1
|
He YC, Yuan GD, Li N, Ren MF, Qian-Zhang, Deng KN, Wang LC, Xiao WL, Ma N, Stamm C, Felthaus O, Prantl L, Nie J, Wang G. Recent advances in mesenchymal stem cell therapy for myocardial infarction. Clin Hemorheol Microcirc 2024; 87:383-398. [PMID: 38578884 DOI: 10.3233/ch-249101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Myocardial infarction refers to the ischemic necrosis of myocardium, characterized by a sharp reduction or interruption of blood flow in the coronary arteries due to the coronary artery occlusion, resulting in severe and prolonged ischemia in the corresponding myocardium and ultimately leading to ischemic necrosis of the myocardium. Given its high risk, it is considered as one of the most serious health threats today. In current clinical practice, multiple approaches have been explored to diminish myocardial oxygen consumption and alleviate symptoms, but notable success remains elusive. Accumulated clinical evidence has showed that the implantation of mesenchymal stem cell for treating myocardial infarction is both effective and safe. Nevertheless, there persists controversy and variability regarding the standardizing MSC transplantation protocols, optimizing dosage, and determining the most effective routes of administration. Addressing these remaining issues will pave the way of integration of MSCs as a feasible mainstream cardiac treatment.
Collapse
Affiliation(s)
- Yu-Chuan He
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guo-Dong Yuan
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Nan Li
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei, China
| | - Mei-Fang Ren
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qian-Zhang
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Kai-Ning Deng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Le-Chuan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wei-Ling Xiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Nan Ma
- Helmholtz-Zentrum Hereon, Institute of Active Polymers, Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jia Nie
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Gang Wang
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Amato I, Meurant S, Renard P. The Key Role of Mitochondria in Somatic Stem Cell Differentiation: From Mitochondrial Asymmetric Apportioning to Cell Fate. Int J Mol Sci 2023; 24:12181. [PMID: 37569553 PMCID: PMC10418455 DOI: 10.3390/ijms241512181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The study of the mechanisms underlying stem cell differentiation is under intensive research and includes the contribution of a metabolic switch from glycolytic to oxidative metabolism. While mitochondrial biogenesis has been previously demonstrated in number of differentiation models, it is only recently that the role of mitochondrial dynamics has started to be explored. The discovery of asymmetric distribution of mitochondria in stem cell progeny has strengthened the interest in the field. This review attempts to summarize the regulation of mitochondrial asymmetric apportioning by the mitochondrial fusion, fission, and mitophagy processes as well as emphasize how asymmetric mitochondrial apportioning in stem cells affects their metabolism, and thus epigenetics, and determines cell fate.
Collapse
Affiliation(s)
- Ilario Amato
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
| | - Sébastien Meurant
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
| | - Patricia Renard
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
- Mass Spectrometry Platform (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
3
|
Gnocchi D, Sabbà C, Mazzocca A. Lactic acid fermentation: A maladaptive mechanism and an evolutionary throwback boosting cancer drug resistance. Biochimie 2023; 208:180-185. [PMID: 36638953 DOI: 10.1016/j.biochi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
4
|
Yan W, Li L, Ge L, Zhang F, Fan Z, Hu L. The cannabinoid receptor I (CB1) enhanced the osteogenic differentiation of BMSCs by rescue impaired mitochondrial metabolism function under inflammatory condition. Stem Cell Res Ther 2022; 13:22. [PMID: 35063024 PMCID: PMC8781353 DOI: 10.1186/s13287-022-02702-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background Periodontitis is a chronic infectious disease leading to bone resorption and periodontal tissue disruption under inflammatory stimulation. The osteogenic differentiation ability of mesenchymal stem cells (MSCs) is impaired under the inflammatory environment, which limits the effect of treatment. The cannabinoid receptor I (CB1)
is the main effector of the endogenous cannabinoid system (ECS), and our previous study verified that CB1 could enhance the osteo/dentinogenic differentiation of dental MSCs, which might be a target for alveolar bone regeneration. However, the effect of CB1 on the osteogenic differentiation of MSCs derived from bone remains unknown. In present study, we investigated the role and mechanism of CB1 on mitochondrial function and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) under inflammatory environment. Methods Alkaline phosphatase (ALP) activity, alizarin red staining, quantitative calcium analysis, and osteogenic markers were used to detect the osteogenic differentiation ability of BMSCs. Real-time RT-PCR and Western blot were used to detect the gene expression. Seahorse Cell Mito Stress Test was used to detect the oxygen consumption rate (OCR). JC-10 assay was used to determine the mitochondrial membrane potential (MMP). Results CB1 increased osteogenic differentiation potential and mitochondrial energy metabolism, including the OCR, MMP, and enhanced the expressions of Nrf1 and Nrf2 in hBMSCs without or with TNF-α or INF-γ stimulation. Then, the inhibitor of mitochondrial electron transport chain (ETC), rotenone (ROT), inhibited the osteogenic differentiation in hBMSCs, and CB1 could rescue ROT impaired osteogenic differentiation potentials of hBMSCs without or with TNF-α or INF-γ stimulation. Activation of ETC by Coenzyme Q10 (CoQ10) could restore the impaired osteogenic differentiation of hBMSCs by depletion of CB1 without or with TNF-α or INF-γ stimulation. Mechanismly, CB1 could activate the JNK signaling pathway, p38 MAPK signaling pathway, and inhibit the Erk1/2 signaling pathway. Conclusions The activating of CB1 enhanced the osteogenic differentiation by rescuing the mitochondrial metabolism function in hBMSCs under the inflammatory environment, suggesting that CB1 is a potential target for enhancing bone regeneration under the inflammatory environment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02702-9.
Collapse
|
5
|
Morita A, Omoya Y, Ito R, Ishibashi Y, Hiramoto K, Ohnishi S, Yoshikawa N, Kawanishi S. Glycyrrhizin and its derivatives promote hepatic differentiation via sweet receptor, Wnt, and Notch signaling. Biochem Biophys Rep 2021; 28:101181. [PMID: 34934826 PMCID: PMC8654616 DOI: 10.1016/j.bbrep.2021.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The acute liver disease is involved in aberrant release of high-mobility group box 1 (HMGB1). Glycyrrhizin (GL), a traditional Chinese medicine for liver disease, binds to HMGB1, thereby inhibits tissue injury. However the mode of action of GL for chronic liver disease remains unclear. We investigated the effects of glycyrrhizin (GL) and its derivatives on liver differentiation using human iPS cells by using a flow cytometric analysis. GL promoted hepatic differentiation at the hepatoblast formation stage. The GL derivatives, 3-O-mono-glucuronyl 18β-glycyrrhetinic acid (Mono) and 3-O-[glucosyl (1 → 2)-glucuronyl] 18β-glycyrrhetinic acid increased AFP+ cell counts and albumin+ cell counts. Glucuronate conjugation seemed to be a requirement for hepatic differentiation. Mono exhibited the most significant hepatic differentiation effect. We evaluated the effects of (±)-2-(2,4-dichlorophenoxy) propionic acid (DP), a T1R3 antagonist, and sucralose, a T1R3 agonist, on hepatic differentiation, and found that DP suppressed Mono-induced hepatic differentiation, while sucralose promoted hepatic differentiation. Thus, GL promoted hepatic differentiation via T1R3 signaling. In addition, Mono increased β-catenin+ cell count and decreased Hes5+ cell count suggesting the involvement of Wnt and Notch signaling in GL-induced hepatic differentiation. In conclusion, GL exerted a hepatic differentiation effect via sweet receptor (T1R3), canonical Wnt, and Notch signaling.
