1
|
Mouillet-Richard S, Cazelles A, Sroussi M, Gallois C, Taieb J, Laurent-Puig P. Clinical Challenges of Consensus Molecular Subtype CMS4 Colon Cancer in the Era of Precision Medicine. Clin Cancer Res 2024; 30:2351-2358. [PMID: 38564259 PMCID: PMC11145159 DOI: 10.1158/1078-0432.ccr-23-3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Over the past decade, our understanding of the diversity of colorectal cancer has expanded significantly, raising hopes of tailoring treatments more precisely for individual patients. A key achievement in this direction was the establishment of the consensus molecular classification, particularly identifying the challenging consensus molecular subtype (CMS) CMS4 associated with poor prognosis. Because of its aggressive nature, extensive research is dedicated to the CMS4 subgroup. Recent years have unveiled molecular and microenvironmental features at the tissue level specific to CMS4 colorectal cancer. This has paved the way for mechanistic studies and the development of preclinical models. Simultaneously, efforts have been made to easily identify patients with CMS4 colorectal cancer. Reassessing clinical trial results through the CMS classification lens has improved our understanding of the therapeutic challenges linked to this subtype. Exploration of the biology of CMS4 colorectal cancer is yielding potential biomarkers and novel treatment approaches. This overview aims to provide insights into the clinico-biological characteristics of the CMS4 subgroup, the molecular pathways driving this subtype, and available diagnostic options. We also emphasize the therapeutic challenges associated with this subtype, offering potential explanations. Finally, we summarize the current tailored treatments for CMS4 colorectal cancer emerging from fundamental and preclinical studies.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Antoine Cazelles
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marine Sroussi
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Gallois
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Gastroenterology and Gastrointestinal Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Julien Taieb
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Gastroenterology and Gastrointestinal Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Department of Biology, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| |
Collapse
|
2
|
Zhan Y, Wu G, Fan X, Fu Z, Ni Y, Sun B, Chen H, Chen T, Wang X. YAP upregulates AMPKα1 to induce cancer cell senescence. Int J Biochem Cell Biol 2024; 170:106559. [PMID: 38499237 DOI: 10.1016/j.biocel.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Yes-associated protein (YAP)-a major effector protein of the Hippo pathway- regulates cell proliferation, differentiation, apoptosis, and senescence. Amp-activated protein kinase (AMPK) is a key sensor that monitors cellular nutrient supply and energy status. Although YAP and AMPK are considered to regulate cellular senescence, it is still unclear whether AMPK is involved in YAP-regulated cellular senescence. Here, we found that YAP promoted AMPKα1 aggregation and localization around mitochondria by co-transfecting CFP-YAP and YFP-AMPKα1 plasmids. Subsequent live cell fluorescence resonance energy transfer (FRET) assay did not exhibit direct interaction between YAP and AMPKα1. FRET, Co-immunoprecipitation, and western blot experiments revealed that YAP directly bound to TEAD, enhancing the expression of AMPKα1 and p-AMPKα. Treatment with verteporfin inhibited YAP's binding to TEAD and reversed the elevated expression of AMPKα1 in the cells overexpressing CFP-YAP. Verteporfin also reduced the proportion of AMPKα1 puncta in the cells co-expressing CFP-YAP and YFP-AMPKα1. In addition, the AMPKα1 puncta were demonstrated to inhibit cell viability, autophagy, and proliferation, and ultimately promote cell senescence. In conclusion, YAP binds to TEAD to upregulate AMPKα1 and promotes the formation of AMPKα1 puncta around mitochondria under the condition of co-expression of CFP-YAP and YFP-AMPKα1, in which AMPKα1 puncta lead to cellular senescence.
Collapse
Affiliation(s)
- Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ze Fu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yue Ni
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Zhang C, Wei W, Tu S, Liang B, Li C, Li Y, Luo W, Wu Y, Dai X, Wang Y, Zheng L, Hao L, Zhang C, Luo Z, Chen YG, Yan X. Upregulation of CYR61 by TGF-β and YAP signaling exerts a counter-suppression of hepatocellular carcinoma. J Biol Chem 2024; 300:107208. [PMID: 38521502 PMCID: PMC11021963 DOI: 10.1016/j.jbc.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Transforming growth factor-β (TGF-β) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-β target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-β in liver cancer cells. In addition, TGF-β-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-β- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-β- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-β and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.
