1
|
Hedayati N, Mafi A, Farahani A, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A, Farahani N. The importance of the circRNA/Wnt axis in gliomas: Biological functions and clinical opportunities. Pathol Res Pract 2024; 261:155510. [PMID: 39116573 DOI: 10.1016/j.prp.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/β-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Liang T, Zhou X, Wang Y, Ma W. Glioma hexokinase 3 positively correlates with malignancy and macrophage infiltration. Metab Brain Dis 2024; 39:719-729. [PMID: 38687460 DOI: 10.1007/s11011-023-01333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Glioma is the main subtype of primary central nervous system (CNS) tumor with high malignancy and poor prognosis under current therapeutic approaches. Glycolysis and suppressive tumor microenvironment (TME) are key markers of glioma with great importance for aggressive features of glioma and inferior clinical outcomes. Hexokinase 3 (HK3) is an important rate-limiting enzyme in glycolysis, but its function in glioma remains unknown. METHODS This study comprehensively assessed the expression distribution and immunological effect of HK3 via pan-cancer analysis based on datasets from Genotype Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Furthermore, it explored the malignant phenotype and genomic landscape between low-HK3 and high-HK3 expression groups in gliomas from Chinese Glioma Genome Atlas (CGGA) and TCGA. Moreover, data from the TIMER website predicted the relationship between macrophage infiltration and HK3 expression. Also, single-cell sequencing data were used to validate the relationship. RESULTS For pan-cancer patients, HK3 was expressed in various cancers. The results showed that HK3 was highly expressed in gliomas and positively correlated with tumor-infiltrating immune cells (TIICs), immune checkpoints, immunomodulators, and chemokines. Meanwhile, HK3 expression was highest in normal immune cells and tissues. In gliomas, the expression of HK3 was found to be closely correlated with the malignant clinical characteristics and the infiltration of macrophages. Also, HK3 was proven to be positively associated with macrophage through single-cell sequencing data and immunohistochemistry techniques. Finally, it is predicted that samples with high HK3 expression are often malignant entities and also significant genomic aberrations of driver oncogenes. CONCLUSIONS This is the first comprehensive research to figure out the relationship between HK3 and TME characteristics in gliomas. HK3 is positively associated with macrophage infiltration and can induce the immunosuppressive TME and malignant phenotype of gliomas.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Deng Y, Zeng K, Wu D, Ling Y, Tian Y, Zheng Y, Fang S, Jiang X, Zhu G, Tu Y. FBLIM1 mRNA is a novel prognostic biomarker and is associated with immune infiltrates in glioma. Open Med (Wars) 2023; 18:20230863. [PMID: 38152333 PMCID: PMC10751895 DOI: 10.1515/med-2023-0863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Glioma is the most common primary brain tumor. Filamin-binding LIM protein 1 (FBLIM1) has been identified in multiple cancers and is suspected of playing a part in the development of tumors. However, the potential function of FBLIM1 mRNA in glioma has not been investigated. In this study, the clinical information and transcriptome data of glioma patients were, respectively, retrieved from the TCGA and CGGA databases. The expression level of FBLIM1 mRNA was shown to be aberrant in a wide variety of malignancies. Significantly, when glioma samples were compared to normal brain samples, FBLIM1 expression was shown to be significantly elevated in the former. A poor prognosis was related to high FBLIM1 expression, which was linked to more advanced clinical stages. Notably, multivariate analyses demonstrated that FBLIM1 expression was an independent predictor for the overall survival of glioma patients. Immune infiltration analysis disclosed that FBLIM1 expression had relevance with many immune cells. The results of RT-PCR suggested that FBLIM1 expression was markedly elevated in glioma specimens. Functional experiments unveiled that the knockdown of FBLIM1 mRNA suppressed glioma cell proliferation. In general, we initially discovered that FBLIM1 mRNA might be a possible prognostic marker in glioma.
Collapse
Affiliation(s)
- Yifan Deng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Kailiang Zeng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Diancheng Wu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yunzhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yu Tian
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yi Zheng
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Shumin Fang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaocong Jiang
- Department of Radiotherapy, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Gang Zhu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
4
|
Luo H, Huang K, Cheng M, Long X, Zhu X, Wu M. The HNF4A-CHPF pathway promotes proliferation and invasion through interactions with MAD1L1 in glioma. Aging (Albany NY) 2023; 15:11052-11066. [PMID: 37851364 PMCID: PMC10637790 DOI: 10.18632/aging.205076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023]
Abstract
Chondroitin polymerizing factor (CHPF) is an important glycosyltransferases that participates in the biosynthesis of chondroitin sulfate (CS). Our previous study showed that silencing CHPF expression inhibited glioma cell proliferation in vitro, but the molecular mechanisms by which CHPF contributes to development of glioma have not been characterized. In this study, we found that CHPF was up-regulated in glioma tissues and was positively correlated with malignant clinical pathological characteristics of patients with glioma. Silencing CHPF expression inhibited proliferation, colony formation, migration, and cell cycle of glioma cells. Moreover, silencing CHPF suppressed glioma malignance in vivo. Immunoprecipitation, co-immunoprecipitation, GST pulldown, and liquid chromatography-mass spectrometry (LC-MS/MS) assays were used to verify the interaction between CHPF and Mitotic arrest deficient 1-like 1 (MAD1L1). In addition, Chromatin Immunoprecipitation (ChIP)-PCR analysis showed that HNF4A bound to the CHPF promoter region, which indicated that the transcription factor hepatocyte nuclear factor 4A (HNF4A) could regulate the expression of CHPF in glioma cells.
Collapse
Affiliation(s)
- Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mengqi Cheng
- Department of Health Management Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoyan Long
- Science Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
5
|
Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel) 2023; 15:4920. [PMID: 37894287 PMCID: PMC10605619 DOI: 10.3390/cancers15204920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Brain cancer is known as one of the deadliest cancers globally. One of the causative factors is the imbalance between oxidative and antioxidant activities in the body, which is referred to as oxidative stress (OS). As part of regular metabolism, oxygen is reduced by electrons, resulting in the creation of numerous reactive oxygen species (ROS). Inflammation is intricately associated with the generation of OS, leading to the increased production and accumulation of reactive oxygen and nitrogen species (RONS). Glioma stands out as one of the most common malignant tumors affecting the central nervous system (CNS), characterized by changes in the redox balance. Brain cancer cells exhibit inherent resistance to most conventional treatments, primarily due to the distinctive tumor microenvironment. Oxidative stress (OS) plays a crucial role in the development of various brain-related malignancies, such as glioblastoma multiforme (GBM) and medulloblastoma, where OS significantly disrupts the normal homeostasis of the brain. In this review, we provide in-depth descriptions of prospective targets and therapeutics, along with an assessment of OS and its impact on brain cancer metabolism. We also discuss targeted therapies.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, India
| |
Collapse
|
6
|
Tang Q, Mao X, Chen Z, Ma C, Tu Y, Zhu Q, Lu J, Wang Z, Zhang Q, Wu W. Liquid-liquid phase separation-related gene in gliomas: FABP5 is a potential prognostic marker. J Gene Med 2023; 25:e3517. [PMID: 37114595 DOI: 10.1002/jgm.3517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The glioma is the most malignant human brain tumor. Early glioma detection and treatment are still difficult. New biomarkers are desperately required to aid in the evaluation of diagnosis and prognosis. METHODS The single cell sequencing dataset scRNA-6148 for glioblastoma was obtained from the Chinese Glioma Genome Atlas database. Data were gathered for the transcriptome sequencing project. Genes involved in liquid-liquid phase separation (LLPS) were taken out of the DrLLPS database. To find the modules connected to LLPS, the weighted co-expression network was analyzed. Differential expression analysis was used to identify the differentially expressed genes (DEGs) in gliomas. Pseudo-time series analysis, gene set enrichment analysis (GSEA) and immune cell infiltration analysis were used to investigate the role of important genes in the immunological microenvironment. We examined the function of key glioma genes using polymerase chain reaction (PCR) testing, CCK-8 assays, clone generation assays, transwell assays and wound healing assays. RESULTS FABP5 was identified as a key gene in glioblastoma by multiomics research. Pseudo-time series analysis showed that FABP5 was highly linked with the differentiation of many different types of cells. GSEA revealed that FABP5 was strongly linked to several hallmark pathways in glioblastoma. We looked at immune cell infiltration and discovered a significant link between FABP5, macrophages and T cell follicular helpers. The PCR experiment results demonstrated that FABP5 expression was elevated in glioma samples. Cell experiments showed that FABP5 knockdown dramatically decreased the viability, proliferation, invasion and migration of the LN229 and U87 glioma cell lines. CONCLUSIONS Our study provides a new biomarker, FABP5, for glioma diagnosis and treatment.
