1
|
Yang C, Tang L, Qin L, Zhong W, Tang X, Gong X, Xie W, Li Y, Xia S. mRNA Turnover Protein 4 Is Vital for Fungal Pathogenicity and Response to Oxidative Stress in Sclerotinia sclerotiorum. Pathogens 2023; 12:pathogens12020281. [PMID: 36839553 PMCID: PMC9960052 DOI: 10.3390/pathogens12020281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome assembly factors have been extensively studied in yeast, and their abnormalities may affect the assembly process of ribosomes and cause severe damage to cells. However, it is not clear whether mRNA turnover protein 4 (MRT4) functions in the fungal growth and pathogenicity in Sclerotinia sclerotiorum. Here, we identified the nucleus-located gene SsMRT4 using reverse genetics, and found that knockdown of SsMRT4 resulted in retard mycelia growth and complete loss of pathogenicity. Furthermore, mrt4 knockdown mutants showed almost no appressorium formation and oxalic acid production comparing to the wild-type and complementary strains. In addition, the abilities to ROS elimination and resistance to oxidative and osmotic stresses were also seriously compromised in mrt4 mutants. Overall, our study clarified the role of SsMRT4 in S. sclerotiorum, providing new insights into ribosome assembly in regulating pathogenicity and resistance to environmental stresses of fungi.
Collapse
Affiliation(s)
- Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lan Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Weiping Zhong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenqi Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yifu Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
2
|
Kakui H, Tsuchimatsu T, Yamazaki M, Hatakeyama M, Shimizu KK. Pollen Number and Ribosome Gene Expression Altered in a Genome-Editing Mutant of REDUCED POLLEN NUMBER1 Gene. FRONTIERS IN PLANT SCIENCE 2022; 12:768584. [PMID: 35087546 PMCID: PMC8787260 DOI: 10.3389/fpls.2021.768584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The number of pollen grains varies within and between species. However, little is known about the molecular basis of this quantitative trait, in contrast with the many studies available on cell differentiation in the stamen. Recently, the first gene responsible for pollen number variation, REDUCED POLLEN NUMBER1 (RDP1), was isolated by genome-wide association studies of Arabidopsis thaliana and exhibited the signature of natural selection. This gene encodes a homolog of yeast Mrt4 (mRNA turnover4), which is an assembly factor of the large ribosomal subunit. However, no further data were available to link ribosome function to pollen development. Here, we characterized the RDP1 gene using the standard A. thaliana accession Col-0. The frameshift mutant, rdp1-3 generated by CRISPR/Cas9 revealed the pleiotropic effect of RDP1 in flowering, thus demonstrating that this gene is required for a broad range of processes other than pollen development. We found that the natural Col-0 allele conferred a reduced pollen number against the Bor-4 allele, as assessed using the quantitative complementation test, which is more sensitive than transgenic experiments. Together with a historical recombination event in Col-0, which was identified by sequence alignment, these results suggest that the coding sequence of RDP1 is the candidate region responsible for the natural phenotypic variation. To elucidate the biological processes in which RDP1 is involved, we conducted a transcriptome analysis. We found that genes responsible for ribosomal large subunit assembly/biogenesis were enriched among the differentially regulated genes, which supported the hypothesis that ribosome biogenesis is disturbed in the rdp1-3 mutant. Among the pollen-development genes, three key genes encoding basic helix-loop-helix (bHLH) transcription factors (ABORTED MICROSPORES (AMS), bHLH010, and bHLH089), as well as direct downstream genes of AMS, were downregulated in the rdp1-3 mutant. In summary, our results suggest a specialized function of ribosomes in pollen development through RDP1, which harbors natural variants under selection.
