1
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
A Perylenediimide-Based Zinc-Coordination Polymer for Photosensitized Singlet-Oxygen Generation. ENERGIES 2022. [DOI: 10.3390/en15072437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the face of anthropogenic global warming the design and synthesis of materials, which enable energy transfer processes using sunlight as an energy source, are of high interest. Perylenediimides are a highly absorbing class of chromophores suitable for sunlight absorption and conversion. Therefore, metal–organic frameworks (MOFs) and coordination polymers (CPs) with incorporated organic perylene chromophores are highly interesting materials both for applied, but also fundamental, photophysical research. MOFs/CPs have the advantage of a modular adjustability of interchromophoric distances and angles, and the choice of metal nodes can be used to further tune the material towards the desired photophysical properties. In the present paper, we present a study using a reported organic perylenediimide (PDI) chromophore (H2tpdb) as a linker to be incorporated into coordination polymer and test towards applicability within the photochemical 1O2 generation. In detail, a novel zinc 2D -coordination polymer Zn(tpdb)(DMF)3 is reported, which is synthesized using a solvothermal synthesis with Zn(NO3)2 and a ditopic organic perylene linker. Both the linker and Zn-CP are fully characterized, including SC-XRD, showing a strong aggregation of tightly packed chromophores in the solid state. The photophysical properties are examined and discussed, including the observed shifts within the absorption spectra of the CP are compared to the linker in solution. These shifts are mainly attributed to the for PDIs known H-type aggregation and an additional charge transfer in the framework structure, causing a limited quantum yield of the emission. Finally, the photosensitization of triplet oxygen to singlet oxygen using 1,3-diphenylisobenzofurane (DBPF) as a trapping agent is investigated both for the free linker and the Zn-CP, showing that the perylene chromophore is an efficient photosensitizer and its activity can, in principle, be retained after its incorporation in the coordination polymer.
Collapse
|
3
|
Spectral Dependence of the Energy Transfer from Photosynthetic Complexes to Monolayer Graphene. Int J Mol Sci 2022; 23:ijms23073493. [PMID: 35408853 PMCID: PMC8998970 DOI: 10.3390/ijms23073493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescence excitation spectroscopy at cryogenic temperatures carried out on hybrid assemblies composed of photosynthetic complexes deposited on a monolayer graphene revealed that the efficiency of energy transfer to graphene strongly depended on the excitation wavelength. The efficiency of this energy transfer was greatly enhanced in the blue-green spectral region. We observed clear resonance-like behavior for both a simple light-harvesting antenna containing only two chlorophyll molecules (PCP) and a large photochemically active reaction center associated with the light-harvesting antenna (PSI-LHCI), which pointed towards the general character of this effect.
Collapse
|
4
|
Improving Photostability of Photosystem I-Based Nanodevice by Plasmonic Interactions with Planar Silver Nanostructures. Int J Mol Sci 2022; 23:ijms23062976. [PMID: 35328397 PMCID: PMC8950156 DOI: 10.3390/ijms23062976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
One of the crucial challenges for science is the development of alternative pollution-free and renewable energy sources. One of the most promising inexhaustible sources of energy is solar energy, and in this field, solar fuel cells employing naturally evolved solar energy converting biocomplexes—photosynthetic reaction centers, such as photosystem I—are of growing interest due to their highly efficient photo-powered operation, resulting in the production of chemical potential, enabling synthesis of simple fuels. However, application of the biomolecules in such a context is strongly limited by the progressing photobleaching thereof during illumination. In the current work, we investigated the excitation wavelength dependence of the photosystem I photodamage dynamics. Moreover, we aimed to correlate the PSI–LHCI photostability dependence on the excitation wavelength with significant (ca. 50-fold) plasmonic enhancement of fluorescence due to the utilization of planar metallic nanostructure as a substrate. Finally, we present a rational approach for the significant improvement in the photostability of PSI in anoxic conditions. We find that photobleaching rates for 5 min long blue excitation are reduced from nearly 100% to 20% and 70% for substrates of bare glass and plasmonically active substrate, respectively. Our results pave promising ways for optimization of the biomimetic solar fuel cells due to synergy of the plasmon-induced absorption enhancement together with improved photostability of the molecular machinery of the solar-to-fuel conversion.