Collapse
Affiliation(s)
- Cheng Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjing Wei
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuo Tu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bo Liang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chun Li
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yining Li
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weicheng Luo
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yiqing Wu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaohui Dai
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lijuan Zheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liang Hao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunbo Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ye-Guang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Yan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Luo W, Li Y, Zeng Y, Li Y, Cheng M, Zhang C, Li F, Wu Y, Huang C, Yang X, Kremerskothen J, Zhang J, Zhang C, Tu S, Li Z, Luo Z, Lin Z, Yan X. Tea domain transcription factor TEAD4 mitigates TGF-β signaling and hepatocellular carcinoma progression independently of YAP. J Mol Cell Biol 2023; 15:mjad010. [PMID: 36806855 PMCID: PMC10446140 DOI: 10.1093/jmcb/mjad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Tea domain transcription factor 4 (TEAD4) plays a pivotal role in tissue development and homeostasis by interacting with Yes-associated protein (YAP) in response to Hippo signaling inactivation. TEAD4 and YAP can also cooperate with transforming growth factor-β (TGF-β)-activated Smad proteins to regulate gene transcription. Yet, it remains unclear whether TEAD4 plays a YAP-independent role in TGF-β signaling. Here, we unveil a novel tumor suppressive function of TEAD4 in liver cancer via mitigating TGF-β signaling. Ectopic TEAD4 inhibited TGF-β-induced signal transduction, Smad transcriptional activity, and target gene transcription, consequently suppressing hepatocellular carcinoma cell proliferation and migration in vitro and xenograft tumor growth in mice. Consistently, depletion of endogenous TEAD4 by siRNAs enhanced TGF-β signaling in cancer cells. Mechanistically, TEAD4 associates with receptor-regulated Smads (Smad2/3) and Smad4 in the nucleus, thereby impairing the binding of Smad2/3 to the histone acetyltransferase p300. Intriguingly, these negative effects of TEAD4 on TGF-β/Smad signaling are independent of YAP, as impairing the TEAD4-YAP interaction through point mutagenesis or depletion of YAP and/or its paralog TAZ has little effect. Together, these results unravel a novel function of TEAD4 in fine tuning TGF-β signaling and liver cancer progression in a YAP-independent manner.
Collapse
Affiliation(s)
- Weicheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Yi Li
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yi Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Yining Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Fei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Yiqing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Chunhong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Joachim Kremerskothen
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster 48149, Germany
| | - Jianmin Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA
| | - Chunbo Zhang
- School of Pharmacy, Nanchang
University Jiangxi Medical College, Nanchang 330008, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
| | - Zhihua Li
- Key Laboratory of Breast Diseases of Jiangxi Province, Nanchang People’s Hospital, Nanchang 330025, China
| | - Zhijun Luo
- Department of Pathology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330006, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 405200, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang 330031, China
- Key Laboratory of Breast Diseases of Jiangxi Province, Nanchang People’s Hospital, Nanchang 330025, China
| |
Collapse
|
5
|
Lalonde-Larue A, Boyer A, Dos Santos EC, Boerboom D, Bernard DJ, Zamberlam G. The Hippo Pathway Effectors YAP and TAZ Regulate LH Release by Pituitary Gonadotrope Cells in Mice. Endocrinology 2022; 163:bqab238. [PMID: 34905605 PMCID: PMC8670590 DOI: 10.1210/endocr/bqab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/08/2023]
Abstract
The Hippo transcriptional coactivators YAP and TAZ exert critical roles in morphogenesis, organ size determination and tumorigenesis in many tissues. Although Hippo kinase cascade activity was recently reported in the anterior pituitary gland in mice, the role of the Hippo effectors in regulating gonadotropin production remains unknown. The objective of this study was therefore to characterize the roles of YAP and TAZ in gonadotropin synthesis and secretion. Using a conditional gene targeting approach (cKO), we found that gonadotrope-specific inactivation of Yap and Taz resulted in increased circulating levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in adult male mice, along with increased testosterone levels and testis weight. Female cKO mice had increased circulating LH (but not FSH) levels, which were associated with a hyperfertility phenotype characterized by higher ovulation rates and larger litter sizes. Unexpectedly, the loss of YAP/TAZ did not appear to affect the expression of gonadotropin subunit genes, yet both basal and GnRH-induced LH secretion were increased in cultured pituitary cells from cKO mice. Likewise, pharmacologic inhibition of YAP binding to the TEAD family of transcription factors increased both basal and GnRH-induced LH secretion in LβT2 gonadotrope-like cells in vitro without affecting Lhb expression. Conversely, mRNA levels of ChgA and SgII, which encode key secretory granule cargo proteins, were decreased following pharmacologic inhibition of YAP/TAZ, suggesting a mechanism whereby YAP/TAZ regulate the LH secretion machinery in gonadotrope cells. Together, these findings represent the first evidence that Hippo signaling may play a role in regulating pituitary LH secretion.