Collapse
Key Words
- AFP, α-fetoprotein
- Api, 3-O-[apiosyl (1 → 2)-glucuronyl] βGA
- CBX, carbenoxolone, 3-O-hemisuccinyl βGA
- CK-19, cytokeratin 19
- DMSO, dimethyl sulfoxide
- DP, (±)-2-(2,4-dichlorophenoxy) propionic acid
- GL, glycyrrhizin
- Glc, 3-O-[glucosyl (1 → 2)-glucuronyl] βGA
- Glycyrrhizin
- HMGB1, high-mobility group box1
- HNF-4α, hepatocyte nuclear factor 4α
- Hepatic differentiation
- Hes, hairy and enhancer of split
- LSG, licorice saponin G
- LSH, licorice saponin H
- Liver regeneration
- Mono, 3-O-mono-glucuronyl βGA
- Sweet receptor
- T1R3
- αGA, 18α-glycyrrhetinic acid
- βGA, 18β-glycyrrhetinic acid
Collapse
Affiliation(s)
- Akihiro Morita
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuta Omoya
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Rie Ito
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuya Ishibashi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Shiho Ohnishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie, 515-0041, Japan
| | - Shosuke Kawanishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
6
|
Abstract
Mitochondria have been studied for decades from the standpoint of metabolism and ATP generation. However, in recent years mitochondrial dynamics and its influence on bioenergetics and cellular homeostasis is also being appreciated. Mitochondria undergo regular cycles of fusion and fission regulated by various cues including cellular energy requirements and pathophysiological stimuli, and the network of critical proteins and membrane lipids involved in mitochondrial dynamics is being revealed. Hepatocytes are highly metabolic cells which have abundant mitochondria suggesting a biologically relevant role for mitochondrial dynamics in hepatocyte injury and recovery. Here we review information on molecular mediators of mitochondrial dynamics and their alteration in drug-induced liver injury. Based on current information, it is evident that changes in mitochondrial fusion and fission are hallmarks of liver pathophysiology ranging from acetaminophen-induced or cholestatic liver injury to chronic liver diseases. These alterations in mitochondrial dynamics influence multiple related mitochondrial responses such as mitophagy and mitochondrial biogenesis, which are important adaptive responses facilitating liver recovery in several contexts, including drug-induced liver injury. The current focus on characterization of molecular mechanisms of mitochondrial dynamics is of immense relevance to liver pathophysiology and have the potential to provide significant insight into mechanisms of liver recovery and regeneration after injury.
Collapse
|
7
|
McKnight CL, Low YC, Elliott DA, Thorburn DR, Frazier AE. Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? Int J Mol Sci 2021; 22:7730. [PMID: 34299348 PMCID: PMC8306397 DOI: 10.3390/ijms22147730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases disrupt cellular energy production and are among the most complex group of inherited genetic disorders. Affecting approximately 1 in 5000 live births, they are both clinically and genetically heterogeneous, and can be highly tissue specific, but most often affect cell types with high energy demands in the brain, heart, and kidneys. There are currently no clinically validated treatment options available, despite several agents showing therapeutic promise. However, modelling these disorders is challenging as many non-human models of mitochondrial disease do not completely recapitulate human phenotypes for known disease genes. Additionally, access to disease-relevant cell or tissue types from patients is often limited. To overcome these difficulties, many groups have turned to human pluripotent stem cells (hPSCs) to model mitochondrial disease for both nuclear-DNA (nDNA) and mitochondrial-DNA (mtDNA) contexts. Leveraging the capacity of hPSCs to differentiate into clinically relevant cell types, these models permit both detailed investigation of cellular pathomechanisms and validation of promising treatment options. Here we catalogue hPSC models of mitochondrial disease that have been generated to date, summarise approaches and key outcomes of phenotypic profiling using these models, and discuss key criteria to guide future investigations using hPSC models of mitochondrial disease.
Collapse
Affiliation(s)
- Cameron L. McKnight
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yau Chung Low
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David A. Elliott
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
8
|
Yuan F, Wang N, Chen Y, Huang X, Yang Z, Xu Y, You K, Zhang J, Wang G, Zhuang Y, Pan T, Xiong Y, Yu X, Yang F, Li Y. Calcitriol promotes the maturation of hepatocyte-like cells derived from human pluripotent stem cells. J Steroid Biochem Mol Biol 2021; 211:105881. [PMID: 33766737 DOI: 10.1016/j.jsbmb.2021.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) represent a promising cell source for the assessment of hepatotoxicity and pharmaceutical safety testing. However, the hepatic functionality of HLCs remains significantly inferior to primary human hepatocytes. The bioactive vitamin D (VD), calcitriol, promotes the differentiation of many types of cells, and its deficiency is correlated to the severity of liver diseases. Whether calcitriol contributes to the differentiation of HLCs needs to be explored. Here, we found that the supplementation of calcitriol improved the functionalities of hPSCs-derived HLCs in P450 activities, urea production, and albumin secretion. Moreover, calcitriol also enhanced mitochondrial respiratory function with increased protein expression levels of the subunit of respiratory enzyme complexes in HLCs. Further analyses showed that the mitochondrial biogenesis regulators and mitophagy were increased by calcitriol, thus improving the mitochondrial quality. These improvements in functionality and mitochondrial condition were dependent on vitamin D receptor (VDR) because the improvements were abolished under VDR-deficient conditions. Our finding provides a cost-effective chemical process for HLC maturation to meet the demand for basic research and potential clinic applications.