Collapse
Affiliation(s)
- Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiaoman Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Neurosurgery, Pukou Branch of Jiangsu People's Hospital, Nanjing Pukou District Central Hospital, Nanjing, China
| | - Zhengxin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qianmiao Zhu
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Jiacheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhen Wang
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Qixiang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
7
|
Godlewski A, Czajkowski M, Mojsak P, Pienkowski T, Gosk W, Lyson T, Mariak Z, Reszec J, Kondraciuk M, Kaminski K, Kretowski M, Moniuszko M, Kretowski A, Ciborowski M. A comparison of different machine-learning techniques for the selection of a panel of metabolites allowing early detection of brain tumors. Sci Rep 2023; 13:11044. [PMID: 37422554 PMCID: PMC10329700 DOI: 10.1038/s41598-023-38243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
Metabolomics combined with machine learning methods (MLMs), is a powerful tool for searching novel diagnostic panels. This study was intended to use targeted plasma metabolomics and advanced MLMs to develop strategies for diagnosing brain tumors. Measurement of 188 metabolites was performed on plasma samples collected from 95 patients with gliomas (grade I-IV), 70 with meningioma, and 71 healthy individuals as a control group. Four predictive models to diagnose glioma were prepared using 10 MLMs and a conventional approach. Based on the cross-validation results of the created models, the F1-scores were calculated, then obtained values were compared. Subsequently, the best algorithm was applied to perform five comparisons involving gliomas, meningiomas, and controls. The best results were obtained using the newly developed hybrid evolutionary heterogeneous decision tree (EvoHDTree) algorithm, which was validated using Leave-One-Out Cross-Validation, resulting in an F1-score for all comparisons in the range of 0.476-0.948 and the area under the ROC curves ranging from 0.660 to 0.873. Brain tumor diagnostic panels were constructed with unique metabolites, which reduces the likelihood of misdiagnosis. This study proposes a novel interdisciplinary method for brain tumor diagnosis based on metabolomics and EvoHDTree, exhibiting significant predictive coefficients.
Collapse
Affiliation(s)
- Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Marcin Czajkowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Wioleta Gosk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Białystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Białystok, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Karol Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Marek Kretowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
8
|
Silva JA, Colquhoun A. Effect of Polyunsaturated Fatty Acids on Temozolomide Drug-Sensitive and Drug-Resistant Glioblastoma Cells. Biomedicines 2023; 11:biomedicines11030779. [PMID: 36979758 PMCID: PMC10045395 DOI: 10.3390/biomedicines11030779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glioblastomas (GBMs) are notoriously difficult to treat, and the development of multiple drug resistance (MDR) is common during the course of the disease. The polyunsaturated fatty acids (PUFAs) gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have been reported to improve MDR in several tumors including breast, bladder, and leukaemia. However, the effects of PUFAs on GBM cell MDR are poorly understood. The present study investigated the effects of PUFAs on cellular responses to temozolomide (TMZ) in U87MG cells and the TMZ-resistant (TMZR) cells derived from U87MG. Cells were treated with PUFAs in the absence or presence of TMZ and dose–response, viable cell counting, gene expression, Western blotting, flow cytometry, gas chromatography-mass spectrometry (GCMS), and drug efflux studies were performed. The development of TMZ resistance caused an increase in ABC transporter ABCB1 and ABCC1 expression. GLA-, EPA-, and DHA-treated cells had altered fatty acid composition and accumulated lipid droplets in the cytoplasm. The most significant reduction in cell growth was seen for the U87MG and TMZR cells in the presence of EPA. GLA and EPA caused more significant effects on ABC transporter expression than DHA. GLA and EPA in combination with TMZ caused significant reductions in rhodamine 123 efflux from U87MG cells but not from TMZR cells. Overall, these findings support the notion that PUFAs can modulate ABC transporters in GBM cells.
Collapse
|
9
|
Tumor Microenvironment in Gliomas: A Treatment Hurdle or an Opportunity to Grab? Cancers (Basel) 2023; 15:cancers15041042. [PMID: 36831383 PMCID: PMC9954692 DOI: 10.3390/cancers15041042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Gliomas are the most frequent central nervous system (CNS) primary tumors. The prognosis and clinical outcomes of these malignancies strongly diverge according to their molecular alterations and range from a few months to decades. The tumor-associated microenvironment involves all cells and connective tissues surrounding tumor cells. The composition of the microenvironment as well as the interactions with associated neoplastic mass, are both variables assuming an increasing interest in these last years. This is mainly because the microenvironment can mediate progression, invasion, dedifferentiation, resistance to treatment, and relapse of primary gliomas. In particular, the tumor microenvironment strongly diverges from isocitrate dehydrogenase (IDH) mutated and wild-type (wt) tumors. Indeed, IDH mutated gliomas often show a lower infiltration of immune cells with reduced angiogenesis as compared to IDH wt gliomas. On the other hand, IDH wt tumors exhibit a strong immune infiltration mediated by several cytokines and chemokines, including CCL2, CCL7, GDNF, CSF-1, GM-CSF, etc. The presence of several factors, including Sox2, Oct4, PD-L1, FAS-L, and TGF β2, also mediate an immune switch toward a regulatory inhibited immune system. Other important interactions are described between IDH wt glioblastoma cells and astrocytes, neurons, and stem cells, while these interactions are less elucidated in IDH-mutated tumors. The possibility of targeting the microenvironment is an intriguing perspective in terms of therapeutic drug development. In this review, we summarized available evidence related to the glioma microenvironment, focusing on differences within different glioma subtypes and on possible therapeutic development.