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Biology, Chiba University, Chiba, Japan
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
The composition and turnover of the Arabidopsis thaliana 80S cytosolic ribosome. Biochem J 2021; 477:3019-3032. [PMID: 32744327 PMCID: PMC7452503 DOI: 10.1042/bcj20200385] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Cytosolic 80S ribosomes contain proteins of the mature cytosolic ribosome (r-proteins) as well as proteins with roles in ribosome biogenesis, protein folding or modification. Here, we refined the core r-protein composition in Arabidopsis thaliana by determining the abundance of different proteins during enrichment of ribosomes from cell cultures using peptide mass spectrometry. The turnover rates of 26 40S subunit r-proteins and 29 60S subunit r-proteins were also determined, showing that half of the ribosome population is replaced every 3–4 days. Three enriched proteins showed significantly shorter half-lives; a protein annotated as a ribosomal protein uL10 (RPP0D, At1g25260) with a half-life of 0.5 days and RACK1b and c with half-lives of 1–1.4 days. The At1g25260 protein is a homologue of the human Mrt4 protein, a trans-acting factor in the assembly of the pre-60S particle, while RACK1 has known regulatory roles in cell function beyond its role in the 40S subunit. Our experiments also identified 58 proteins that are not from r-protein families but co-purify with ribosomes and co-express with r-proteins; 26 were enriched more than 10-fold during ribosome enrichment. Some of these enriched proteins have known roles in translation, while others are newly proposed ribosome-associated factors in plants. This analysis provides an improved understanding of A. thaliana ribosome protein content, shows that most r-proteins turnover in unison in vivo, identifies a novel set of potential plant translatome components, and how protein turnover can help identify r-proteins involved in ribosome biogenesis or regulation in plants.
Collapse
|
4
|
Filipek K, Michalec-Wawiórka B, Boguszewska A, Kmiecik S, Tchórzewski M. Phosphorylation of the N-terminal domain of ribosomal P-stalk protein uL10 governs its association with the ribosome. FEBS Lett 2020; 594:3002-3019. [PMID: 32668052 DOI: 10.1002/1873-3468.13885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
The uL10 protein is the main constituent of the ribosomal P-stalk, anchoring the whole stalk to the ribosome through interactions with rRNA. The P-stalk is the core of the GTPase-associated center (GAC), a critical element for ribosome biogenesis and ribosome translational activity. All P-stalk proteins (uL10, P1, and P2) undergo phosphorylation within their C termini. Here, we show that uL10 has multiple phosphorylation sites, mapped also within the N-terminal rRNA-binding domain. Our results reveal that the introduction of a negative charge within the N terminus of uL10 impairs its association with the ribosome. These findings demonstrate that uL10 N-terminal phosphorylation has regulatory potential governing the uL10 interaction with the ribosome and may control the activity of GAC.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Aleksandra Boguszewska
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
5
|
Zhang G, Xu S, Yuan Z, Shen L. Weighted Gene Coexpression Network Analysis Identifies Specific Modules and Hub Genes Related to Major Depression. Neuropsychiatr Dis Treat 2020; 16:703-713. [PMID: 32214815 PMCID: PMC7079285 DOI: 10.2147/ndt.s244452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Despite advances in characterizing the neurobiology of emotional disorders, there is still a significant lack of scientific understanding of the pathophysiological mechanisms governing major depressive disorder (MDD). This study attempted to elucidate the molecular circuitry of MDD and to identify more potential genes associated with the pathogenesis of the disease. PATIENTS AND METHODS Microarray data from the GSE98793 dataset were downloaded from the NCBI Gene Expression Omnibus (GEO) database, including 128 patients with MDD and 64 healthy controls. Weighted gene coexpression network analysis (WGCNA) was performed to find modules of differentially expressed genes (DEGs) with high correlations followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to obtain further biological insight into the top three key modules. The protein-protein interaction (PPI) network, the modules from the PPI network, and the gene annotation enrichment of modules were analyzed, as well. RESULTS We filtered 3276 genes that were considered significant DEGs for further WGCNA analysis. By performing WGCNA, we found that the turquoise, blue and brown functional modules were all strongly correlated with MDD development, including immune response, neutrophil degranulation, ribosome biogenesis, T cell activation, glycosaminoglycan biosynthetic process, and protein serine/threonine kinase activator activity. Hub genes were identified in the key functional modules that might have a role in the progression of MDD. Functional annotation showed that these modules primarily enriched such KEGG pathways as the TNF signaling pathway, T cell receptor signaling pathway, primary immunodeficiency, Th1, Th2 and Th17 cell differentiation, autophagy and RNA degradation and oxidative phosphorylation. These results suggest that these genes are closely related to autophagy and cellular immune function. CONCLUSION The results of this study may help to elucidate the pathophysiology of MDD development at the molecular level and explore the potential molecular mechanisms for new interventional strategies.