Collapse
Affiliation(s)
- Fang Yuan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Ning Wang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Zhen Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Guodong Wang
- The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yue Xiong
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Xiaorui Yu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
9
|
Interplay between Metabolism Reprogramming and Epithelial-to-Mesenchymal Transition in Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13081973. [PMID: 33923958 PMCID: PMC8072988 DOI: 10.3390/cancers13081973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Tumor cells display important plasticity potential. Notably, tumor cells have the ability to change toward immature cells called cancer stem cells under the influence of the tumor environment. Importantly, cancer stem cells are a small subset of relatively quiescent cells that, unlike rapidly dividing differentiated tumor cells, escape standard chemotherapies, causing relapse or recurrence of cancer. Interestingly, these cells adopt a specific metabolism. Most often, they mainly rely on glucose uptake and metabolism to sustain their energy needs. This metabolic reprogramming is set off by environmental factors such as pro-inflammatory signals or catecholamine hormones (epinephrine, norepinephrine). A better understanding of this process could provide opportunities to kill cancer stem cells. Indeed, it would become possible to develop drugs that act specifically on metabolic pathways used by these cells. These new drugs could be used to strengthen the effects of current chemotherapies and overcome cancers with poor prognoses. Abstract Tumor cells display important plasticity potential, which contributes to intratumoral heterogeneity. Notably, tumor cells have the ability to retrodifferentiate toward immature states under the influence of their microenvironment. Importantly, this phenotypical conversion is paralleled by a metabolic rewiring, and according to the metabostemness theory, metabolic reprogramming represents the first step of epithelial-to-mesenchymal transition (EMT) and acquisition of stemness features. Most cancer stem cells (CSC) adopt a glycolytic phenotype even though cells retain functional mitochondria. Such adaptation is suggested to reduce the production of reactive oxygen species (ROS), protecting CSC from detrimental effects of ROS. CSC may also rely on glutaminolysis or fatty acid metabolism to sustain their energy needs. Besides pro-inflammatory cytokines that are well-known to initiate the retrodifferentiation process, the release of catecholamines in the microenvironment of the tumor can modulate both EMT and metabolic changes in cancer cells through the activation of EMT transcription factors (ZEB1, Snail, or Slug (SNAI2)). Importantly, the acquisition of stem cell properties favors the resistance to standard care chemotherapies. Hence, a better understanding of this process could pave the way for the development of therapies targeting CSC metabolism, providing new strategies to eradicate the whole tumor mass in cancers with unmet needs.
Collapse
|
10
|
Lu Y, Mao J, Han X, Zhang W, Li Y, Liu Y, Li Q. Downregulated hypoxia-inducible factor 1α improves myoblast differentiation under hypoxic condition in mouse genioglossus. Mol Cell Biochem 2021; 476:1351-1364. [PMID: 33389500 DOI: 10.1007/s11010-020-03995-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/01/2020] [Indexed: 10/22/2022]
Abstract
The treatment of obstructive sleep apnea-hypopnea syndrome targets the narrow anatomic structure of the upper airway (UA) and lacks an effective therapy for UA dilator muscle dysfunction. Long-term hypoxia can cause damage to UA dilator muscles and trigger a vicious cycle. We previously confirmed that hypoxia-inducible factor 1α (HIF-1α) upregulation mediates muscle fatigue in hypoxia condition, but the underlying mechanism remains to be determined. The present study investigated the intrinsic mechanisms and related pathways of HIF-1α that affect myoblast differentiation, with an aim to search for compounds that have protective effects in hypoxic condition. Differentiation of myoblasts was induced under hypoxia, and we found that hypoxia significantly inhibits the differentiation of myoblasts, damages the ultrastructure of mitochondria, and reduces the expression of myogenin, PGC-1β and pAMPKα1. HIF-1α has a negative regulation effect on AMPK. Downregulation of HIF-1α increases the expression of the abovementioned proteins, promotes the differentiation of myoblasts, and protects mitochondrial integrity. In addition, mitochondrial biogenesis occurs during myogenic differentiation. Inhibition of the AMPK pathway inhibits mitochondrial biogenesis, decreases the level of PGC-1β, and increases apoptosis. Resveratrol dimer can reverse the mitochondrial damage induced by AMPK pathway inhibition and decrease myoblast apoptosis. Our results provided a regulatory mechanism for hypoxic injury in genioglossus which may contribute to the pathogenesis and treatment of OSAHS.
Collapse
Affiliation(s)
- Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Jiaqi Mao
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
- Department of Endodontics, Stomatological Hospital, Hebei Medical University, 383 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Xinxin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Yuanyuan Li
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
- Department of Pediatric Dentistry, Shanghai Stomatological Hospital, Fudan University, 356 East Beijing Road, Shanghai, 200001, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China.
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China.
| | - Qiang Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China.
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China.
| |
Collapse
|
11
|
Yan W, Diao S, Fan Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem Cell Res Ther 2021; 12:140. [PMID: 33597020 PMCID: PMC7890860 DOI: 10.1186/s13287-021-02194-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that show self-renewal, multi-directional differentiation, and paracrine and immune regulation. As a result of these properties, the MSCs have great clinical application prospects, especially in the regeneration of injured tissues, functional reconstruction, and cell therapy. However, the transplanted MSCs are prone to ageing and apoptosis and have a difficult to control direction differentiation. Therefore, it is necessary to effectively regulate the functions of the MSCs to promote their desired effects. In recent years, it has been found that mitochondria, the main organelles responsible for energy metabolism and adenosine triphosphate production in cells, play a key role in regulating different functions of the MSCs through various mechanisms. Thus, mitochondria could act as effective targets for regulating and promoting the functions of the MSCs. In this review, we discuss the research status and current understanding of the role and mechanism of mitochondrial energy metabolism, morphology, transfer modes, and dynamics on MSC functions.
Collapse
Affiliation(s)
- Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Diao
- Department of Pediatric dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China. .,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Mtu1 defects are correlated with reduced osteogenic differentiation. Cell Death Dis 2021; 12:61. [PMID: 33431792 PMCID: PMC7801634 DOI: 10.1038/s41419-020-03345-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has revealed that mitochondria dynamics and function regulation is essential for the successful mesenchymal stem cell (MSC) differentiation. In the present study, the researchers reported for the first time that Mtu1 defects are correlated with reduced osteogenic differentiation. Using in vitro cultured bone marrow MSCs and stromal cell line MS5, we demonstrated that depressed Mtu1 expression was associated with reduced 2-thiouridine modification of the U34 of mitochondrial tRNAGln, tRNAGlu, and tRNALys, which led to respiratory deficiencies and reduced mitochondrial ATP production, and finally suppressed osteogenic differentiation. As expected, these Mtu1-deficient mice exhibited obvious osteopenia. Therefore, our findings in this study provide new insights into the pathophysiology of osteopenia.
Collapse
|
13
|
Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab 2020; 2:1190-1203. [PMID: 33046909 DOI: 10.1038/s42255-020-00285-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Cellular metabolism has emerged as a major biological node governing cellular behaviour. Metabolic pathways fuel cellular energy needs, providing basic chemical molecules to sustain cellular homeostasis, proliferation and function. Changes in nutrient consumption or availability therefore can result in complete reprogramming of cellular metabolism towards stabilizing core metabolite pools, such as ATP, S-adenosyl methionine, acetyl-CoA, NAD/NADP and α-ketoglutarate. Because these metabolites underlie a variety of essential metabolic reactions, metabolism has evolved to operate in separate subcellular compartments through diversification of metabolic enzyme complexes, oscillating metabolic activity and physical separation of metabolite pools. Given that these same core metabolites are also consumed by chromatin modifiers in the establishment of epigenetic signatures, metabolite consumption on and release from chromatin directly influence cellular metabolism and gene expression. In this Review, we highlight recent studies describing the mechanisms determining nuclear metabolism and governing the redistribution of metabolites between the nuclear and non-nuclear compartments.