Collapse
|
10
|
Dean PT, Hooks SB. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front Oncol 2023; 12:1116014. [PMID: 36776369 PMCID: PMC9909545 DOI: 10.3389/fonc.2022.1116014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of malignant glioma. The GBM tumor microenvironment (TME) is a complex ecosystem of heterogeneous cells and signaling factors. Glioma associated macrophages and microglia (GAMs) constitute a significant portion of the TME, suggesting that their functional attributes play a crucial role in cancer homeostasis. In GBM, an elevated GAM population is associated with poor prognosis and therapeutic resistance. Neoplastic cells recruit these myeloid populations through release of chemoattractant factors and dysregulate their induction of inflammatory programs. GAMs become protumoral advocates through production a variety of cytokines, inflammatory mediators, and growth factors that can drive cancer proliferation, invasion, immune evasion, and angiogenesis. Among these inflammatory factors, cyclooxygenase-2 (COX-2) and its downstream product, prostaglandin E2 (PGE2), are highly enriched in GBM and their overexpression is positively correlated with poor prognosis in patients. Both tumor cells and GAMs have the ability to signal through the COX-2 PGE2 axis and respond in an autocrine/paracrine manner. In the GBM TME, enhanced signaling through the COX-2/PGE2 axis leads to pleotropic effects that impact GAM dynamics and drive tumor progression.
Collapse
|
11
|
In Vitro Cytotoxic Effects and Mechanisms of Action of Eleutherine Isolated from Eleutherine plicata Bulb in Rat Glioma C6 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248850. [PMID: 36557983 PMCID: PMC9785660 DOI: 10.3390/molecules27248850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Gliomas are the most common primary malignant brain tumors in adults, and have a poor prognosis, despite the different types of treatment available. There is growing demand for new therapies to treat this life-threatening tumor. Quinone derivatives from plants have received increased interest as potential anti-glioma drugs, due to their diverse pharmacologic activities, such as inhibiting cell growth, inflammation, tumor invasion, and promoting tumor regression. Previous studies have demonstrated the anti-glioma activity of Eleutherine plicata, which is related to three main naphthoquinone compounds-eleutherine, isoeleutherine, and eleutherol-but their mechanism of action remains elusive. Thus, the aim of this study was to investigate the mechanism of action of eleutherine on rat C6 glioma. In vitro cytotoxicity was evaluated by MTT assay; morphological changes were evaluated by phase-contrast microscopy. Apoptosis was determined by annexin V-FITC-propidium iodide staining, and antiproliferative effects were assessed by wound migration and colony formation assays. Protein kinase B (AKT/pAKT) expression was measured by western blot, and telomerase reverse transcriptase mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Eleutherine reduced C6 cell proliferation in a dose-dependent manner, suppressed migration and invasion, induced apoptosis, and reduced AKT phosphorylation and telomerase expression. In summary, our results suggest that eleutherine has potential clinical use in treating glioma.
Collapse
|
12
|
Grave N, Scheffel TB, Cruz FF, Rockenbach L, Goettert MI, Laufer S, Morrone FB. The functional role of p38 MAPK pathway in malignant brain tumors. Front Pharmacol 2022; 13:975197. [PMID: 36299892 PMCID: PMC9589890 DOI: 10.3389/fphar.2022.975197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are extremely debilitating malignant brain tumors with very limited response to therapies. The initiation and progression of gliomas can be attributed to several molecular abnormalities, such as mutations in important regulatory networks. In this regard, the mitogen-activated protein kinases (MAPKs) arise as key signaling pathways involved in cell proliferation, survival, and differentiation. MAPK pathway has been altered in most glial tumors. In glioma cells, the activation of p38 MAPK contributes to tumor invasion and metastasis and is positively correlated with tumor grade, being considered a potential oncogenic factor contributing to brain tumorigenesis and chemotherapy resistance. Hence, a better understanding of glioma pathogenesis is essential to the advancement of therapies that provide extended life expectancy for glioma patients. This review aims to explore the role of the p38 MAPK pathway in the genesis and progression of malignant brain tumors.
Collapse
Affiliation(s)
- Nathália Grave
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thamiris Becker Scheffel
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Fernandes Cruz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana Rockenbach
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Inês Goettert
- Laboratorio de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Fernanda Bueno Morrone,
| |
Collapse
|
13
|
Ma W, Ye L, Zhong C, Li J, Ye F, Lv L, Yu Y, Jiang S, Zhou P. Kynurenine produced by tryptophan 2,3-dioxygenase metabolism promotes glioma progression through an aryl hydrocarbon receptor-dependent signaling pathway. Cell Biol Int 2022; 46:1577-1587. [PMID: 35702760 DOI: 10.1002/cbin.11833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023]
Abstract
The current studies associated with tumor biology continue to describe a high correlation between tryptophan (Trp) metabolism and tumor progression. These findings reflect the complex underlying mechanism of tumor development and highlight the need to explore additional drug targets for carcinoma-associated diseases. In our study, we reported that elevated Trp metabolism was observed in highly malignant glioma tumor tissues from patients. The elevated Trp metabolism in glioma cells were induced by the overexpression of Trp 2,3-dioxygenase 2 (TDO2), which further contributed to the production of the metabolite kynurenine (Kyn). Subsequently, the Kyn derived from Trp metabolism was able to mediate the activation of the aryl hydrocarbon receptor (AhR) and downstream PI3K/AKT signals, resulting in the strengthening of tumor stemness and growth. Meanwhile, the activation of the AhR could promote the process of epithelial-mesenchymal transition in gliomas through a TGF-β-dependent mechanism, leading to enhanced tumor invasion in vitro and in vivo. Inhibition of the AhR using StemRegenin 1 was demonstrated to suppress glioma growth and improve the outcome of traditional chemotherapy in subcutaneous tumor-bearing mice, representing a promising therapeutic target for clinical glioma treatment.
Collapse
Affiliation(s)
- Weichao Ma
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Lu Ye
- Department of Oral Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chuanhong Zhong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Li
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Feng Ye
- Department of neurosurgery, People's Hospital of Deyang, Deyang, Sichuan, China
| | - Liang Lv
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Yang Yu
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Shu Jiang
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Peizhi Zhou
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| |
Collapse
|
14
|
Corrêa-Ferreira ML, do Rocio Andrade Pires A, Barbosa IR, Echevarria A, Pedrassoli GH, Winnischofer SMB, Noleto GR, Cadena SMSC. The mesoionic compound MI-D changes energy metabolism and induces apoptosis in T98G glioma cells. Mol Cell Biochem 2022; 477:2033-2045. [PMID: 35420333 DOI: 10.1007/s11010-022-04423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
The mesoionic compound 4-phenyl-5-(4-nitro-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride (MI-D) impairs mitochondrial oxidative phosphorylation and has a significant antitumour effect against hepatocarcinoma and melanoma. This study evaluated the cytotoxic effect of MI-D on T98G glioblastoma cells and investigated whether the impairment of oxidative phosphorylation promoted by MI-D is relevant to its cytotoxic effect. The effects of MI-D on T98G cells cultured in high glucose Dulbecco's modified Eagle's medium (DMEM) HG (glycolysis-dependent) and galactose plus glutamine-supplemented Dulbecco's modified Eagle's medium (DMEM) GAL (oxidative phosphorylation-dependent) were compared. T98G cells grown in DMEM GAL medium exhibited higher respiration rates and citrate synthase activity and lower lactate levels, confirming the metabolic shift to oxidative phosphorylation in these cells. MI-D significantly decreased the cell viability in a dose-dependent manner in both media; however, T98G cells cultured in DMEM GAL medium were more susceptible. The mesoionic significantly inhibited mitochondrial oxidative phosphorylation of glioma cells in both media. At the same time, lactate levels were not altered, indicating an absence of compensatory glycolysis activation. Additionally, MI-D increased the citrate synthase activity of cells in both media, which in DMEM HG-cultivated cells was followed by citrate accumulation. Apoptosis dependent on caspase-3 mediated the toxicity of MI-D on T98G cells. The higher susceptibility of glioma cells cultured in DMEM GAL medium to MI-D indicates that the impairment of mitochondrial functions is involved in mesoionic cytotoxicity. The results of this study indicate the potential use of MI-D for glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Igor Resendes Barbosa
- Department of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aurea Echevarria
- Department of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Sílvia Maria Suter Correia Cadena
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Brazil. .,Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Coronel Francisco H. Dos Santos, C. Postal 19046, Curitiba, Paraná, 81531-990, Brazil.