Collapse
|
5
|
Kaźmierczak M, Trzaskowski B, Osella S. The Interplay of Conjugation and Metal Coordination in Tuning the Electron Transfer Abilities of NTA-Graphene Based Interfaces. Int J Mol Sci 2022; 23:543. [PMID: 35008968 PMCID: PMC8745182 DOI: 10.3390/ijms23010543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022] Open
Abstract
An artificial leaf is a concept that not only replicates the processes taking place during natural photosynthesis but also provides a source of clean, renewable energy. One important part of such a device are molecules that stabilize the connection between the bioactive side and the electrode, as well as tune the electron transfer between them. In particular, nitrilotriacetic acid (NTA) derivatives used to form a self-assembly monolayer chemisorbed on a graphene monolayer can be seen as a prototypical interface that can be tuned to optimize the electron transfer. In the following work, interfaces with modifications of the metal nature, backbone saturation, and surface coverage density are presented by means of theoretical calculations. Effects of the type of the metal and the surface coverage density on the electronic properties are found to be key to tuning the electron transfer, while only a minor influence of backbone saturation is present. For all of the studied interfaces, the charge transfer flow goes from graphene to the SAM. We suggest that, in light of the strength of electron transfer, Co2+ should be considered as the preferred metal center for efficient charge transfer.
Collapse
Affiliation(s)
| | | | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.K.); (B.T.)
| |
Collapse
|
6
|
Izzo M, Jacquet M, Fujiwara T, Harputlu E, Mazur R, Wróbel P, Góral T, Unlu CG, Ocakoglu K, Miyagishima S, Kargul J. Development of a Novel Nanoarchitecture of the Robust Photosystem I from a Volcanic Microalga Cyanidioschyzon merolae on Single Layer Graphene for Improved Photocurrent Generation. Int J Mol Sci 2021; 22:8396. [PMID: 34445103 PMCID: PMC8395140 DOI: 10.3390/ijms22168396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report the development of a novel photoactive biomolecular nanoarchitecture based on the genetically engineered extremophilic photosystem I (PSI) biophotocatalyst interfaced with a single layer graphene via pyrene-nitrilotriacetic acid self-assembled monolayer (SAM). For the oriented and stable immobilization of the PSI biophotocatalyst, an His6-tag was genetically engineered at the N-terminus of the stromal PsaD subunit of PSI, allowing for the preferential binding of this photoactive complex with its reducing side towards the graphene monolayer. This approach yielded a novel robust and ordered nanoarchitecture designed to generate an efficient direct electron transfer pathway between graphene, the metal redox center in the organic SAM and the photo-oxidized PSI biocatalyst. The nanosystem yielded an overall current output of 16.5 µA·cm-2 for the nickel- and 17.3 µA·cm-2 for the cobalt-based nanoassemblies, and was stable for at least 1 h of continuous standard illumination. The novel green nanosystem described in this work carries the high potential for future applications due to its robustness, highly ordered and simple architecture characterized by the high biophotocatalyst loading as well as simplicity of manufacturing.
Collapse
Affiliation(s)
- Miriam Izzo
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| | - Margot Jacquet
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 111, Mishima 411-8540, Japan; (T.F.); (S.M.)
| | - Ersan Harputlu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, Tarsus 33400, Turkey; (E.H.); (K.O.)
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland;
| | - Tomasz Góral
- Cryomicroscopy and Electron Diffraction Core Facility, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - C. Gokhan Unlu
- Department of Biomedical Engineering, Pamukkale University, Denizli 20070, Turkey;
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, Tarsus 33400, Turkey; (E.H.); (K.O.)
| | - Shinya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 111, Mishima 411-8540, Japan; (T.F.); (S.M.)
