCL21 to monomeric red fluorescent protein (mRFP). We show that purified CCL19-mRFP and CCL21-mRFP are versatile and powerful tools to study CCR7 and ACKR4 functions, such as receptor trafficking and chemokine scavenging, in a spatiotemporal fashion. We demonstrate that fluorescently tagged CCL19 and CCL21 permit the visualization and quantification of chemokine gradients in real time, while CCR7-expressing leukocytes and cancer cells sense the guidance cues and migrate along the chemokine gradients.
Collapse
|
41
|
Wu J, Li L, Liu J, Wang Y, Wang Z, Wang Y, Liu W, Zhou Z, Chen C, Liu R, Yang R. CC chemokine receptor 7 promotes triple-negative breast cancer growth and metastasis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:835-842. [PMID: 30032244 DOI: 10.1093/abbs/gmy077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/20/2018] [Indexed: 01/11/2023] Open
Abstract
Metastasis is the leading cause of breast cancer-related death. Chemokine (C-C motif) receptor 7 (CCR7) plays important roles in breast cancer metastasis. However, the role of CCR7 in triple-negative breast cancer (TNBC) has not been fully elucidated. In this study, we found that CCR7 is highly expressed in both TNBC cell lines and breast cancer tissues. CCR7 was knocked down by shRNA in 4T1 and MDA-MB-231, two TNBC cell lines, and we found that the depletion of CCR7 significantly decreased TNBC cell proliferation, migration and invasion in vitro. Furthermore, we confirmed that the knockdown of CCR7 reduced the distant metastasis of 4T1 cells in an orthotopic mouse model. Proteomic analysis in 4T1 cells indicated that several signaling pathways such as epithelial cell adhesion molecule might contribute to CCR7's function in breast cancer metastasis. Our results suggest that CCR7 promotes TNBC metastasis and may serve as a target for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiao Wu
- Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lu Li
- 2014 Grade of Queen Mary College of Medicine, Nanchang University, Nanchang, China
| | - Jianing Liu
- 2014 Grade of Queen Mary College of Medicine, Nanchang University, Nanchang, China
| | - Yang Wang
- Third Department of Internal Medicine, The Fifth People's Hospital of Puyang, Puyang, China
| | - Zehua Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yangdan Wang
- Department of Oncology, The First Affiliated Hospital of Dali University, Dali, China
| | - Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Runxiang Yang
- Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
42
|
Uetz-von Allmen E, Rippl AV, Farhan H, Legler DF. A unique signal sequence of the chemokine receptor CCR7 promotes package into COPII vesicles for efficient receptor trafficking. J Leukoc Biol 2018; 104:375-389. [PMID: 29603364 DOI: 10.1002/jlb.2vma1217-492r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 01/28/2023] Open
Abstract
Chemokine receptors are considered to belong to the group of G protein-coupled receptors that use the first transmembrane domain as signal anchor sequence for membrane insertion instead of a cleavable N-terminal signal sequence. Chemokine recognition is determined by the N-termini of chemokine receptors. Here, we show that the chemokine receptor CCR7, which is essential for directed migration of adaptive immune cells, possesses a 24 amino acids long N-terminal signal sequence that is unique among chemokine receptors. This sequence is cleaved off the mature human and mouse protein. Introducing single point mutations in the hydrophobic core h-region or in the polar C-terminal segment (c-region) of the signal sequence to interfere with its cleavage retained CCR7 in the ER and prevented its surface expression. Furthermore, we demonstrate the correct topology of the 35 amino acids short extracellular N-tail of CCR7 in a deletion mutant lacking the natural signal sequence. This signal sequence deletion mutant of CCR7 is fully functional as it efficiently binds its ligand, elicits chemokine-induced calcium mobilization, and directs cell migration. However, we show that the signal sequence promotes efficient recruitment of the GPCR to ER exit sites, thereby controlling efficient ER to Golgi trafficking of CCR7 on its way to reach the plasma membrane.