Collapse
Affiliation(s)
- Guangyin Zhang
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shixin Xu
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome; Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhuo Yuan
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Li Shen
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
6
|
The uL10 protein, a component of the ribosomal P-stalk, is released from the ribosome in nucleolar stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:34-47. [DOI: 10.1016/j.bbamcr.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
7
|
Saito Â, Souza EE, Costa FC, Meirelles GV, Gonçalves KA, Santos MT, Bressan GC, McComb ME, Costello CE, Whelan SA, Kobarg J. Human Regulatory Protein Ki-1/57 Is a Target of SUMOylation and Affects PML Nuclear Body Formation. J Proteome Res 2017; 16:3147-3157. [PMID: 28695742 DOI: 10.1021/acs.jproteome.7b00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ki-1/57 is a nuclear and cytoplasmic regulatory protein first identified in malignant cells from Hodgkin's lymphoma. It is involved in gene expression regulation on both transcriptional and mRNA metabolism levels. Ki-1/57 belongs to the family of intrinsically unstructured proteins and undergoes phosphorylation by PKC and methylation by PRMT1. Previous characterization of its protein interaction profile by yeast two-hybrid screening showed that Ki-1/57 interacts with proteins of the SUMOylation machinery, the SUMO E2 conjugating enzyme UBC9 and the SUMO E3 ligase PIAS3, which suggested that Ki-1/57 could be involved with this process. Here we identified seven potential SUMO target sites (lysine residues) on Ki-1/57 sequence and observed that Ki-1/57 is modified by SUMO proteins in vitro and in vivo. We showed that SUMOylation of Ki-1/57 occurred on lysines 213, 276, and 336. In transfected cells expressing FLAG-Ki-1/57 wild-type, its paralog FLAG-CGI-55 wild-type, or their non-SUMOylated triple mutants, the number of PML-nuclear bodies (PML-NBs) is reduced compared with the control cells not expressing the constructs. More interestingly, after treating cells with arsenic trioxide (As2O3), the number of PML-NBs is no longer reduced when the non-SUMOylated triple mutant Ki-1/57 is expressed, suggesting that the SUMOylation of Ki-1/57 has a role in the control of As2O3-induced PML-NB formation. A proteome-wide analysis of Ki-1/57 partners in the presence of either SUMO-1 or SUMO-2 suggests that the involvement of Ki-1/57 with the regulation of gene expression is independent of the presence of either SUMO-1 or SUMO-2; however, the presence of SUMO-1 strongly influences the interaction of Ki-1/57 with proteins associated with cellular metabolism, maintenance, and cell cycle.
Collapse
Affiliation(s)
- Ângela Saito
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas, São Paulo 13083-970, Brazil
| | - Edmarcia E Souza
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Fernanda C Costa
- Instituto de Física de São Carlos, Universidade de São Paulo , São Carlos, São Paulo 13563-120, Brazil
| | - Gabriela V Meirelles
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas, São Paulo 13083-970, Brazil
| | - Kaliandra A Gonçalves
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas, São Paulo 13083-970, Brazil
| | - Marcos T Santos
- ONKOS Molecular Diagnostics, Inc. , R&D Department, Ribeirão Preto, São Paulo 14056-680, Brazil
| | - Gustavo C Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa (UFV) , Viçosa, Minas Gerais 36570-000, Brazil
| | - Mark E McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Stephen A Whelan
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas , Campinas, São Paulo 13083-859, Brazil.,Departamento de Bioquímica e Biologia Tecidual, Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|