| | - Joanna Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| |
Collapse
|
7
|
Izzo M, Osella S, Jacquet M, Kiliszek M, Harputlu E, Starkowska A, Łasica A, Unlu CG, Uśpieński T, Niewiadomski P, Bartosik D, Trzaskowski B, Ocakoglu K, Kargul J. Enhancement of direct electron transfer in graphene bioelectrodes containing novel cytochrome c 553 variants with optimized heme orientation. Bioelectrochemistry 2021; 140:107818. [PMID: 33905959 DOI: 10.1016/j.bioelechem.2021.107818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 04/03/2021] [Indexed: 11/20/2022]
Abstract
The highly efficient bioelectrodes based on single layer graphene (SLG) functionalized with pyrene self-assembled monolayer and novel cytochromec553(cytc553)peptide linker variants were rationally designed to optimize the direct electron transfer (DET) between SLG and the heme group of cyt. Through a combination of photoelectrochemical and quantum mechanical (QM/MM) approaches we show that the specific amino acid sequence of a short peptide genetically inserted between the cytc553holoprotein and thesurface anchoring C-terminal His6-tag plays a crucial role in ensuring the optimal orientation and distance of the heme group with respect to the SLG surface. Consequently, efficient DET occurring between graphene and cyt c553 leads to a 20-fold enhancement of the cathodic photocurrent output compared to the previously reported devices of a similar type. The QM/MM modeling implies that a perpendicular or parallel orientation of the heme group with respect to the SLG surface is detrimental to DET, whereas the tilted orientation favors the cathodic photocurrent generation. Our work confirms the possibility of fine-tuning the electronic communication within complex bio-organic nanoarchitectures and interfaces due to optimization of the tilt angle of the heme group, its distance from the SLG surface and optimal HOMO/LUMO levels of the interacting redox centers.
Collapse
Affiliation(s)
- Miriam Izzo
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Margot Jacquet
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Małgorzata Kiliszek
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Ersan Harputlu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
| | - Alicja Starkowska
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - C Gokhan Unlu
- Department of Biomedical Engineering, Pamukkale University, TR-20070 Denizli, Turkey
| | - Tomasz Uśpieński
- Laboratory of Molecular and Cellular Signaling, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Paweł Niewiadomski
- Laboratory of Molecular and Cellular Signaling, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
| | - Joanna Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
8
|
Osella S. Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead? NANOMATERIALS 2021; 11:nano11020299. [PMID: 33498961 PMCID: PMC7911014 DOI: 10.3390/nano11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
A tremendous effort is currently devoted to the generation of novel hybrid materials with enhanced electronic properties for the creation of artificial photosynthetic systems. This compelling and challenging problem is well-defined from an experimental point of view, as the design of such materials relies on combining organic materials or metals with biological systems like light harvesting and redox-active proteins. Such hybrid systems can be used, e.g., as bio-sensors, bio-fuel cells, biohybrid photoelectrochemical cells, and nanostructured photoelectronic devices. Despite these efforts, the main bottleneck is the formation of efficient interfaces between the biological and the organic/metal counterparts for efficient electron transfer (ET). It is within this aspect that computation can make the difference and improve the current understanding of the mechanisms underneath the interface formation and the charge transfer efficiency. Yet, the systems considered (i.e., light harvesting protein, self-assembly monolayer and surface assembly) are more and more complex, reaching (and often passing) the limit of current computation power. In this review, recent developments in computational methods for studying complex interfaces for artificial photosynthesis will be provided and selected cases discussed, to assess the inherent ability of computation to leave a mark in this field of research.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Kapkowski M, Ludynia M, Rudnicka M, Dzida M, Zorębski E, Musiał M, Doležal M, Polanski J. Enhancing the CO 2 capturing ability in leaf via xenobiotic auxin uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141032. [PMID: 32726691 DOI: 10.1016/j.scitotenv.2020.141032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Plants are masterpieces of evolution that is based on carbon chemistry. In particular, plant leaves are biosynthetic factories able to convert CO2 into carbohydrates and oxygen. It is worth noting that mimicking the efficiency of a natural plant and natural leaf is still a challenge for contemporary chemistry. We can even better realize this when we notice that a plant and an industrial factory are equivalent in meaning. On the other hand, green technologies are under development in a quest for the artificial leaf. If we could modify the synthetic pathways in leaves, we could also design green chemistry schemes in natural leaves to produce useful chemicals or to digest wastes or toxins. Specifically, can we intensify the potential for capturing atmospheric CO2 in leaves? Auxins are plant hormones that control the growth and development of plants. Herein, we determined whether we could efficiently transport xenobiotic auxin into leaves and if so, whether this supply could enhance the metabolism and CO2 capturing ability. By exploring a series of dioxolanes as potential enhancers of auxin transport, we discovered for the first time that a small molecular compound, 2,2-dimethyl-1,3-dioxolane (DMD), enhances the xenobiotic auxin transport to leaves, which boosts the metabolism that is measured by H2O2 production as well as CO2 capturing ability in leaves.