Collapse
Affiliation(s)
- Ruben Boon
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Giorgia G Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
14
|
Sedlic F, Seiwerth F, Sepac A, Sikiric S, Cindric M, Milavic M, Batelja Vuletic L, Jakopovic M, Seiwerth S. Mitochondrial ROS Induce Partial Dedifferentiation of Human Mesothelioma via Upregulation of NANOG. Antioxidants (Basel) 2020; 9:antiox9070606. [PMID: 32664372 PMCID: PMC7402173 DOI: 10.3390/antiox9070606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
The expression of pluripotency factors is a key regulator of tumor differentiation status and cancer stem cells. The purpose of this study was to examine the expression of pluripotency factors and differentiation status of human mesothelioma and the role of mitochondria in their regulation. We tested the expression of OCT4/POU5F1, NANOG, SOX2, PI3K-AKT pathway and BCL2 genes and proteins in 65 samples of human mesothelioma and 19 samples of normal mesothelium. Mitochondrial membrane potential, reactive oxygen species (ROS) generation and expression of pluripotency factors were also tested in human mesothelioma cell line. Human mesothelium and mesothelioma expressed SOX2, NANOG, PI3K and AKT genes and proteins and POU5F1 gene, whereby NANOG, SOX2 and phosphorylated (activated) AKT were upregulated in mesothelioma. NANOG protein expression was elevated in less differentiated samples of human mesothelioma. The expression of genes of PI3K-AKT pathway correlated with pluripotency factor genes. Mesothelioma cells had functional, but depolarized mitochondria with large capacity to generate ROS. Mitochondrial ROS upregulated NANOG and mitoTEMPO abrogated it. In conclusion, human mesothelioma displays enhanced expression of NANOG, SOX2 and phosphorylated AKT proteins, while elevated NANOG expression correlates with poor differentiation of human mesothelioma. Mitochondria of mesothelioma cells have a large capacity to form ROS and thereby upregulate NANOG, leading to dedifferentiation of mesothelioma.
Collapse
Affiliation(s)
- Filip Sedlic
- Department of Pathophysiology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-236-7293
| | - Fran Seiwerth
- Department of Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (F.S.); (M.J.)
| | - Ana Sepac
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
| | - Marina Cindric
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| | - Marija Milavic
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| | - Marko Jakopovic
- Department of Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (F.S.); (M.J.)
- Department of Internal Medicine, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
15
|
Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77:2771-2794. [PMID: 31965214 PMCID: PMC7223321 DOI: 10.1007/s00018-020-03454-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and their role in treatment is critical to determine their potential for various therapeutic applications and for the development of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles of paracrine activities, direct cell-cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on the rapid development of MSC-based therapies.
Collapse
Affiliation(s)
- Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Yuelin Zhang
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Li S, Huang Q, Mao J, Li Q. TGFβ-dependent mitochondrial biogenesis is activated during definitive endoderm differentiation. In Vitro Cell Dev Biol Anim 2020; 56:378-385. [PMID: 32514718 DOI: 10.1007/s11626-020-00442-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/11/2020] [Indexed: 12/01/2022]
Abstract
Whether mitochondrial remodeling and metabolic reprogramming occur during the differentiation of human embryonic stem cells (hESCs) to definitive endoderm (DE) is unknown. We found that fragmented and punctate mitochondria in undifferentiated hESCs progressively fused into an extensive and branched network upon DE differentiation. Mitochondrial mass and mitochondrial DNA (mtDNA) content were significantly increased with the upregulated expression of mitochondrial biogenesis regulator PGC1-A upon DE differentiation, accompanied by the rise of the amount of ATP (2.5-fold) and its by-product reactive oxygen species (2.0-fold). We observed that in contrast to a shutoff of glycolysis, expressions of oxidative phosphorylation (OXPHOS) genes were increased, indicating that a transition from glycolysis to OXPHOS was tightly coupled to DE differentiation. In the meantime, we discovered that inhibition of TGF-β signaling led to impaired mitochondrial biogenesis and disturbed metabolic switch upon DE differentiation. Our work, for the first time, reports that TGF-β signaling-dependent mitochondrial biogenesis and metabolic reprogramming occur during early endodermal differentiation.
Collapse
Affiliation(s)
- Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.,South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Qingsong Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianwen Mao
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China. .,South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China. .,School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,School of Stomatology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Zhang F, Pirooznia M, Xu H. Mitochondria regulate intestinal stem cell proliferation and epithelial homeostasis through FOXO. Mol Biol Cell 2020; 31:1538-1549. [PMID: 32374658 PMCID: PMC7359575 DOI: 10.1091/mbc.e19-10-0560] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A metabolic transition from glycolysis to oxidative phosphorylation is often associated with differentiation of many types of stem cells. However, the link between mitochondrial respiration and stem cells' behavior is not fully understood. We genetically disrupted electron transport chain (ETC) complexes in the intestinal stem cells (ISCs) of Drosophila. We found that ISCs carrying impaired ETC proliferated much more slowly than normal and produced very few enteroblasts, which failed to further differentiate into enterocytes. One of the main impediments to ISC proliferation and lineage specification appeared to be abnormally elevated forkhead box O (FOXO) signaling in the ETC-deficient ISCs, as genetically suppressing the signaling pathway partially restored the number of enterocytes. Contrary to common belief, reactive oxygen species (ROS) accumulation did not appear to mediate the ETC mutant phenotype. Our results demonstrate that mitochondrial respiration is essential for Drosophila ISC proliferation and lineage specification in vivo and acts at least partially by repressing endogenous FOXO signaling.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Cardiac regeneration as an environmental adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118623. [DOI: 10.1016/j.bbamcr.2019.118623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
19
|
Boon R, Kumar M, Tricot T, Elia I, Ordovas L, Jacobs F, One J, De Smedt J, Eelen G, Bird M, Roelandt P, Doglioni G, Vriens K, Rossi M, Vazquez MA, Vanwelden T, Chesnais F, El Taghdouini A, Najimi M, Sokal E, Cassiman D, Snoeys J, Monshouwer M, Hu WS, Lange C, Carmeliet P, Fendt SM, Verfaillie CM. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat Commun 2020; 11:1393. [PMID: 32170132 PMCID: PMC7069944 DOI: 10.1038/s41467-020-15058-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.
Collapse
Affiliation(s)
- Ruben Boon
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tine Tricot
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Ordovas
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research, IIS Aragón University of Zaragoza, Aragon I + D Foundation (ARAID), Zaragoza, Spain
| | - Frank Jacobs
- Janssen Research and Development, Beerse, Belgium
| | - Jennifer One
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan De Smedt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Matthew Bird
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Philip Roelandt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Translational Research in GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim Vriens
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Marta Aguirre Vazquez
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Thomas Vanwelden
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - François Chesnais
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Adil El Taghdouini
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - David Cassiman
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jan Snoeys
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mario Monshouwer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Lee AR, Moon DK, Siregar A, Moon SY, Jeon RH, Son YB, Kim BG, Hah YS, Hwang SC, Byun JH, Woo DK. Involvement of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stem cells into adipocytes, chondrocytes and osteocytes. Arch Pharm Res 2019; 42:1052-1062. [PMID: 31802425 DOI: 10.1007/s12272-019-01198-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Due to a rapidly expanding aging population, the incidence of age-related or degenerative diseases has increased, and efforts to handle the issue with regenerative medicine via adult stem cells have become more important. And it is now clear that the mitochondrial energy metabolism is important for stem cell differentiation. When stem cells commit to differentiate, glycolytic metabolism is being shifted to mitochondrial oxidative phosphorylation (OXPHOS) to meet an increased cellular energy demand required for differentiated cells. However, the nature of cellular metabolisms during the differentiation process of periosteum-derived mesenchymal stem cells (POMSC) is still unclear. In the present study, we investigated mitochondrial biogenesis during the adipogenic, chondrogenic, and osteogenic differentiation of POMSCs. Both mitochondrial DNA (mtDNA) contents and mitochondrial proteins (VDAC and mitochondrial OXPHOS complex subunits) were increased during all of these mesenchymal lineage differentiations of POMSCs. Interestingly, glycolytic metabolism is reduced as POMSCs undergo osteogenic differentiation. Furthermore, reducing mtDNA contents by ethidium bromide treatments prevents osteogenic differentiation of POMSCs. In conclusion, these results indicate that mitochondrial biogenesis and OXPHOS metabolism play important roles in the differentiation of POMCS and suggest that pharmaceutical modulation of mitochondrial biogenesis and/or function can be a novel regulation for POMSC differentiation and regenerative medicine.