| |
Collapse
|
15
|
Zhu J, Liu X, Luan Z, Xue W, Cui H, Zhang B, Xue G. Circular RNA circSLC8A1 inhibits the proliferation and invasion of glioma cells through targeting the miR-214-5p/CDC27 axis. Metab Brain Dis 2022; 37:1015-1023. [PMID: 35098413 DOI: 10.1007/s11011-022-00915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Circular RNA circSLC8A1 is one of the cancer-related circRNAs that is implicated in various cancers. However, studies focusing on the role of circSLC8A1 in glioma is rare. Here we attempted to evaluate the biological function of circSLC8A1 in glioma and explore the potential mechanism. The relative expression of circSLC8A1, miR-214-5p and CDC27 in tissues and cell lines was determined by qRT-PCR. Cell proliferation and invasion were respectively measured by CCK-8 and transwell assays. Protein level of CDC27 was analyzed by western blot. Luciferase reporter assay was performed to confirm the regulatory interaction of cirRNA-miRNA-mRNA. Lowly expressed circSLC8A1 was observed in both glioma tissues and cell lines. Further biological analyses showed that circSLC8A1 inhibits the cell proliferation and invasion of glioma cells. CircSLC8A1 directly sponged miR-214-5p and inhibited miR-214-5p expression in glioma cells. CDC27 was a direct target of miR-214-5p and could be regulated by miR-214-5p. Moreover, miR-214-5p mimics and CDC27 knockdown reversed the inhibitory effects of circSLC8A1 on cell proliferation and invasion. Taken together, our results demonstrated a tumor suppressive role of circSLC8A1 in glioma through regulation of glioma cells proliferation and invasion. The effects of circSLC8A1 were mediated by miR-214-5p/CDC27 axis. Our study provided a new understanding of the occurrence and development of glioma.
Collapse
Affiliation(s)
- Jiabao Zhu
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China.
| | - Xiaobin Liu
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Zhonghua Luan
- Department of Pathology, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Wei Xue
- Department of Radiology, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Haizheng Cui
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Baochen Zhang
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Guoqiang Xue
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| |
Collapse
|
16
|
Deng C, Li H, Li Q. F-box protein 17 promotes glioma progression by regulating glycolysis pathway. Biosci Biotechnol Biochem 2022; 86:455-463. [PMID: 35044455 DOI: 10.1093/bbb/zbac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
F-box protein 17 (FBXO17) is associated with high-grade glioma and acted as a promotor of glioma development. This study investigated the effect and underlying pathway of FBXO17 on glioma. The Cancer Genome Atlas database was applied to analyze FBXO17 expression information in glioma. First, high FBXO17 expressions are associated with glioma and poor prognosis. Then, FBXO17 was upregulated in glioma cells. Meanwhile, knock-down of FBXO17 inhibited cell proliferation, migration, and invasion, but increased the cell apoptosis. Besides, knock-down of FBXO17 inhibited mitochondrial membrane potential and increased reactive oxygen species. Furthermore, knock-down of FBXO17 decreased level of adenosine triphosphate, glucose, lactate, GLUT1, HK2, PFKP, PKM2, and LDHA. In conclusion, FBXO17 was high expression in glioma, and FBXO17 regulates glioma by regulating glycolysis pathway, providing novel theoretical for the treatment of glioma.
Collapse
Affiliation(s)
- Chao Deng
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| | - Hongzhi Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| | - Qingmin Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| |
Collapse
|
17
|
Wang J, Ren P, Zeng Z, Ma L, Li Y, Zhang H, Guo W. Inhibition of translocator protein 18 kDa suppressed the progression of glioma via the ELAV-like RNA-binding protein 1/MAPK-activated protein kinase 3 axis. Bioengineered 2022; 13:7457-7470. [PMID: 35285415 PMCID: PMC9208533 DOI: 10.1080/21655979.2022.2048992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jingya Wang
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, Dongcheng,China
- Department of Gastroenterology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Ren
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, Dongcheng,China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Ma
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, Dongcheng,China
| | - Yunjun Li
- Department of Neurosurgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, Dongcheng, China
| | - Hongmei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Wenzhi Guo
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, Dongcheng,China
| |
Collapse
|
18
|
Tanzhu G, Li N, Li Z, Zhou R, Shen L. Molecular Subtypes and Prognostic Signature of Pyroptosis-Related lncRNAs in Glioma Patients. Front Oncol 2022; 12:779168. [PMID: 35237509 PMCID: PMC8884250 DOI: 10.3389/fonc.2022.779168] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/21/2022] [Indexed: 01/09/2023] Open
Abstract
The relationship between pyroptosis-related long non-coding RNAs (pyroptosis-related lncRNAs) and glioma prognosis have not been studied clearly. Basing on The Cancer Genome Atlas and The Chinese Glioma Genome Atlas datasets, we firstly identified 23 pyroptosis-related lncRNAs with Pearson coefficient |r| > 0.5 and p < 0.001. The survival probability was lower in cluster 1. 13 lncRNAs was included into signature and divided all the glioma patients into two groups, among which survival probability of the high-risk group was lower than that in low-risk group (P<0.001). The risk score was higher in the age>60, dead grade 3, cluster 1 and immune score high groups. Furthermore, subgroup analysis showed patients with different grades, IDH and 1p19ql state distinguished by the median of risk score had different survival probability. Risk score was one of independent factors for glioma prognosis, and 1-, 3-, 5-years survival were calculated in nomogram. Meanwhile, the same as the median risk score in TCGA cohort, the glioma patients from CGGA were categorized into two groups and validated the outcome mentioned above(P<0.01). GO and KEGG analysis revealed the immunity process of the targeted genes. Thus, the immune filtration we compared showed naive B cell, resting dendritic cells, activated NK cells, activated Mast cells, monocytes are higher in low-risk group. Moreover, level of the activated NK cells, M0-and M1 Macrophages was in positive relationship with the risk score. Besides, competing endogenous RNA (ceRNA) network display interaction among microRNA, lncRNAs and their targeted genes. Pyroptosis-related lncRNAs could be a dependent prognosis factor and maybe linked to the immune response in glioma. This prognosis signature had potential value in estimate the survival of the patients with glioma.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhanzhan Li,
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Han Y, Wang H. MiR-3918 Inhibits Tumorigenesis of Glioma via Targeting EGFR to Regulate PI3K/AKT and ERK Pathways. J Mol Neurosci 2022; 72:433-440. [PMID: 35023001 DOI: 10.1007/s12031-021-01952-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Increasing evidence has demonstrated the miRNAs' action in cancerogenesis and tumor progression. Here, we explored the role and underlying mechanism of miR-3918 during glioma malignancy. miR-3918 and EGFR expression was detected in glioma tissues and tissues by RT-qPCR. The proliferative and migratory rate of glioma cells was assessed through CCK8 and Scratch wound-healing migration assay. Xenograft tumor mouse models were established for in vivo verification. A series of bioinformatics analysis coupled with luciferase reporter assays verified the targeted binding between miR-3918 and EGFR. Expression analyses demonstrated that miR-3918 was poorly expressed in glioma tissues while EGFR abundantly expressed. MiR-3918 overexpression impaired the proliferative and migratory capacities of glioma cells by inactivating PI3K/AKT and ERK pathways. Meanwhile, miR-3918 overexpression also retarded the growth of glioma xenograft. Mechanically, miR-3918 targeted EGFF which was further validated by the correlation of miR-3918 and EGFR expression in glioma tissues. When overexpressed, EGFR can restore the inactivated PI3K/AKT and ERK pathways caused by miR-3918 and influence the glioma cell proliferation and migration. Our findings are the first report that miR-3918/EGFR axis arrested the tumorigenesis of glioma via regulating PI3K/AKT and ERK pathways.