Collapse
Affiliation(s)
- Maciej Kapkowski
- Faculty of Science and Technology, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland; Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Michał Ludynia
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Małgorzata Rudnicka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Marzena Dzida
- Faculty of Science and Technology, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Edward Zorębski
- Faculty of Science and Technology, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Małgorzata Musiał
- Faculty of Science and Technology, August Chełkowski Institute of Physics, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland
| | - Martin Doležal
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Jaroslaw Polanski
- Faculty of Science and Technology, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
10
|
Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins. Int J Mol Sci 2020; 21:ijms21072451. [PMID: 32244795 PMCID: PMC7177865 DOI: 10.3390/ijms21072451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
The effects of combining naturally evolved photosynthetic pigment–protein complexes with inorganic functional materials, especially plasmonically active metallic nanostructures, have been a widely studied topic in the last few decades. Besides other applications, it seems to be reasonable using such hybrid systems for designing future biomimetic solar cells. In this paper, we describe selected results that point out to various aspects of the interactions between photosynthetic complexes and plasmonic excitations in Silver Island Films (SIFs). In addition to simple light-harvesting complexes, like peridinin-chlorophyll-protein (PCP) or the Fenna–Matthews–Olson (FMO) complex, we also discuss the properties of large, photosynthetic reaction centers (RCs) and Photosystem I (PSI)—both prokaryotic PSI core complexes and eukaryotic PSI supercomplexes with attached antenna clusters (PSI-LHCI)—deposited on SIF substrates.
Collapse
|
11
|
Becker R, Bouwens T, Schippers ECF, van Gelderen T, Hilbers M, Woutersen S, Reek JNH. Photocatalytic Hydrogen Generation by Vesicle-Embedded [FeFe]Hydrogenase Mimics: A Mechanistic Study. Chemistry 2019; 25:13921-13929. [PMID: 31418952 PMCID: PMC6899470 DOI: 10.1002/chem.201902514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 12/22/2022]
Abstract
Artificial photosynthesis—the direct photochemical generation of hydrogen from water—is a promising but scientifically challenging future technology. Because nature employs membranes for photodriven reactions, the aim of this work is to elucidate the effect of membranes on artificial photocatalysis. To do so, a combination of electrochemistry, photocatalysis, and time‐resolved spectroscopy on vesicle‐embedded [FeFe]hydrogenase mimics, driven by a ruthenium tris‐2,2′‐bipyridine photosensitizer, is reported. The membrane effects encountered can be summarized as follows: the presence of vesicles steers the reactivity of the [FeFe]‐benzodithiolate catalyst towards disproportionation, instead of protonation, due to membrane characteristics, such as providing a constant local effective pH, and concentrating and organizing species inside the membrane. The maximum turnover number is limited by photodegradation of the resting state in the catalytic cycle. Understanding these fundamental productive and destructive pathways in complex photochemical systems allows progress towards the development of efficient artificial leaves.
Collapse
Affiliation(s)
- René Becker
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Tessel Bouwens
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Esther C F Schippers
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Toon van Gelderen
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michiel Hilbers
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Sander Woutersen
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
12
|
Lanzafame P, Abate S, Ampelli C, Genovese C, Passalacqua R, Centi G, Perathoner S. Beyond Solar Fuels: Renewable Energy-Driven Chemistry. CHEMSUSCHEM 2017; 10:4409-4419. [PMID: 29121439 DOI: 10.1002/cssc.201701507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps.