Collapse
Affiliation(s)
- A Ram Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong Kyu Moon
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju, Republic of Korea
| | - Adrian Siregar
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun Young Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ryoung-Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Gyu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Sool Hah
- Clinical Research Institute of Gyeongsang, National University Hospital, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju, Republic of Korea.
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
21
|
Storder J, Renard P, Arnould T. Update on the role of Sirtuin 3 in cell differentiation: A major metabolic target that can be pharmacologically controlled. Biochem Pharmacol 2019; 169:113621. [PMID: 31472127 DOI: 10.1016/j.bcp.2019.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Cell differentiation is a fundamental biological event in which a precursor stem cell is turning into a specialized somatic cell. It is thus crucial for the development, tissue turnover and regeneration in mammals. Among the numerous changes taking place in a cell during a differentiation programme, the biology of mitochondria, the central organelle mainly responsible for energy homeostasis and stress adaptation, is deeply modified. These modifications are now well recognized as taking an active part to the completion of the differentiation programme. Indeed, mitochondrial biogenesis and metabolic shift are observed during cell differentiation, adapting many syntheses, calcium homeostasis, ATP and reactive oxygen species production, to the needs. These mitochondrial functions are substantially regulated by the post-translational modifications of the mitochondrial proteins among which lysine acetylation is essential. This mitoacetylome is then globally controlled by the balance between spontaneous/enzymatically-catalysed protein acetylation and the NAD+-dependent deacetylation mediated by Sirtuin 3. This enzyme is now considered as a major regulator of the function of the organelle. Regarding the requirement of these mitochondrial adaptations, the subsequent growing interest for this enzyme recently extended to the investigation of the mechanisms driving cell differentiation. This review summarizes the currently available information about the significance of SIRT3 in cell differentiation in physio-pathological contexts. We also suggest a control of the differentiation-activated autophagy by SIRT3, a hypothesis supported by recent findings establishing a causal link between SIRT3 and autophagy. Eventually, an update on the present pharmacological modulators of SIRT3 in a context of cell differentiation is discussed.
Collapse
Affiliation(s)
- Julie Storder
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
22
|
Ma Y, Ma M, Sun J, Li W, Li Y, Guo X, Zhang H. CHIR-99021 regulates mitochondrial remodelling via β-catenin signalling and miRNA expression during endodermal differentiation. J Cell Sci 2019; 132:jcs.229948. [PMID: 31289194 DOI: 10.1242/jcs.229948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial remodelling is a central feature of stem cell differentiation. However, little is known about the regulatory mechanisms during these processes. Previously, we found that a pharmacological inhibitor of glycogen synthase kinase-3α and -3β, CHIR-99021, initiates human adipose stem cell differentiation into human definitive endodermal progenitor cells (hEPCs), which were directed to differentiate synchronously into hepatocyte-like cells after further treatment with combinations of soluble factors. In this study, we show that CHIR-99021 promotes mitochondrial biogenesis, the expression of PGC-1α (also known as PPARGC1A), TFAM and NRF1 (also known as NFE2L1), oxidative phosphorylation capacities, and the production of reactive oxygen species in hEPCs. Blocking mitochondrial dynamics using siRNA targeting DRP1 (also known as DNM1L) impaired definitive endodermal differentiation. Downregulation of β-catenin (CTNNB1) expression weakened the effect of CHIR-99021 on the induction of mitochondrial remodelling and the expression of transcription factors for mitochondrial biogenesis. Moreover, CHIR-99021 decreased the expression of miR-19b-2-5p, miR-23a-3p, miR-23c, miR-130a-3p and miR-130a-5p in hEPCs, which target transcription factors for mitochondrial biogenesis. These data demonstrate that CHIR-99021 plays a role in mitochondrial structure and function remodelling via activation of the β-catenin signalling pathway and inhibits the expression of miRNAs during definitive endodermal differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuejiao Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Minghui Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Jie Sun
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Weihong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yaqiong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Xinyue Guo
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| |
Collapse
|
23
|
Chang CW, Lo JF, Wang XW. Roles of mitochondria in liver cancer stem cells. Differentiation 2019; 107:35-41. [PMID: 31176254 DOI: 10.1016/j.diff.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Primary liver cancer (PLC) is heterogeneous and it is an aggressive malignancy with a poor prognostic outcome. Current evidence suggests that PLC tumorigenesis is driven by rare subpopulations of cancer stem cells (CSCs), which contribute to tumor initiation, progression, and therapy resistance through particular molecular mechanisms. Energy metabolism and mitochondrial function play an important role in the regulation of cancer stemness and stem cell specifications. Since the role of mitochondrial function as central hubs in cell growth and survival, studies on the critical physiological mechanisms of the liver underlying their therapy-resistant phenotype is important. In this review, we focus on liver CSC-related mitochondrial metabolism that contributes to the liver CSC features, in terms of enhanced drug-resistance and increased tumorigenicity, and to discuss their roles on potential therapies windows for PLC therapies.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
24
|
Murray LMA, Krasnodembskaya AD. Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells 2018; 37:14-25. [PMID: 30353966 DOI: 10.1002/stem.2922] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022]
Abstract
The therapeutic potential of stem cell-based therapies may be largely dependent on the ability of stem cells to modulate host cells rather than on their differentiation into host tissues. Within the last decade, there has been considerable interest in the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells. Numerous studies have shown that mitochondria and lysosomes are transported between cells by various mechanisms, such as tunneling nanotubes, microvesicles, and cellular fusion. This review will focus on the known instances of organelle transfer between stem cells and differentiated cells, what effects it has on recipient cells and how organelle transfer is regulated. Stem Cells 2019;37:14-25.