Collapse
Affiliation(s)
- Ya Han
- Department of Neurology, Wuhan Red Cross Hospital, No. 392 Hongkong Road, Jianghan District, Wuhan, 430015, Hubei, China
| | - Hengmin Wang
- Department of Neurology, Wuhan Red Cross Hospital, No. 392 Hongkong Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
20
|
Zhao Z, Li G, Han Y, Li Y, Ji Z, Guo R, Yu X. Circular RNA ZNF609 enhances proliferation and glycolysis during glioma progression by miR-378b/SLC2A1 axis. Aging (Albany NY) 2021; 13:21122-21133. [PMID: 34520391 PMCID: PMC8457557 DOI: 10.18632/aging.203331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
Glioma is a prevalent brain malignancy with aggressive progression and with grave prognosis in adults. Circular RNAs have been reported to regulate glioma development and function as the diagnostic, prognostic, and therapeutic biomarkers. In this study, we were interested the function of circular RNA ZNF609 in modulating glioma. Remarkably, knockdown of ZNF609 by siRNA in glioma cells reduced cell viabilities and Edu-positive. The silencing of ZNF609 stimulated the apoptosis of glioma cells. Meanwhile, the ZNF609 depletion inhibited the invasion and migration of glioma cells. In glioma cells, the mRNA and protein expression of E-cadherin was enhanced, while Vimentin was reduced by the inhibition of ZNF609. The glucose uptake, lactate product, and ATP production in glioma cells were suppressed by ZNF609 knockdown. Mechanically, miR-378b was sponged by ZNF609 and targeted SLC2A1 in glioma cells. ZNF609 enhanced SLC2A1 expression by inhibiting miR-378b. The inhibition of miR-378b or the enhancement of SLC2A1 reversed ZNF609 depletion-regulated glioma cell proliferation in vitro. The depletion of ZNF609 suppressed glioma cell growth in the nude mice. Therefore, we concluded that ZNF609 contributed to cell survival and glycolysis of glioma by targeting miR-378b/SLC2A1 axis. ZNF609 and miR-378b may function as potential treatment targets in glioma.
Collapse
Affiliation(s)
- Zhihuang Zhao
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Gang Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yonggang Han
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yabin Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zhisheng Ji
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rui Guo
- Bozhou Baozhang Hospital, Haozhou, Anhui Province, China
| | - Xiaohong Yu
- Department of Urology Surgery, Linyi People's Hospital, Linyi, Shandong Province, China
| |
Collapse
|
21
|
Xiang Z, Chen X, Lv Q, Peng X. A Novel Inflammatory lncRNAs Prognostic Signature for Predicting the Prognosis of Low-Grade Glioma Patients. Front Genet 2021; 12:697819. [PMID: 34408772 PMCID: PMC8365518 DOI: 10.3389/fgene.2021.697819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background As immunotherapy has received attention as new treatments for brain cancer, the role of inflammation in the process of glioma is of particular importance. Increasing studies have further shown that long non-coding RNAs (lncRNAs) are important factors that promote the development of glioma. However, the relationship between inflammation-related lncRNAs and the prognosis of glioma patients remains unclear. The purpose of this study is to construct and validate an inflammation-related lncRNA prognostic signature to predict the prognosis of low-grade glioma patients. Methods By downloading and analyzing the gene expression data and clinical information of the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) patients with low-grade gliomas, we could screen for inflammatory gene-related lncRNAs. Furthermore, through Cox and the Least Absolute Shrinkage and Selection Operator regression analyses, we established a risk model and divided patients into high- and low-risk groups based on the median value of the risk score to analyze the prognosis. In addition, we analyzed the tumor mutation burden (TMB) between the two groups based on somatic mutation data, and explored the difference in copy number variations (CNVs) based on the GISTIC algorithm. Finally, we used the MCPCounter algorithm to study the relationship between the risk model and immune cell infiltration, and used gene set enrichment analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to explore the enrichment pathways and biological processes of differentially expressed genes between the high- and low-risk groups. Results A novel prognostic signature was constructed including 11 inflammatory lncRNAs. This risk model could be an independent prognostic predictor. The patients in the high-risk group had a poor prognosis. There were significant differences in TMB and CNVs for patients in the high- and low-risk groups. In the high-risk group, the immune system was activated more significantly, and the expression of immune checkpoint-related genes was also higher. The GSEA, GO, and KEGG analyses showed that highly expressed genes in the high-risk group were enriched in immune-related processes, while lowly expressed genes were enriched in neuromodulation processes. Conclusion The risk model of 11 inflammation-related lncRNAs can serve as a promising prognostic biomarker for low-grade gliomas patients.
Collapse
Affiliation(s)
- Zijin Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueru Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Jara-Gutiérrez Á, Baladrón V. The Role of Prostaglandins in Different Types of Cancer. Cells 2021; 10:cells10061487. [PMID: 34199169 PMCID: PMC8231512 DOI: 10.3390/cells10061487] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
The prostaglandins constitute a family of lipids of 20 carbon atoms that derive from polyunsaturated fatty acids such as arachidonic acid. Traditionally, prostaglandins have been linked to inflammation, female reproductive cycle, vasodilation, or bronchodilator/bronchoconstriction. Recent studies have highlighted the involvement of these lipids in cancer. In this review, existing information on the prostaglandins associated with different types of cancer and the advances related to the potential use of them in neoplasm therapies have been analyzed. We can conclude that the effect of prostaglandins depends on multiple factors, such as the target tissue, their plasma concentration, and the prostaglandin subtype, among others. Prostaglandin D2 (PGD2) seems to hinder tumor progression, while prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2α) seem to provide greater tumor progression and aggressiveness. However, more studies are needed to determine the role of prostaglandin I2 (PGI2) and prostaglandin J2 (PGJ2) in cancer due to the conflicting data obtained. On the other hand, the use of different NSAIDs (non-steroidal anti-inflammatory drugs), especially those selective of COX-2 (cyclooxygenase 2), could have a crucial role in the fight against different neoplasms, either as prophylaxis or as an adjuvant treatment. In addition, multiple targets, related to the action of prostaglandins on the intracellular signaling pathways that are involved in cancer, have been discovered. Thus, in depth research about the prostaglandins involved in different cancer and the different targets modulated by them, as well as their role in the tumor microenvironment and the immune response, is necessary to obtain better therapeutic tools to fight cancer.
