1
|
Bansal A, Kooi C, Kalyanaraman K, Gill S, Thorne A, Chandramohan P, Necker-Brown A, Mostafa MM, Milani A, Leigh R, Newton R. Synergy between Interleukin-1 β, Interferon- γ, and Glucocorticoids to Induce TLR2 Expression Involves NF- κB, STAT1, and the Glucocorticoid Receptor. Mol Pharmacol 2023; 105:23-38. [PMID: 37863662 DOI: 10.1124/molpharm.123.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to downregulate inflammatory gene expression and are effective treatments for mild to moderate asthma. However, in severe asthma and virus-induced exacerbations, glucocorticoid therapies are less efficacious, possibly due to reduced repressive ability and/or the increased expression of proinflammatory genes. In human A549 epithelial and primary human bronchial epithelial cells, toll-like receptor (TLR)-2 mRNA and protein were supra-additively induced by interleukin-1β (IL-1β) plus dexamethasone (IL-1β+Dex), interferon-γ (IFN-γ) plus dexamethasone (IFN-γ+Dex), and IL-1β plus IFN-γ plus dexamethasone (IL-1β+IFN-γ+Dex). Indeed, ∼34- to 2100-fold increases were apparent at 24 hours for IL-1β+IFN-γ+Dex, and this was greater than for any single or dual treatment. Using the A549 cell model, TLR2 induction by IL-1β+IFN-γ+Dex was antagonized by Org34517, a competitive GR antagonist. Further, when combined with IL-1β, IFN-γ, or IL-1β+IFN-γ, the enhancements by dexamethasone on TLR2 expression required GR. Likewise, inhibitor of κB kinase 2 inhibitors reduced IL-1β+IFN-γ+Dex-induced TLR2 expression, and TLR2 expression induced by IL-1β+Dex, with or without IFN-γ, required the nuclear factor (NF)-κB subunit, p65. Similarly, signal transducer and activator of transcription (STAT)-1 phosphorylation and γ-interferon-activated sequence-dependent transcription were induced by IFN-γ These, along with IL-1β+IFN-γ+Dex-induced TLR2 expression, were inhibited by Janus kinase (JAK) inhibitors. As IL-1β+IFN-γ+Dex-induced TLR2 expression also required STAT1, this study reveals cooperation between JAK-STAT1, NF-κB, and GR to upregulate TLR2 expression. Since TLR2 agonism elicits inflammatory responses, we propose that synergies involving TLR2 may occur within the cytokine milieu present in the immunopathology of glucocorticoid-resistant disease, and this could promote glucocorticoid resistance. SIGNIFICANCE STATEMENT: This study highlights that in human pulmonary epithelial cells, glucocorticoids, when combined with the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ), can synergistically induce the expression of inflammatory genes, such as TLR2. This effect involved positive combinatorial interactions between NF-κB/p65, glucocorticoid receptor, and JAK-STAT1 signaling to synergistically upregulate TLR2 expression. Thus, synergies involving glucocorticoid enhancement of TLR2 expression may occur in the immunopathology of glucocorticoid-resistant inflammatory diseases, including severe asthma.
Collapse
Affiliation(s)
- Akanksha Bansal
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cora Kooi
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keerthana Kalyanaraman
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sachman Gill
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew Thorne
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Priyanka Chandramohan
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arya Milani
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Richard Leigh
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
2
|
Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics. Pathogens 2020; 9:pathogens9020112. [PMID: 32054098 PMCID: PMC7167821 DOI: 10.3390/pathogens9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 11/17/2022] Open
Abstract
Medications for asthma management consisting of inhaled corticosteroids act by controlling symptoms. However, some patients do not respond to steroid treatment due to immunological factors at the cytokine level. Chlamydia pneumoniae (C. pneumoniae) infection is strongly implicated in asthma pathogenesis, causing altered immune responses. We investigated the association of C. pneumoniae serostatus with the production of certain cytokines by peripheral blood mononuclear cells (PBMCs) of steroid-resistant and -sensitive asthmatic patients. Our most important findings are the following: In the case of C. pneumoniae seropositive patients we detected pronounced spontaneous interleukin (IL)-10 secretion and, in the case of steroid-resistant patients, IL-10 secretion was at a significantly higher level as compared with in-sensitive patients (p < 0.01). Furthermore, steroid-resistant seropositive patients produced a significantly higher level of IL-10 spontaneously and under antigen stimulation as compared with steroid-resistant seronegative individuals (p < 0.05). Concerning spontaneous TNF-α secretion by C. pneumoniae seropositive asthmatics, we observed that steroid-resistant patients produced significantly more of this cytokine than steroid-sensitive patients. In the steroid-resistant patients’ sera, a remarkably high MMP-9 concentration was associated with C. pneumoniae seronegativity. Our study revealed that the differences in the cytokine production in steroid-sensitive and -resistant asthmatic patients can be influenced by their C. pneumoniae serostatus.