Collapse
Affiliation(s)
- Lisa M A Murray
- Centre for Experimental Medicine, School of Medicine Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Centre for Experimental Medicine, School of Medicine Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Stamp C, Zupanic A, Sachdeva A, Stoll EA, Shanley DP, Mathers JC, Kirkwood TBL, Heer R, Simons BD, Turnbull DM, Greaves LC. Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts. EBioMedicine 2018; 31:166-173. [PMID: 29748033 PMCID: PMC6013780 DOI: 10.1016/j.ebiom.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Craig Stamp
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf, Switzerland
| | - Ashwin Sachdeva
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daryl P Shanley
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - John C Mathers
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas B L Kirkwood
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council SC Institute, Cambridge CB2 1QR, UK
| | - Doug M Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura C Greaves
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
26
|
Adam AAA, van der Mark VA, Donkers JM, Wildenberg ME, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. A practice-changing culture method relying on shaking substantially increases mitochondrial energy metabolism and functionality of human liver cell lines. PLoS One 2018; 13:e0193664. [PMID: 29672606 PMCID: PMC5908182 DOI: 10.1371/journal.pone.0193664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Practice-changing culturing techniques of hepatocytes are highly required to increase their differentiation. Previously, we found that human liver cell lines HepaRG and C3A acquire higher functionality and increased mitochondrial biogenesis when cultured in the AMC-Bioartificial liver (BAL). Dynamic medium flow (DMF) is one of the major contributors to this stimulatory effect. Recently, we found that DMF-culturing by shaking of HepaRG monolayers resulted in higher mitochondrial biogenesis. Here we further investigated the effect of DMF-culturing on energy metabolism and hepatic functionality of HepaRG and C3A monolayers. HepaRG and C3A DMF-monolayers were incubated with orbital shaking at 60 rpm during the differentiation phase, while control monolayers were maintained statically. Subsequently, energy metabolism and hepatic functionality were compared between static and DMF-cultures. DMF-culturing of HepaRG cells substantially increased hepatic differentiation; transcript levels of hepatic structural genes and hepatic transcription regulators were increased up to 15-fold (Cytochrome P450 3A4) and nuclear translocation of hepatic transcription factor CEBPα was stimulated. Accordingly, hepatic functions were positively affected, including ammonia elimination, urea production, bile acid production, and CYP3A4 activity. DMF-culturing shifted energy metabolism from aerobic glycolysis towards oxidative phosphorylation, as indicated by a decline in lactate production and glucose consumption, and an increase in oxygen consumption. Similarly, DMF-culturing increased mitochondrial energy metabolism and hepatic functionality of C3A cells. In conclusion, simple shaking of monolayer cultures substantially improves mitochondrial energy metabolism and hepatic differentiation of human liver cell lines. This practice-changing culture method may prove to prolong the in-vitro maintenance of primary hepatocytes and increase hepatic differentiation of stem cells.
Collapse
Affiliation(s)
- Aziza A. A. Adam
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent A. van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Department Of Gastroenterology and Hepatology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P. J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Robert A. F. M. Chamuleau
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci 2018; 25:31. [PMID: 29602309 PMCID: PMC5877369 DOI: 10.1186/s12929-018-0429-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
The past decade has witnessed an upsurge in studies demonstrating mitochondrial transfer as one of the emerging mechanisms through which mesenchymal stem cells (MSCs) can regenerate and repair damaged cells or tissues. It has been found to play a critical role in healing several diseases related to brain injury, cardiac myopathies, muscle sepsis, lung disorders and acute respiratory disorders. Several studies have shown that various mechanisms are involved in mitochondrial transfer that includes tunnel tube formation, micro vesicle formation, gap junctions, cell fusion and others modes of transfer. Few studies have investigated the mechanisms that contribute to mitochondrial transfer, primarily comprising of signaling pathways involved in tunnel tube formation that facilitates tunnel tube formation for movement of mitochondria from one cell to another. Various stress signals such as release of damaged mitochondria, mtDNA and mitochondrial products along with elevated reactive oxygen species levels trigger the transfer of mitochondria from MSCs to recipient cells. However, extensive cell signaling pathways that lead to mitochondrial transfer from healthy cells are still under investigation and the changes that contribute to restoration of mitochondrial bioenergetics in recipient cells remain largely elusive. In this review, we have discussed the phenomenon of mitochondrial transfer from MSCs to neighboring stressed cells, and how this aids in cellular repair and regeneration of different organs such as lung, heart, eye, brain and kidney. The potential scope of mitochondrial transfer in providing novel therapeutic strategies for treatment of various pathophysiological conditions has also been discussed.
Collapse
Affiliation(s)
- Swati Paliwal
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rituparna Chaudhuri
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
28
|
Wanet A, Caruso M, Domelevo Entfellner JB, Najar M, Fattaccioli A, Demazy C, Evraerts J, El-Kehdy H, Pourcher G, Sokal E, Arnould T, Tiffin N, Najimi M, Renard P. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells 2017; 35:2184-2197. [DOI: 10.1002/stem.2688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Anaïs Wanet
- Laboratory of Biochemistry and Cell Biology (URBC); NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur); Namur Belgium
| | - Marino Caruso
- Laboratory of Biochemistry and Cell Biology (URBC); NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur); Namur Belgium
| | - Jean-Baka Domelevo Entfellner
- South African National Bioinformatics Institute (SANBI)/Medical Research Council of South Africa Bioinformatics Unit, University of the Western Cape; Bellville South Africa
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy; Institut Jules Bordet, Université Libre de Bruxelles (ULB); Brussels Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC); NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur); Namur Belgium
| | - Catherine Demazy
- Laboratory of Biochemistry and Cell Biology (URBC); NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur); Namur Belgium
| | - Jonathan Evraerts
- Laboratory of Pediatric Hepatology and Cell Therapy; Université Catholique de Louvain, Institut de Recherche Clinique et Expérimentale (IREC); Brussels Belgium
| | - Hoda El-Kehdy
- Laboratory of Pediatric Hepatology and Cell Therapy; Université Catholique de Louvain, Institut de Recherche Clinique et Expérimentale (IREC); Brussels Belgium
| | - Guillaume Pourcher
- Department of Digestive Diseases; Institut Mutualiste Montsouris, Paris Descartes University; Paris France
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy; Université Catholique de Louvain, Institut de Recherche Clinique et Expérimentale (IREC); Brussels Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC); NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur); Namur Belgium
| | - Nicki Tiffin
- South African National Bioinformatics Institute (SANBI)/Medical Research Council of South Africa Bioinformatics Unit, University of the Western Cape; Bellville South Africa
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy; Université Catholique de Louvain, Institut de Recherche Clinique et Expérimentale (IREC); Brussels Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC); NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur); Namur Belgium
| |
Collapse
|
29
|
Adam AAA, van Wenum M, van der Mark VA, Jongejan A, Moerland PD, Houtkooper RH, Wanders RJA, Oude Elferink RP, Chamuleau RAFM, Hoekstra R. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration. Mitochondrion 2017; 39:30-42. [PMID: 28844938 DOI: 10.1016/j.mito.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Human liver cell lines, like HepaRG and C3A, acquire higher functionality when cultured in the AMC-Bio-Artificial Liver (AMC-BAL). The three main differences between BAL and monolayer culture are the oxygenation (40% vs 20%O2), dynamic vs absent medium perfusion and 3D vs 2D configuration. Here, we investigated the background of the differences between BAL-cultures and monolayers. METHODS We performed whole-genome microarray analysis on HepaRG monolayer and BAL-cultures. Next, mitochondrial biogenesis was studied in monolayer and BAL-cultures of HepaRG and C3A. The driving forces for mitochondrial biogenesis by BAL-culturing were investigated in representative culture models differing in oxygenation level, medium flow or 2D vs 3D configuration. RESULTS Gene-sets related to mitochondrial energy metabolism were most prominently up-regulated in HepaRG-BAL vs monolayer cultures. This was confirmed by a 2.4-fold higher mitochondrial abundance with increased expression of mitochondrial OxPhos complexes. Moreover, the transcript levels of mitochondria-encoded genes were up to 3.6-fold induced and mitochondrial membrane potential activity was 8.3-fold increased in BAL vs monolayers. Culturing with 40% O2, dynamic medium flow and/or in 3D increased the mitochondrial abundance and expression of mitochondrial complexes vs standard monolayer culturing. The stimulatory effect of the BAL culture on mitochondrial biogenesis was confirmed in C3A cells in which mitochondrial abundance increased 2.2-fold with induction of mitochondria-encoded genes. CONCLUSIONS AND GENERAL SIGNIFICANCE The increased functionality of liver cell lines upon AMC-BAL culturing is associated with increased mitochondrial biogenesis. High oxygenation, medium perfusion and 3D configuration contribute to the up-regulation of the mitochondrial biogenesis.