Collapse
Affiliation(s)
- Paola Lanzafame
- Dept. MIFT (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Salvatare Abate
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Claudio Ampelli
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Chiara Genovese
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Rosalba Passalacqua
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gabriele Centi
- Dept. MIFT (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Siglinda Perathoner
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
13
|
Szalkowski M, Janna Olmos JD, Buczyńska D, Maćkowski S, Kowalska D, Kargul J. Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires. NANOSCALE 2017; 9:10475-10486. [PMID: 28703814 DOI: 10.1039/c7nr03866f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate that controlled assembly of eukaryotic photosystem I with its associated light harvesting antenna complex (PSI-LHCI) on plasmonically active silver nanowires (AgNWs) substantially improves the optical functionality of such a novel biohybrid nanostructure. By comparing fluorescence intensities measured for PSI-LHCI complex randomly oriented on AgNWs and the results obtained for the PSI-LHCI/cytochrome c553 (cyt c553) bioconjugate with AgNWs we conclude that the specific binding of photosynthetic complexes with defined uniform orientation yields selective excitation of a pool of chlorophyll (Chl) molecules that are otherwise almost non-absorbing. This is remarkable, as this study shows for the first time that plasmonic excitations in metallic nanostructures can not only be used to enhance native absorption of photosynthetic pigments, but also - by employing cyt c553 as the conjugation cofactor - to activate the specific Chl pools as the absorbing sites only when the uniform and well-defined orientation of PSI-LHCI with respect to plasmonic nanostructures is achieved. As absorption of PSI alone is comparatively low, our approach lends itself as an innovative approach to outperform the reported-to-date biohybrid devices with respect to solar energy conversion.
Collapse
Affiliation(s)
- Marcin Szalkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, 87-100 Toruń, Poland.
| | - Julian David Janna Olmos
- Centre of New Technologies, University of Warsaw, ul. Banacha 2C, 02-097 Warsaw, Poland. and Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Dorota Buczyńska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, 87-100 Toruń, Poland.
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, 87-100 Toruń, Poland. and Baltic Institute of Technology, al. Zwycięstwa 96/98, Gdynia, Poland
| | - Dorota Kowalska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, 87-100 Toruń, Poland.
| | - Joanna Kargul
- Centre of New Technologies, University of Warsaw, ul. Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
14
|
Janna Olmos JD, Becquet P, Gront D, Sar J, Dąbrowski A, Gawlik G, Teodorczyk M, Pawlak D, Kargul J. Biofunctionalisation of p-doped silicon with cytochrome c553minimises charge recombination and enhances photovoltaic performance of the all-solid-state photosystem I-based biophotoelectrode. RSC Adv 2017. [DOI: 10.1039/c7ra10895h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Passivation of p-doped silicon substrate was achieved by its biofunctionalisation with hexahistidine-tagged cytochrome c553, a soluble electroactive photosynthetic protein responsible for electron donation to photooxidised photosystem I.
Collapse
Affiliation(s)
| | | | - Dominik Gront
- Laboratory of Theory of Biopolymers
- Faculty of Chemistry
- University of Warsaw
- 02-093 Warsaw
- Poland
| | - Jarosław Sar
- Institute of Electronic Materials Technology
- 01-919 Warsaw
- Poland
| | | | - Grzegorz Gawlik
- Institute of Electronic Materials Technology
- 01-919 Warsaw
- Poland
| | | | - Dorota Pawlak
- Institute of Electronic Materials Technology
- 01-919 Warsaw
- Poland
- Laboratory of Materials Technology
- Centre for New Technologies
| | - Joanna Kargul
- Solar Fuels Laboratory
- Centre for New Technologies
- University of Warsaw
- 02-097 Warsaw
- Poland
| |
Collapse
|
15
|
Yang S, Robinson MT, Mwambutsa F, Cliffel DE, Jennings G. Effect of Cross-linking on the Performance and Stability of Photocatalytic Photosystem I Films. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Dibenedetto A. Across the Board: Angela Dibenedetto. CHEMSUSCHEM 2016; 9:3124-3127. [PMID: 27781399 DOI: 10.1002/cssc.201601431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 06/06/2023]
Abstract
In this series of articles, the board members of ChemSusChem discuss recent research articles that they consider of exceptional quality and importance for sustainability. This entry features Prof. Angela Dibenedetto, who highlights the differences between natural and artificial photosynthesis, suggesting that solar chemistry may be the most appropriate terminology to describe these closely related solar-to-chemical energy conversion processes.
Collapse
Affiliation(s)
- Angela Dibenedetto
- Department of Chemistry, University of Bari and CIRCC, Via Orabona 4, 70126, Bari, Italy
| |
Collapse
|