Collapse
|
23
|
Huang R, Dong R, Wang N, He Y, Zhu P, Wang C, Lan B, Gao Y, Sun L. Adaptive Changes Allow Targeting of Ferroptosis for Glioma Treatment. Cell Mol Neurobiol 2021; 42:2055-2074. [PMID: 33893939 DOI: 10.1007/s10571-021-01092-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a type of regulated cell death that plays an essential role in various brain diseases, including cranial trauma, neuronal diseases, and brain tumors. It has been reported that cancer cells rely on their robust antioxidant capacity to escape ferroptosis. Therefore, ferroptosis exploitation could be an effective strategy to prevent tumor proliferation and invasion. Glioma is a common malignant craniocerebral tumor exhibiting complicated drug resistance and survival mechanisms, resulting in a high mortality rate and short survival time. Recent studies have determined that metabolic alterations in glioma offer exploitable therapeutic targets. These metabolic alterations allow targeted therapy to achieve some initial efficacy but have failed to inhibit glioma growth, invasion, and drug resistance effectively. It has been proposed that the reason for the high malignancy and drug resistance observed with glioma is that these tumors can effectively evade ferroptosis. Ferroptosis-inducing drugs were found to exert a positive effect by targeting this particular characteristic of glioma cells. Moreover, gliomas develop enhanced drug resistance through anti-ferroptosis mechanisms. In this study, we provided an overview of the mechanisms by which glioma aggressiveness and drug resistance are mediated by the evasion of ferroptosis. This information might provide new targets for glioma therapy as well as new insights and ideas for future research.
Collapse
Affiliation(s)
- Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Rui Dong
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Chong Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
24
|
Cyclooxygenase Inhibition Alters Proliferative, Migratory, and Invasive Properties of Human Glioblastoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms22094297. [PMID: 33919029 PMCID: PMC8122446 DOI: 10.3390/ijms22094297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development.
Collapse
|
25
|
Wirsik NM, Ehlers J, Mäder L, Ilina EI, Blank AE, Grote A, Feuerhake F, Baumgarten P, Devraj K, Harter PN, Mittelbronn M, Naumann U. TGF-β activates pericytes via induction of the epithelial-to-mesenchymal transition protein SLUG in glioblastoma. Neuropathol Appl Neurobiol 2021; 47:768-780. [PMID: 33780024 DOI: 10.1111/nan.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/22/2021] [Accepted: 03/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS In primary central nervous system tumours, epithelial-to-mesenchymal transition (EMT) gene expression is associated with increased malignancy. However, it has also been shown that EMT factors in gliomas are almost exclusively expressed by glioma vessel-associated pericytes (GA-Peris). In this study, we aimed to identify the mechanism of EMT in GA-Peris and its impact on angiogenic processes. METHODS In glioma patients, vascular density and the expression of the pericytic markers platelet derived growth factor receptor (PDGFR)-β and smooth muscle actin (αSMA) were examined in relation to the expression of the EMT transcription factor SLUG and were correlated with survival of patients with glioblastoma (GBM). Functional mechanisms of SLUG regulation and the effects on primary human brain vascular pericytes (HBVP) were studied in vitro by measuring proliferation, cell motility and growth characteristics. RESULTS The number of PDGFR-β- and αSMA-positive pericytes did not change with increased malignancy nor showed an association with the survival of GBM patients. However, SLUG-expressing pericytes displayed considerable morphological changes in GBM-associated vessels, and TGF-β induced SLUG upregulation led to enhanced proliferation, motility and altered growth patterns in HBVP. Downregulation of SLUG or addition of a TGF-β antagonising antibody abolished these effects. CONCLUSIONS We provide evidence that in GA-Peris, elevated SLUG expression is mediated by TGF-β, a cytokine secreted by most glioma cells, indicating that the latter actively modulate neovascularisation not only by modulating endothelial cells, but also by influencing pericytes. This process might be responsible for the formation of an unstructured tumour vasculature as well as for the breakdown of the blood-brain barrier in GBM.
Collapse
Affiliation(s)
- Naita M Wirsik
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jakob Ehlers
- Laboratory of Molecular Neuro-Oncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Lisa Mäder
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Department of Neurology, Klinikum Darmstadt, Darmstadt, Germany
| | - Elena I Ilina
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Anna-Eva Blank
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Pediatric Cardiology, University Hospital of Giessen, Gießen, Germany
| | - Anne Grote
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Friedrich Feuerhake
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Peter Baumgarten
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Department of Neurosurgery, Goethe University, Frankfurt/Main, Germany
| | - Kavi Devraj
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Patrick N Harter
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg.,National Center of Pathology (NCP), Laboratoire Nationale de Santé (LNS), Luxembourg, Luxembourg
| | - Ulrike Naumann
- Laboratory of Molecular Neuro-Oncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Treatment with Cyclic AMP Activators Reduces Glioblastoma Growth and Invasion as Assessed by Two-Photon Microscopy. Cells 2021; 10:cells10030556. [PMID: 33806549 PMCID: PMC8000435 DOI: 10.3390/cells10030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Despite progress in surgery and radio-chemotherapy of glioblastoma (GB), the prognosis remains very poor. GB cells exhibit a preference for hypoxia to maintain their tumor-forming capacity. Enhancing oxidative phosphorylation—known as the anti-Warburg effect—with cyclic AMP activators has been demonstrated to drive GB cells from proliferation to differentiation thereby reducing tumor growth in a cell culture approach. Here we re-evaluate this treatment in a more clinically relevant model. (2) Methods: The effect of treatment with dibutyryl cyclic AMP (dbcAMP, 1 mM) and the cAMP activator forskolin (50µM) was assessed in a GB cell line (U87GFP+, 104 cells) co-cultured with mouse organotypic brain slices providing architecture and biochemical properties of normal brain tissue. Cell viability was determined by propidium-iodide, and gross metabolic effects were excluded in the extracellular medium. Tumor growth was quantified in terms of area, volume, and invasion at the start of culture, 48 h, 7 days, and 14 days after treatment. (3) Results: The tumor area was significantly reduced following dbcAMP or forskolin treatment (F2,249 = 5.968, p = 0.0029). 3D volumetric quantification utilizing two-photon fluorescence microscopy revealed that the treated tumors maintained a spheric shape while the untreated controls exhibited the GB typical invasive growth pattern. (4) Conclusions: Our data demonstrate that treatment with a cAMP analog/activator reduces GB growth and invasion.