Collapse
Affiliation(s)
- Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Alexandra V Rippl
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Hesso Farhan
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
43
|
Laufer JM, Lyck R, Legler DF. ZAP70 expression enhances chemokine-driven chronic lymphocytic leukemia cell migration and arrest by valency regulation of integrins. FASEB J 2018; 32:4824-4835. [PMID: 29589978 DOI: 10.1096/fj.201701452rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ζ-associated protein of 70 kDa (ZAP70) is expressed in the aggressive form of B-cell chronic lymphocytic leukemia (CLL). Moreover, the integrin very late antigen (VLA)-1 is highly expressed on subtypes of CLL that are associated with high proliferation rates in the lymph node context. We herein identify a critical role for ZAP70 in chemokine-mediated, inside-out signaling to integrins in trisomy 12 carrying Ohio State University-CLL cell lines derived from a patient with previously treated CLL. We found that ZAP70-positive CLL cells migrated significantly better toward ligands of the lymph node homing chemokine receptors CCR7 and CXCR4 compared with ZAP70-negative cells. In addition, ZAP70-expressing CLL cells adhered more efficiently to integrin ligands under static conditions. We discovered that ZAP70 expression controls chemokine-driven clustering of the integrins VLA-4 and lymphocyte function-associated antigen-1. More precisely, chemokine stimulation resulted in a ZAP70-dependent integrin valency regulation on CLL cells, whereas high-affinity regulation of integrins was independent of ZAP70. Consequently, ZAP70-expressing CLL cells show increased chemokine-driven arrest on immobilized integrin ligands and on chemokine-presenting endothelial cells under physiologic flow conditions. Hence, we describe a novel mechanism showing how ZAP70 controls chemokine-driven valency regulation of integrins and arrest of CLL cells on endothelial cells, a process that might contribute to CLL disease progression.-Laufer, J. M., Lyck, R., Legler, D. F. ZAP70 expression enhances chemokine-driven chronic lymphocytic leukemia cell migration and arrest by valency regulation of integrins.
Collapse
Affiliation(s)
- Julia M Laufer
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School of Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany; and
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School of Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany; and
| |
Collapse
|
44
|
Soler-Cardona A, Forsthuber A, Lipp K, Ebersberger S, Heinz M, Schossleitner K, Buchberger E, Gröger M, Petzelbauer P, Hoeller C, Wagner E, Loewe R. CXCL5 Facilitates Melanoma Cell-Neutrophil Interaction and Lymph Node Metastasis. J Invest Dermatol 2018; 138:1627-1635. [PMID: 29474942 DOI: 10.1016/j.jid.2018.01.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
Abstract
Chemokines influence tumor metastasis by targeting tumor, stromal, and hematopoietic cells. Characterizing the chemokine mRNA expression profile of human primary melanoma samples, we found CXCL5 significantly up-regulated in stage T4 primary melanomas when compared to thin melanomas (T1 stage). To characterize the role of CXCL5 in melanoma progression, we established a metastasizing murine xenograft model using CXCL5-overexpressing human melanoma cells. CXCL5 had no effect on melanoma proliferation in vitro and on primary tumor growth in vivo, but CXCL5-overexpressing tumors recruited high amounts of neutrophils and exhibited significantly increased lymphangiogenesis in our severe combined immune-deficient mouse model. Recruited neutrophils were found in close proximity to or within lymphatic vessels, often in direct contact with melanoma cells. Clinically, CXCL5-overexpressing melanomas had significantly increased lymph node metastases. We were able to translate these findings to human patient samples and found a positive correlation between CXCL5 expression, numbers of neutrophils in stage T4 primary melanoma, and the occurrence of subsequent locoregional metastasis.
Collapse
Affiliation(s)
- Ana Soler-Cardona
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Division of General Dermatology and Dermato-Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Agnes Forsthuber
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lipp
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Magdalena Heinz
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Klaudia Schossleitner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Marion Gröger
- Core Facility Imaging, Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Division of General Dermatology and Dermato-Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Hoeller
- Division of General Dermatology and Dermato-Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Wagner
- Genes, Development and Disease Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Robert Loewe
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Division of General Dermatology and Dermato-Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
45
|
Siripurapu P, Kankanamge D, Ratnayake K, Senarath K, Karunarathne A. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration. J Biol Chem 2017; 292:17482-17495. [PMID: 28864771 DOI: 10.1074/jbc.m117.787838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/27/2017] [Indexed: 12/25/2022] Open
Abstract
Chemokine-induced directional cell migration is a universal cellular mechanism and plays crucial roles in numerous biological processes, including embryonic development, immune system function, and tissue remodeling and regeneration. During the migration of a stationary cell, the cell polarizes, forms lamellipodia at the leading edge (LE), and triggers the concurrent retraction of the trailing edge (TE). During cell migration governed by inhibitory G protein (Gi)-coupled receptors (GPCRs), G protein βγ (Gβγ) subunits control the LE signaling. Interestingly, TE retraction has been linked to the activation of the small GTPase Ras homolog family member A (RhoA) by the Gα12/13 pathway. However, it is not clear how the activation of Gi-coupled GPCRs at the LE orchestrates the TE retraction in RAW264.7 macrophages. Here, using an optogenetic approach involving an opsin to activate the Gi pathway in defined subcellular regions of RAW cells, we show that in addition to their LE activities, free Gβγ subunits also govern TE retraction by operating two independent, yet synchronized, pathways. The first pathway involves RhoA activation, which prevents dephosphorylation of the myosin light chain, allowing actomyosin contractility to proceed. The second pathway activates phospholipase Cβ and induces myosin light chain phosphorylation to enhance actomyosin contractility through increasing cytosolic calcium. We further show that both of these pathways are essential, and inhibition of either one is sufficient to abolish the Gi-coupled GPCR-governed TE retraction and subsequent migration of RAW cells.