Collapse
|
3
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
4
|
Dong Y, Glaser K, Schlegel N, Claus H, Speer CP. An underestimated pathogen: Staphylococcus epidermidis induces pro-inflammatory responses in human alveolar epithelial cells. Cytokine 2019; 123:154761. [PMID: 31226437 DOI: 10.1016/j.cyto.2019.154761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Conventionally regarded as a harmless skin commensal, Staphylococcus epidermidis accounts for the majority of neonatal late-onset sepsis and is shown to be associated with neonatal inflammatory morbidities, especially bronchopulmonary dysplasia. This study addressed the pro-inflammatory capacity of different S. epidermidis strains on human alveolar epithelial cells. METHODS A549 cell monolayers were stimulated by live bacteria of S. epidermidis RP62A strain (biofilm-positive) and ATCC 12228 strain (biofilm-negative) at a multiplicity of infection ratio of 10 for 24 h. LPS (100 ng/ml) and Pam3CSK4 (1 µg/ml) were used for comparisons. Cell viability was measured by MTT method. The mRNA and protein expression of inflammatory mediators and toll-like receptor (TLR)-2 were assessed using RT-PCR, immunoassays and immunofluorescence. RESULTS Both S. epidermidis strains induced expression of tumor necrosis factor (TNF)-α, IL-1β, interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, interferon γ-induced protein 10 (IP-10) and intercellular adhesion molecule (ICAM)-1, but not IL-10. The stimulatory effect of RP62A exceeded that of LPS (p < 0.05). RP62A strain showed a trend towards higher induction of pro-inflammatory mediators than ATCC 12228 strain. The co-stimulation with RP62A strain decreased cell viability compared to control and TLR agonists (p < 0.05). RP62A but not ATCC 12228 stimulated mRNA and protein expression of TLR2. CONCLUSIONS S. epidermidis drives pro-inflammatory responses in lung epithelial cells in vitro. The pro-inflammatory capacity of S. epidermidis may differ between strains. Biofilm-positive S. epidermidis strain seems to induce more potent pulmonary pro-inflammation than biofilm-negative S. epidermidis strain.
Collapse
Affiliation(s)
- Ying Dong
- University Children's Hospital, University of Wuerzburg, Wuerzburg, Germany.
| | - Kirsten Glaser
- University Children's Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Christian P Speer
- University Children's Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
5
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
6
|
Zhao X, Yin L, Fang L, Xu L, Sun P, Xu M, Liu K, Peng J. Protective effects of dioscin against systemic inflammatory response syndromevia adjusting TLR2/MyD88/NF‑κb signal pathway. Int Immunopharmacol 2018; 65:458-469. [PMID: 30390593 DOI: 10.1016/j.intimp.2018.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Development of active compounds to control inflammation against systemic inflammatory response syndrome (SIRS) is critical important. Dioscin shows anti-inflammatory effects in our previous works. However, the action of the compound on SIRS still remained unknown. In the present paper, zymosan induced generalized inflammation (ZIGI) models in mice and rats, and PMA-differentiated THP‑1 cells stimulated by lipopolysaccharide (LPS) and Pam3-Cys-Ser-Lys4 (Pam3CSK4) were used. The results showed that dioscin significantly inhibited the proliferation of THP‑1 cells stimulated by LPS and Pam3CSK4, obviously reduced the soakage of inflammatory cells and necrosis in liver, kidney and intestine of rats and mice, and reduced peritoneal ascites fluid compared with ZIGI model groups. In addition, dioscin significantly declined the levels of alanine transaminase (ALT), aspartate transaminase (AST), creatinine (Cr), blood urea nitrogen (BUN), malondialdehyde (MDA) and myeloperoxidase (MPO), increased the levels of superoxide dismutase (SOD) in rats and mice. The migration of macrophages in tissues was also suppressed by dioscin. Mechanism investigation showed that dioscin significantly inhibited the expression levels of TLR2, MyD88, NF‑κb, HMGB‑1, increased the expression levels of IKBα, and decreased the mRNA levels of interleukin‑1 beta (IL‑1β), interleukin‑6 (IL‑6) and tumor necrosis factor‑alpha (TNF‑α) in liver, kidney, intestine tissues of rats and mice, and in PMA-differentiated THP‑1 cells, which were further confirmed by TLR2 siRNA silencing in vitro. In conclusion, our data confirmed that dioscin exhibited protective effects against SIRS via adjusting TLR2/MyD88 signal pathway, which should be developed as one potent candidate to treat SIRS in the future.