Collapse
|
27
|
Influence of Lipoxygenase Inhibition on Glioblastoma Cell Biology. Int J Mol Sci 2020; 21:ijms21218395. [PMID: 33182324 PMCID: PMC7664864 DOI: 10.3390/ijms21218395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The relationship between glioblastoma (GBM) and fatty acid metabolism could be the key to elucidate more effective therapeutic targets. 15-lipoxygenase-1 (15-LOX), a linolenic acid and arachidonic acid metabolizing enzyme, induces both pro- and antitumorigenic effects in different cancer types. Its role in glioma activity has not yet been clearly described. The objective of this study was to identify the influence of 15-LOX and its metabolites on glioblastoma cell activity. METHODS GBM cell lines were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify 15-LOX metabolites. GBM cells treated with 15-LOX metabolites, 13-hydroxyoctadecadeinoic acid (HODE) and 9-HODE, and two 15-LOX inhibitors (luteolin and nordihydroguaiaretic acid) were also examined. Dose response/viability curves, RT-PCRs, flow cytometry, migration assays, and zymograms were performed to analyze GBM growth, migration, and invasion. RESULTS Higher quantities of 13-HODE were observed in five GBM cell lines compared to other lipids analyzed. Both 13-HODE and 9-HODE increased cell count in U87MG. 15-LOX inhibition decreased migration and increased cell cycle arrest in the G2/M phase. CONCLUSION 15-LOX and its linoleic acid (LA)-derived metabolites exercise a protumorigenic influence on GBM cells in vitro. Elevated endogenous levels of 13-HODE called attention to the relationship between linoleic acid metabolism and GBM cell activity.
Collapse
|
28
|
Lu Y, Patel M, Natarajan K, Ughratdar I, Sanghera P, Jena R, Watts C, Sawlani V. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma. Magn Reson Imaging 2020; 74:161-170. [PMID: 32980505 DOI: 10.1016/j.mri.2020.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Survival varies in patients with glioblastoma due to intratumoral heterogeneity and radiomics/imaging biomarkers have potential to demonstrate heterogeneity. The objective was to combine radiomic, semantic and clinical features to improve prediction of overall survival (OS) and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status from pre-operative MRI in patients with glioblastoma. METHODS A retrospective study of 181 MRI studies (mean age 58 ± 13 years, mean OS 497 ± 354 days) performed in patients with histopathology-proven glioblastoma. Tumour mass, contrast-enhancement and necrosis were segmented from volumetric contrast-enhanced T1-weighted imaging (CE-T1WI). 333 radiomic features were extracted and 16 Visually Accessible Rembrandt Images (VASARI) features were evaluated by two experienced neuroradiologists. Top radiomic, VASARI and clinical features were used to build machine learning models to predict MGMT status, and all features including MGMT status were used to build Cox proportional hazards regression (Cox) and random survival forest (RSF) models for OS prediction. RESULTS The optimal cut-off value for MGMT promoter methylation index was 12.75%; 42 radiomic features exhibited significant differences between high and low-methylation groups. However, model performance accuracy combining radiomic, VASARI and clinical features for MGMT status prediction varied between 45 and 67%. For OS predication, the RSF model based on clinical, VASARI and CE radiomic features achieved the best performance with an average iAUC of 96.2 ± 1.7 and C-index of 90.0 ± 0.3. CONCLUSIONS VASARI features in combination with clinical and radiomic features from the enhancing tumour show promise for predicting OS with a high accuracy in patients with glioblastoma from pre-operative volumetric CE-T1WI.
Collapse
Affiliation(s)
- Yiping Lu
- Neuroradiology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK; Radiology, Huashan Hospital, Fudan University, Wulumuqi Middle Road, Shanghai, China
| | - Markand Patel
- Neuroradiology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK; University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kal Natarajan
- Medical Physics, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK
| | - Ismail Ughratdar
- Neurosurgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK
| | - Paul Sanghera
- Clinical Oncology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK
| | - Raj Jena
- Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Colin Watts
- University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Neurosurgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK
| | - Vijay Sawlani
- Neuroradiology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK; University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
29
|
Wang B, Li B, Si T. Knockdown of circ0082374 inhibits cell viability, migration, invasion and glycolysis in glioma cells by miR-326/SIRT1. Brain Res 2020; 1748:147108. [PMID: 32896523 DOI: 10.1016/j.brainres.2020.147108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) play important roles in the development and treatment of glioma. However, the role and mechanism of circRNA carboxypeptidase A4 (circ0082374) in glioma are largely unknown. Forty-two glioma patients and 28 normal patients were recruited. Glioma cell lines A172 and U251 were used for functional assays. The expression levels of circ0082374, microRNA-326 (miR-326) and sirtuin 1 (SIRT1) were examined via quantitative real-time polymerase chain reaction or western blot. Cell viability, migration, invasion and glycolysis were measured via cell counting kit-8, trans-well, oxygen consumption rate and western blot, respectively. The target correlation of circ0082374/miR-326 or miR-326/SIRT1 was explored via dual-luciferase reporter, RNA immunoprecipitation and pull-down assays. The role of circ0082374 in vivo was investigated via xenograft model. We found circ0082374 expression was elevated in glioma tissues and cells. Knockdown of circ0082374 suppressed the viability, migration, invasion and glycolysis in glioma cells. miR-326 was a target of circ0082374 and miR-326 knockdown attenuated the inhibitive role of circ0082374 silence in glioma progression. SIRT1 was a target of miR-326 and circ0082374 could promote SIRT1 expression by sponging miR-326. Silence of SIRT1 reversed the promoting effect of circ0082374 on glioma progression. Knockdown of circ0082374 reduced xenograft tumor growth by miR-326/SIRT1 in vivo. Collectively, silence of circ0082374 repressed the viability, migration, invasion and glycolysis in glioma cells by regulating miR-326 and SIRT1 in a ceRNA mechanism, providing a new mechanism for the pathogenesis of glioma.
Collapse
Affiliation(s)
- Bin Wang
- Department of Interventional Oncology, Tianjin Huanhu Hospital (Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer), Tianjin 300350, China.
| | - Bing Li
- Department of Neurosurgery, Tianjin Huanhu Hospital (Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases), Tianjin 300350, China
| | - Tongguo Si
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital (National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer), Huanhu West Road, Hexi District, Tianjin 300060, China
| |
Collapse
|
30
|
Zhang X, Wang S, Lin G, Wang D. Down-regulation of circ-PTN suppresses cell proliferation, invasion and glycolysis in glioma by regulating miR-432-5p/RAB10 axis. Neurosci Lett 2020; 735:135153. [PMID: 32629066 DOI: 10.1016/j.neulet.2020.135153] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are related to the carcinogenesis of cancers, including glioma. However, the role and mechanism of circRNA pleiotrophin (circ-PTN) remain largely unknown. METHODS Glioma tissues (n = 30) and normal tissues were obtained. Glioma cell lines LN229 and A172 were cultured for experiments in vitro. circ-PTN, microRNA-432-5p (miR-432-5p) and Ras-related protein Rab-10 (RAB10) levels were examined via quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation, invasion and glycolysis were examined via 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, colony formation analysis, transwell invasion analysis, specific glucose, lactate or adenosine triphosphate assay kit and western blot. The relationship of miR-432-5p and circ-PTN or RAB10 was analyzed via dual-luciferase reporter analysis. The effect of circ-PTN on glioma development in vivo was explored by a murine xenograft model. RESULTS circ-PTN expression was enhanced and miR-432-5p abundance was reduced in glioma tissues and cells. circ-PTN silence suppressed cell proliferation, invasion and glycolysis. circ-PTN regulated glioma development by directly sponging miR-432-5p. RAB10 was a target of miR-432-5p and miR-432-5p inhibited cell proliferation, invasion and glycolysis by targeting RAB10. circ-PTN could modulate RAB10 expression via miR-432-5p. circ-PTN knockdown reduced glioma cell xenograft tumor growth in vivo. CONCLUSION circ-PTN knockdown repressed cell proliferation, invasion and glycolysis in glioma via modulating miR-432-5p and RAB10.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Integrated TCM & Western Medicine, Liaoning Cancer Hospital &Institute, Shenyang, Liaoning, 110043, China
| | - Shenyu Wang
- Department of Integrated TCM & Western Medicine, Liaoning Cancer Hospital &Institute, Shenyang, Liaoning, 110043, China.