Collapse
Affiliation(s)
- Praneeth Siripurapu
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Dinesh Kankanamge
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kasun Ratnayake
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kanishka Senarath
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Ajith Karunarathne
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
46
|
CCR7 Sulfotyrosine Enhances CCL21 Binding. Int J Mol Sci 2017; 18:ijms18091857. [PMID: 28841151 PMCID: PMC5618506 DOI: 10.3390/ijms18091857] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Chemokines are secreted proteins that direct the migration of immune cells and are involved in numerous disease states. For example, CCL21 (CC chemokine ligand 21) and CCL19 (CC chemokine ligand 19) recruit antigen-presenting dendritic cells and naïve T-cells to the lymph nodes and are thought to play a role in lymph node metastasis of CCR7 (CC chemokine receptor 7)-expressing cancer cells. For many chemokine receptors, N-terminal posttranslational modifications, particularly the sulfation of tyrosine residues, increases the affinity for chemokine ligands and may contribute to receptor ligand bias. Chemokine sulfotyrosine (sY) binding sites are also potential targets for drug development. In light of the structural similarity between sulfotyrosine and phosphotyrosine (pY), the interactions of CCL21 with peptide fragments of CCR7 containing tyrosine, pY, or sY were compared using protein NMR (nuclear magnetic resonance) spectroscopy in this study. Various N-terminal CCR7 peptides maintain binding site specificity with Y8-, pY8-, or sY8-containing peptides binding near the α-helix, while Y17-, pY17-, and sY17-containing peptides bind near the N-loop and β3-stand of CCL21. All modified CCR7 peptides showed enhanced binding affinity to CCL21, with sY having the largest effect.
Collapse
|
47
|
Conformational heterogeneity in CCR7 undergoes transitions to specific states upon ligand binding. J Mol Graph Model 2017; 74:352-358. [DOI: 10.1016/j.jmgm.2017.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
|
48
|
Zhong G, Chen L, Yin R, Qu Y, Bao Y, Xiao Q, Zhang Z, Shen Y, Li C, Xu Y, Zou Z, Tian H. Chemokine (C‑C motif) ligand 21/C‑C chemokine receptor type 7 triggers migration and invasion of human lung cancer cells by epithelial‑mesenchymal transition via the extracellular signal‑regulated kinase signaling pathway. Mol Med Rep 2017; 15:4100-4108. [PMID: 28487957 PMCID: PMC5436267 DOI: 10.3892/mmr.2017.6534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/14/2017] [Indexed: 12/25/2022] Open
Abstract
C-C chemokine receptor type 7 (CCR7) has been implicated in lymph node metastasis of various cancers. Previous studies have revealed that epithelial-mesenchymal transition (EMT) is involved in the chemotactic process mediated by CCR7 and its ligands in various types of carcinoma. However, the underlying mechanism of this process remains to be fully elucidated. The present study investigated whether chemokine (C-C motif) ligand 21 (CCL21)/CCR7 may activate EMT of lung cancer cells and their associated signaling pathways. A549 and H520 lung cancer cell lines were examined in vitro in the present study. The results indicated that A549 and H520 expressed CCR7, but reduced levels of CCL21. Following stimulation of lung cancer cell lines with CCL21, the expression of the epithelial marker E-cadherin was downregulated, and the mesenchymal markers Vimentin/Slug and extracellular signal-regulated kinase (ERK) were upregulated. In addition, the ERK inhibitor PD98059 may inhibit EMT caused by CCL21, and decreased cell migration and invasion initiated by CCL21. Furthermore, lung adenocarcinoma tissues from 50 patients who underwent lung cancer operations were investigated by immunohistochemistry. The findings revealed that CCR7, Slug and Vimentin were highly expressed in lung carcinoma tissues, and were significantly associated with lymph node metastasis and clinical pathological stages, respectively. CCR7 expression was correlated positively with expression levels of Slug and Vimentin. CCL21 was expressed positively in the endothelium of lymphatic vessels adjacent to cancer cells, and weakly in lung cancer cells. Collectively, these results demonstrated that CCL21/CCR7 may activate EMT in lung cancer cells via the ERK1/2 signaling pathway. The current study provides evidence that a close interaction exists between CCL21/CCR7chemotaxis and EMT procedures in lung cancer metastasis, providing a basis for the development of therapeutic targets.