Collapse
Affiliation(s)
- Aziza A A Adam
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Martien van Wenum
- Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands; Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic and Metabolic Diseases, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic and Metabolic Diseases, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ronald P Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Robert A F M Chamuleau
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands; Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Baldini N, De Milito A, Feron O, Gillies RJ, Michiels C, Otto AM, Pastoreková S, Pedersen SF, Porporato PE, Sonveaux P, Supuran CT, Avnet S. Annual Meeting of the International Society of Cancer Metabolism (ISCaM): Metabolic Networks in Cancer. Front Pharmacol 2017; 8:411. [PMID: 28725193 PMCID: PMC5496414 DOI: 10.3389/fphar.2017.00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
Cancers are metabolic entities wherein cancer cells adapt their metabolism to their oncogenic agenda and microenvironmental influences. Metabolically different cancer cell subpopulations collaborate to optimize nutrient delivery with respect to immediate bioenergetic and biosynthetic needs. They can also metabolically exploit host cells. These metabolic networks are directly linked with cancer progression, treatment resistance and relapse. Conversely, metabolic alterations in cancer are exploited for anticancer therapy, imaging and personalized medicine. These topics were addressed at the 3rd annual meeting of the International Society of Cancer Metabolism (ISCaM) in Brussels, Belgium, on 26–29 October 2016.
Collapse
Affiliation(s)
- Nicola Baldini
- Rizzoli Orthopaedic InstituteBologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy
| | - Angelo De Milito
- Department of Oncology-Pathology, Karolinska InstituteStockholm, Sweden
| | - Olivier Feron
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de LouvainBrussels, Belgium
| | - Robert J Gillies
- H. Lee Moffitt Cancer Center and Research Institute, TampaFL, United States
| | - Carine Michiels
- Namur Research Institute for Life Sciences (NARILIS), University of NamurNamur, Belgium
| | - Angela M Otto
- Munich School of Bioengineering, Technical University of MunichMunich, Germany
| | - Silvia Pastoreková
- Biomedical Research Center of the Slovak Academy of SciencesBratislava, Slovakia
| | - Stine F Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of CopenhagenCopenhagen, Denmark
| | - Paolo E Porporato
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de LouvainBrussels, Belgium.,Department of Molecular Biotechnology, Molecular Biotechnology Center, University of TorinoTurin, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de LouvainBrussels, Belgium
| | | | | |
Collapse
|
31
|
Coskun E, Ercin M, Gezginci‐Oktayoglu S. The Role of Epigenetic Regulation and Pluripotency‐Related MicroRNAs in Differentiation of Pancreatic Stem Cells to Beta Cells. J Cell Biochem 2017; 119:455-467. [DOI: 10.1002/jcb.26203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Ediz Coskun
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| | - Merve Ercin
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| | - Selda Gezginci‐Oktayoglu
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| |
Collapse
|
32
|
Abstract
Cells differentiate into specific and functional lineages to build up tissues. It has been shown in several tissues that mitochondrial morphology, levels of "mitochondria-shaping" proteins, and mitochondrial functions change upon differentiation. In this review, we highlight the significance of mitochondrial dynamics and functions in tissue development, cell differentiation, and reprogramming processes. Signalling cascades are critical for tissue stem cell maintenance and cell fate determination, and growing evidence demonstrates mitochondria could act as a centre of intra and extracellular signals to coordinate signalling pathways, such as Notch, Wnt, and YAP/TAZ signalling. Just an organelle, however, emerges as a master regulator of cell differentiation, and can be a target to manipulate cell fates.
Collapse
Affiliation(s)
| | - Atsuko Kasahara
- Institute for Frontier Science Initiative, Cancer Research Institute, Kanazawa University, 920-1192 Kanazawa, Japan.
| |
Collapse
|
33
|
Li Q, Gao Z, Chen Y, Guan MX. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 2017; 8:439-445. [PMID: 28271444 PMCID: PMC5445026 DOI: 10.1007/s13238-017-0385-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are progenitors of connective tissues, which have emerged as important tools for tissue engineering due to their differentiation potential along various cell types. In recent years, accumulating evidence has suggested that the regulation of mitochondria dynamics and function is essential for successful differentiation of MSCs. In this paper, we review and provide an integrated view on the role of mitochondria in MSC differentiation. The mitochondria are maintained at a relatively low activity level in MSCs, and upon induction, mtDNA copy number, protein levels of respiratory enzymes, the oxygen consumption rate, mRNA levels of mitochondrial biogenesis-associated genes, and intracellular ATP content are increased. The regulated level of mitochondrial ROS is found not only to influence differentiation but also to contribute to the direction determination of differentiation. Understanding the roles of mitochondrial dynamics during MSC differentiation will facilitate the optimization of differentiation protocols by adjusting biochemical properties, such as energy production or the redox status of stem cells, and ultimately, benefit the development of new pharmacologic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Qianqian Li
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zewen Gao
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ye Chen
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
34
|
Huang T, Liu R, Fu X, Yao D, Yang M, Liu Q, Lu WW, Wu C, Guan M. Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells 2017; 35:411-424. [PMID: 27501743 DOI: 10.1002/stem.2470] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022]
Abstract
Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424.