Collapse
Affiliation(s)
- Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China
| | - Lingling Fang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China
| | - Pengyuan Sun
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China
| | - Ming Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun nan Road, Dalian 116044, China.
| |
Collapse
|
7
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
8
|
Nair PM, Starkey MR, Haw TJ, Liu G, Horvat JC, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Targeting PP2A and proteasome activity ameliorates features of allergic airway disease in mice. Allergy 2017; 72:1891-1903. [PMID: 28543283 DOI: 10.1111/all.13212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma is an allergic airway disease (AAD) caused by aberrant immune responses to allergens. Protein phosphatase-2A (PP2A) is an abundant serine/threonine phosphatase with anti-inflammatory activity. The ubiquitin proteasome system (UPS) controls many cellular processes, including the initiation of inflammatory responses by protein degradation. We assessed whether enhancing PP2A activity with fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-methylbutan-1-ol (AAL(S) ), or inhibiting proteasome activity with bortezomib (BORT), could suppress experimental AAD. METHODS Acute AAD was induced in C57BL/6 mice by intraperitoneal sensitization with ovalbumin (OVA) in combination with intranasal (i.n) exposure to OVA. Chronic AAD was induced in mice with prolonged i.n exposure to crude house dust mite (HDM) extract. Mice were treated with vehicle, FTY720, AAL(S) , BORT or AAL(S) +BORT and hallmark features of AAD assessed. RESULTS AAL(S) reduced the severity of acute AAD by suppressing tissue eosinophils and inflammation, mucus-secreting cell (MSC) numbers, type 2-associated cytokines (interleukin (IL)-33, thymic stromal lymphopoietin, IL-5 and IL-13), serum immunoglobulin (Ig)E and airway hyper-responsiveness (AHR). FTY720 only suppressed tissue inflammation and IgE. BORT reduced bronchoalveolar lavage fluid (BALF) and tissue eosinophils and inflammation, IL-5, IL-13 and AHR. Combined treatment with AAL(S) +BORT had complementary effects and suppressed BALF and tissue eosinophils and inflammation, MSC numbers, reduced the production of type 2 cytokines and AHR. AAL(S) , BORT and AAL(S) +BORT also reduced airway remodelling in chronic AAD. CONCLUSION These findings highlight the potential of combination therapies that enhance PP2A and inhibit proteasome activity as novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- P. M. Nair
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - M. R. Starkey
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - T. J. Haw
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - G. Liu
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Horvat
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Morris
- School of Chemistry; University of New South Wales; Sydney NSW Australia
| | - N. M. Verrills
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - A. R. Clark
- Institute of Inflammation and Ageing; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - A. J. Ammit
- Woolcock Emphysema Centre; Woolcock Institute of Medical Research; University of Sydney; Sydney NSW Australia
- Faculty of Science; School of Life Sciences; University of Technology Sydney; Sydney NSW Australia
| | - P. M. Hansbro
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
9
|
Moosavi SM, Prabhala P, Ammit AJ. Role and regulation of MKP-1 in airway inflammation. Respir Res 2017; 18:154. [PMID: 28797290 PMCID: PMC5554001 DOI: 10.1186/s12931-017-0637-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a protein with anti-inflammatory properties and the archetypal member of the dual-specificity phosphatases (DUSPs) family that have emerged over the past decade as playing an instrumental role in the regulation of airway inflammation. Not only does MKP-1 serve a critical role as a negative feedback effector, controlling the extent and duration of pro-inflammatory MAPK signalling in airway cells, upregulation of this endogenous phosphatase has also emerged as being one of the key cellular mechanism responsible for the beneficial actions of clinically-used respiratory medicines, including β2-agonists, phosphodiesterase inhibitors and corticosteroids. Herein, we review the role and regulation of MKP-1 in the context of airway inflammation. We initially outline the structure and biochemistry of MKP-1 and summarise the multi-layered molecular mechanisms responsible for MKP-1 production more generally. We then focus in on some of the key in vitro studies in cell types relevant to airway disease that explain how MKP-1 can be regulated in airway inflammation at the transcriptional, post-translation and post-translational level. And finally, we address some of the potential challenges with MKP-1 upregulation that need to be explored further to fully exploit the potential of MKP-1 to repress airway inflammation in chronic respiratory disease.
Collapse
Affiliation(s)
- Seyed M Moosavi
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Pavan Prabhala
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Alaina J Ammit
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia. .,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|