Collapse
Affiliation(s)
- Guangxin Zhong
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Chen
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ruihong Yin
- Department of Internal Medicine, Jinan First People's Hospital, Jinan, Shandong 250000, P.R. China
| | - Yan Qu
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongxing Bao
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiong Xiao
- Blood Center of General Hospital of Jinan Military Region, Jinan, Shandong 250031, P.R. China
| | - Zhaolin Zhang
- Department of Special Examination, Penglai People's Hospital, Penglai, Shandong 265600, P.R. China
| | - Yaqian Shen
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cailing Li
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yun Xu
- Department of Anatomy, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhigeng Zou
- Cancer Treatment Center, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hua Tian
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
49
|
Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 2017; 10:36. [PMID: 28143526 PMCID: PMC5286803 DOI: 10.1186/s13045-017-0408-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The macrophage, one of the several key immune cell types, is believed to be involved in tumorigenesis. However, the mechanism of macrophages promoting tumor progression is largely unknown. METHODS The differentially secreted proteins of M1 and M2 macrophages were analyzed by mass spectrometry. We performed GST pull-down assay for the identification of cell-membrane receptors that interact with chitinase 3-like protein 1 (CHI3L1) protein. The mouse model was used to validate the function of CHI3L1 in cancer metastasis in vivo. Protein phosphorylation and gene expression were performed to study the signaling pathway activation of cancer cells after CHI3L1 treatment. RESULTS M2 macrophage-secreted CHI3L1 promoted the metastasis of gastric and breast cancer cells in vitro and in vivo. The CHI3L1 protein functioned by interacting with interleukin-13 receptor α2 chain (IL-13Rα2) molecules on the plasma membranes of cancer cells. Activation of IL-13Rα2 by CHI3L1 triggered the activation of the mitogen-activated protein kinase signaling pathway, leading to the upregulated expression of matrix metalloproteinase genes, which promoted tumor metastasis. The results of this study indicated that the level of CHI3L1 protein in the sera of patients with gastric or breast cancer was significantly elevated compared with those of healthy donors. CONCLUSIONS Our study revealed a novel aspect of macrophages with respect to cancer metastasis and showed that CHI3L1 could be a marker of metastatic gastric and breast cancer in patients.
Collapse
Affiliation(s)
- Yulei Chen
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Siyuan Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
50
|
Xia Y, Liu L, Xiong Y, Bai Q, Wang J, Xi W, Qu Y, Xu J, Guo J. Prognostic value of CC-chemokine receptor seven expression in patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitor. BMC Cancer 2017; 17:70. [PMID: 28114889 PMCID: PMC5259971 DOI: 10.1186/s12885-017-3065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 01/03/2023] Open
Abstract
Background CC-chemokine receptor seven (CCR7), a G-protein coupled receptor normally facilitating immune cells lymphatic homing, has recently been identified on several cancer cells in promoting invasion and lymphatic specific metastasis by mimicking normal leukocytes. As tyrosine kinase inhibitors for metastatic renal cell carcinoma (mRCC) mostly emphasized on vascular inhibition, whether the CCR7 expressing tumor cells with potential lymphatic invasion function could have an impact on mRCC patient’s drug response and survival, was unknown. Methods In this study, in a clinical aspect, we retrospectively investigated the prognostic and predictive impact of tumoral CCR7 expression in 110 mRCC patients treated with sunitinib and sorafenib, and its correlation with pre- or post-administration lymphatic involvement. Immunohistochemistry on tissue microarrays were conducted for CCR7 expression evaluation. Results Kaplan-Meier and univariate analyses suggested high tumoral CCR7 expression as an adverse prognosticator for mRCC patients’ overall survival (OS), which was further confirmed in the multivariate analyses (P = 0.002, P = 0.003 for bootstrap). This molecule could be combined with Heng’s risk model for better patient OS prediction. High tumoral CCR7 expression was also an independent dismal predictor for patients’ progression free survival (PFS) (P = 0.010, P = 0.013 for bootstrap), and correlated with poorer best drug response. Moreover, a possible correlation of CCR7 high expression and patients’ baseline and post-administration lymph node metastasis was found. Conclusions High tumoral CCR7 expression correlated with potential lymphatic involvement and poor prognosis of mRCC patients treated with tyrosine kinase inhibitors. Further external validations and basic researches were needed to confirm these results. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Mailbox 103, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|