Collapse
Affiliation(s)
- Tongling Huang
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Renzhong Liu
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xuekun Fu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dongsheng Yao
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, Guangdong, China
| | - Meng Yang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qingli Liu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - William W Lu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Chuanyue Wu
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, China
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
35
|
Iacovelli J, Rowe GC, Khadka A, Diaz-Aguilar D, Spencer C, Arany Z, Saint-Geniez M. PGC-1α Induces Human RPE Oxidative Metabolism and Antioxidant Capacity. Invest Ophthalmol Vis Sci 2016; 57:1038-51. [PMID: 26962700 PMCID: PMC4788093 DOI: 10.1167/iovs.15-17758] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Oxidative stress and metabolic dysregulation of the RPE have been implicated in AMD; however, the molecular regulation of RPE metabolism remains unclear. The transcriptional coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a powerful mediator of mitochondrial function. This study examines the ability of PGC-1α to regulate RPE metabolic program and oxidative stress response. Methods Primary human fetal RPE (hfRPE) and ARPE-19 were matured in vitro using standard culture conditions. Mitochondrial mass of RPE was measured using MitoTracker staining and citrate synthase activity. Expression of PGC-1 isoforms, RPE-specific genes, oxidative metabolism proteins, and antioxidant enzymes was analyzed by quantitative PCR and Western blot. Mitochondrial respiration and fatty-acid oxidation were monitored using the Seahorse extracellular flux analyzer. Expression of PGC-1α was increased using adenoviral delivery. ARPE-19 were exposed to hydrogen peroxide to induce oxidative stress. Reactive oxygen species were measured by CM-H2DCFDA fluorescence. Cell death was analyzed by LDH release. Results Maturation of ARPE-19 and hfRPE was associated with significant increase in mitochondrial mass, expression of oxidative phosphorylation (OXPHOS) genes, and PGC-1α gene expression. Overexpression of PGC-1α increased expression of OXPHOS and fatty-acid β-oxidation genes, ultimately leading to the potent induction of mitochondrial respiration and fatty-acid oxidation. PGC-1α gain of function also strongly induced numerous antioxidant genes and, importantly, protected RPE from oxidant-mediated cell death without altering RPE functions. Conclusions This study provides important insights into the metabolic changes associated with RPE functional maturation and identifies PGC-1α as a potent driver of RPE mitochondrial function and antioxidant capacity.
Collapse
Affiliation(s)
- Jared Iacovelli
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Glenn C Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arogya Khadka
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Daniel Diaz-Aguilar
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Carrie Spencer
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Magali Saint-Geniez
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
36
|
Hu C, Cao H, Pan X, Li J, He J, Pan Q, Xin J, Yu X, Li J, Wang Y, Zhu D, Li L. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology. Cell Death Dis 2016; 7:e2141. [PMID: 26986509 PMCID: PMC4823931 DOI: 10.1038/cddis.2016.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.
Collapse
Affiliation(s)
- C Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - H Cao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - X Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J He
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Q Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Xin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - X Yu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Y Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - D Zhu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - L Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Derivation and differentiation of haploid human embryonic stem cells. Nature 2016; 532:107-11. [PMID: 26982723 DOI: 10.1038/nature17408] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.
Collapse
|
38
|
Vannuvel K, Van Steenbrugge M, Demazy C, Ninane N, Fattaccioli A, Fransolet M, Renard P, Raes M, Arnould T. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population. J Cell Physiol 2016; 231:1913-31. [PMID: 26680008 DOI: 10.1002/jcp.25292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Van Steenbrugge
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Catherine Demazy
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Noëlle Ninane
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
39
|
Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:1387-400. [PMID: 26050974 PMCID: PMC10481969 DOI: 10.1016/j.bbabio.2015.05.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
The aging process is accompanied by the onset of disease and a general decline in wellness. Insights into the aging process have revealed a number of cellular hallmarks of aging, among these epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, and stem cell exhaustion. Mitochondrial dysfunction increasingly appears to be a common factor connecting several of these hallmarks, driving the aging process and afflicting tissues throughout the body. Recent research has uncovered a much more complex involvement of mitochondria in the cell than has previously been appreciated and revealed novel ways in which mitochondrial defects feed into disease pathology. In this review we evaluate ways in which problems in mitochondria contribute to disease beyond the well-known mechanisms of oxidative stress and bioenergetic deficits, and we predict the direction that mitochondrial disease research will take in years to come.
Collapse
Affiliation(s)
- Rebecca K Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Tyler Hilsabeck
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; The University of Texas, San Antonio, TX 78249, USA
| | - Shane L Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
40
|
Lee WTY, St John J. The control of mitochondrial DNA replication during development and tumorigenesis. Ann N Y Acad Sci 2015; 1350:95-106. [PMID: 26335356 DOI: 10.1111/nyas.12873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) copy number is strictly regulated during development and tumorigenesis. Pluripotent stem cells and cancer stem-like cells use glycolysis for energy metabolism, as they possess low mtDNA copy number, which promotes cell proliferation. As pluripotent stem cells can differentiate into all cell types of the body, they establish the mtDNA set point during early development, maintaining mtDNA copy number at low levels but enabling differentiating cells to acquire the appropriate numbers of mtDNA copy to meet their specific demands for OXPHOS-derived ATP, as they become specialized cells. This process is mediated by changes to DNA methylation at exon 2 of the catalytic subunit of the mitochondrial-specific polymerase, POLGA. Cancer stem-like cells, however, are hypermethylated and maintain low mtDNA copy number, resulting in their dependence on aerobic glycolysis. Their hypermethylation at exon 2 of POLGA also promotes their multipotent state. As a result, cancer cells are unable to increase their mtDNA content and differentiate into specific lineages unless they are treated with DNA demethylation agents or partially depleted of their mtDNA. This review describes these processes in depth and argues that DNA methylation of POLGA is instrumental in the fate of pluripotent stem cells and cancer cells.
Collapse
Affiliation(s)
- William T Y Lee
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Victoria, Australia
| | - Justin St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Victoria, Australia
| |
Collapse
|
41
|
Wanet A, Arnould T, Najimi M, Renard P. Connecting Mitochondria, Metabolism, and Stem Cell Fate. Stem Cells Dev 2015; 24:1957-71. [PMID: 26134242 PMCID: PMC4543487 DOI: 10.1089/scd.2015.0117] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases.
Collapse
Affiliation(s)
- Anaïs Wanet
- 1 Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur) , Namur, Belgium
| | - Thierry Arnould
- 1 Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur) , Namur, Belgium
| | - Mustapha Najimi
- 2 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC), Université Catholique de Louvain , Brussels, Belgium
| | - Patricia Renard
- 1 Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur) , Namur, Belgium
| |
Collapse
|
42
|
Lambertini E, Penolazzi L, Morganti C, Lisignoli G, Zini N, Angelozzi M, Bonora M, Ferroni L, Pinton P, Zavan B, Piva R. Osteogenic differentiation of human MSCs: Specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. Int J Biochem Cell Biol 2015; 64:212-9. [DOI: 10.1016/j.biocel.2015.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
43
|
|
44
|
Fillmore N, Huqi A, Jaswal JS, Mori J, Paulin R, Haromy A, Onay-Besikci A, Ionescu L, Thébaud B, Michelakis E, Lopaschuk GD. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS One 2015; 10:e0120257. [PMID: 25768019 PMCID: PMC4358990 DOI: 10.1371/journal.pone.0120257] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 01/07/2023] Open
Abstract
Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.
Collapse
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alda Huqi
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jagdip S. Jaswal
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Mori
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Roxane Paulin
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alois Haromy
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Arzu Onay-Besikci
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lavinia Ionescu
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thébaud
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Evangelos Michelakis
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D. Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|