| | - Guanhong Lin
- Department of Integrated TCM & Western Medicine, Liaoning Cancer Hospital &Institute, Shenyang, Liaoning, 110043, China
| | - Dan Wang
- Department of Integrated TCM & Western Medicine, Liaoning Cancer Hospital &Institute, Shenyang, Liaoning, 110043, China
| |
Collapse
|
31
|
Franco YEM, de Lima CA, Rosa MN, Silva VAO, Reis RM, Priolli DG, Carvalho PO, do Nascimento JR, da Rocha CQ, Longato GB. Investigation of U-251 cell death triggered by flavonoid luteolin: towards a better understanding on its anticancer property against glioblastomas. Nat Prod Res 2020; 35:4807-4813. [DOI: 10.1080/14786419.2020.1727470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yollanda E. M. Franco
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University - Bragança Paulista, São Paulo, Brazil
| | - Carolina A. de Lima
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University - Bragança Paulista, São Paulo, Brazil
| | - Marcela N. Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Viviane A. O. Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Rui M. Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Denise G. Priolli
- Multidisciplinary Research Laboratory, São Francisco University - Bragança Paulista, São Paulo, Brazil
| | - Patricia O. Carvalho
- Multidisciplinary Research Laboratory, São Francisco University - Bragança Paulista, São Paulo, Brazil
| | - Jessyane R. do Nascimento
- Department of Chemistry, Laboratory of Natural Products, Federal University of Maranhão-São Luis, Maranhão, Brazil
| | - Cláudia Q. da Rocha
- Department of Chemistry, Laboratory of Natural Products, Federal University of Maranhão-São Luis, Maranhão, Brazil
| | - Giovanna B. Longato
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University - Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
32
|
Sorokin A, Shurkhay V, Pekov S, Zhvansky E, Ivanov D, Kulikov EE, Popov I, Potapov A, Nikolaev E. Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry. Curr Top Med Chem 2019; 19:1521-1534. [PMID: 31362676 DOI: 10.2174/1568026619666190729154543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.
Collapse
Affiliation(s)
- Anatoly Sorokin
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
| | - Vsevolod Shurkhay
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Stanislav Pekov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Evgeny Zhvansky
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Daniil Ivanov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Emanuel Institute of Biochemical Physics RAS, Moscow, Russian Federation
| | - Eugene E Kulikov
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation.,Federal Research Center "Fundamentals of biotechnology", Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Popov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Alexander Potapov
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Eugene Nikolaev
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| |
Collapse
|
33
|
Takashima Y, Kawaguchi A, Yamanaka R. Promising Prognosis Marker Candidates on the Status of Epithelial-Mesenchymal Transition and Glioma Stem Cells in Glioblastoma. Cells 2019; 8:cells8111312. [PMID: 31653034 PMCID: PMC6912254 DOI: 10.3390/cells8111312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Multivariable analyses of global expression profiling are valid indicators of the prognosis of various diseases including brain cancers. To identify the candidates for markers of prognosis of glioblastoma, we performed multivariable analyses on the status of epithelial (EPI)-mesenchymal (MES) transition (EMT), glioma (GLI) stem cells (GSCs), molecular target therapy (MTT), and potential glioma biomarkers (PGBs) using the expression data and clinical information from patients. Random forest survival and Cox proportional hazards regression analyses indicated significant variable values for DSG3, CLDN1, CDH11, FN1, HDAC3/7, PTEN, L1CAM, OLIG2, TIMP4, IGFBP2, and GFAP. The analyses also comprised prognosis prediction formulae that could distinguish between the survival curves of the glioblastoma patients. In addition to the genes mentioned above, HDAC1, FLT1, EGFR, MGMT, PGF, STAT3, SIRT1, and GADD45A constituted complex genetic interaction networks. The calculated status scores obtained by principal component analysis indicated that GLI genes covered the status of EPI, GSC, and MTT-related genes. Moreover, survival tree analyses indicated that MEShigh, MEShighGLIlow, GSChighGLIlow, MEShighMTTlow, and PGBhigh showed poor prognoses and MESmiddle, GSClow, and PGBlow showed good prognoses, suggesting that enhanced EMT and GSC are associated with poor survival and that lower expression of EPI markers and the pre-stages of EMT are relatively less malignant in glioblastoma. These results demonstrate that the assessment of EMT and GSC enables the prediction of the prognosis of glioblastoma that would help develop novel therapeutics and de novo marker candidates for the prognoses of glioblastoma.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|
34
|
Long non-coding RNA MEG3 regulates proliferation, apoptosis, and autophagy and is associated with prognosis in glioma. J Neurooncol 2018; 140:281-288. [DOI: 10.1007/s11060-018-2874-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/15/2018] [Indexed: 12/16/2022]
|
35
|
The prostanoid pathway contains potential prognostic markers for glioblastoma. Prostaglandins Other Lipid Mediat 2018; 137:52-62. [PMID: 29966699 DOI: 10.1016/j.prostaglandins.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Prostanoids derived from the activity of cyclooxygenases and their respective synthases contribute to both active inflammation and immune response in the tumor microenvironment. Their synthesis, deactivation and role in glioma biology have not yet been fully explored and require further study. Using quantitative real time PCR, gas chromatography/ electron impact mass spectrometry and liquid chromatography/ electrospray ionization tandem mass spectrometry, we have further characterized the prostanoid pathway in grade IV glioblastoma (GBM). We observed significant correlations between high mRNA expression levels and poor patient survival for microsomal PGE synthase 1 (mPGES1) and prostaglandin reductase 1 (PTGR1). Conversely, high mRNA expression levels for 15-hydroxyprostaglandin dehydrogenase (15-HPGD) were correlated with better patient survival. GBMs had a higher quantity of the prostanoid precursor, arachidonic acid, versus grade II/III tumors and in GBMs a significant positive correlation was found between arachidonic acid and PGE2 content. GBMs also had higher concentrations of TXB2, PGD2, PGE2 and PGF2α versus grade II/III tumors. A significant decrease in survival was detected for high versus low PGE2, PGE2 + PGE2 deactivation products (PGEMs) and PGF2α in GBM patients. Our data show the potential importance of prostanoid metabolism in the progression towards GBM and provide evidence that higher PGE2 and PGF2α concentrations in the tumor are correlated with poorer patient survival. Our findings highlight the potential importance of the enzymes 15-HPGD and PTGR1 as prognostic biomarkers which could be used to predict survival outcome of patients with GBM.
Collapse
|
36
|
Chang CY, Li JR, Wu CC, Wang JD, Yang CP, Chen WY, Wang WY, Chen CJ. Indomethacin induced glioma apoptosis involving ceramide signals. Exp Cell Res 2018; 365:66-77. [DOI: 10.1016/j.yexcr.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
|