Collapse
Affiliation(s)
- Ariane Lalonde-Larue
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Alexandre Boyer
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Esdras Corrêa Dos Santos
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Derek Boerboom
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gustavo Zamberlam
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| |
Collapse
|
6
|
Mansour MA, Caputo VS, Aleem E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int J Biochem Cell Biol 2021; 140:106087. [PMID: 34563698 DOI: 10.1016/j.biocel.2021.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Growth factor receptors (GFRs) and receptor tyrosine kinases (RTK) are groups of proteins mediating a plethora of physiological processes, including cell growth, proliferation, survival, differentiation and migration. Under certain circumstances, expression of GFRs and subsequently their downstream kinase signaling are deregulated by genetic, epigenetic, and somatic changes leading to uncontrolled cell division in many human diseases, most notably cancer. Cancer cells rely on growth factors to sustain the increasing need to cell division and metabolic reprogramming through cancer-associated activating mutations of their receptors (i.e., GFRs). In this review, we highlight the recent advances of selected GFRs and their ligands (growth factors) in cancer with emphasis on structural and functional differences. We also interrogate how overexpression and/or hyperactivation of GFRs contribute to cancer initiation, development, progression, and resistance to conventional chemo- and radiotherapies. Novel approaches are being developed as anticancer agents to target growth factor receptors and their signaling pathways in different cancers. Here, we illustrate how the current knowledge of GFRs biology, and their ligands lead to development of targeted therapies to inhibit and/or block the activity of growth factors, GFRs and downstream kinases to treat diseases such as cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Valentina S Caputo
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK
| | - Eiman Aleem
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.
| |
Collapse
|
7
|
Moreau PR, Tomas Bosch V, Bouvy-Liivrand M, Õunap K, Örd T, Pulkkinen HH, Pölönen P, Heinäniemi M, Ylä-Herttuala S, Laakkonen JP, Linna-Kuosmanen S, Kaikkonen MU. Profiling of Primary and Mature miRNA Expression in Atherosclerosis-Associated Cell Types. Arterioscler Thromb Vasc Biol 2021; 41:2149-2167. [PMID: 33980036 PMCID: PMC8216629 DOI: 10.1161/atvbaha.121.315579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pierre R. Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Vanesa Tomas Bosch
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Now with Genevia Technologies Oy, Tampere, Finland (M.B.-L.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Heidi H. Pulkkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN (P.P.)
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
- Now with MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, and Broad Institute of MIT and Harvard, Cambridge, MA (S.L.-K.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| |
Collapse
|
8
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
9
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci 2021; 78:497-512. [PMID: 32748155 PMCID: PMC11071991 DOI: 10.1007/s00018-020-03579-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Dominique Aubel
- IUTA, Departement Genie Biologique, Universite, Claude Bernard Lyon 1, Villeurbanne Cedex, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
10
|
Wesseling M, de Poel JH, de Jager SC. Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player. ESC Heart Fail 2020; 7:1488-1501. [PMID: 32424982 PMCID: PMC7373942 DOI: 10.1002/ehf2.12728] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a growing health issue as a negative consequence of improved survival upon myocardial infarction, unhealthy lifestyle, and the ageing of our population. The large and complex pathology underlying heart failure makes diagnosis and especially treatment very difficult. There is an urgent demand for discriminative biomarkers to aid disease management of heart failure. Studying cellular pathways and pathophysiological mechanisms contributing to disease initiation and progression is crucial for understanding the disease process and will aid to identification of novel biomarkers and potential therapeutic targets. Growth differentiation factor 15 (GDF15) is a proven valuable biomarker for different pathologies, including cancer, type 2 diabetes, and cardiovascular diseases. Although the prognostic value of GDF15 in heart failure is robust, the biological function of GDF15 in adverse cardiac remodelling is not fully understood. GDF15 is a distant member of the transforming growth factor-β family and involved in various biological processes including inflammation, cell cycle, and apoptosis. However, more research is suggesting a role in fibrosis, hypertrophy, and endothelial dysfunction. As GDF15 is a pleiotropic protein, elucidating the exact role of GDF15 in complex disease processes has proven to be a challenge. In this review, we provide an overview of the role GDF15 plays in various intracellular and extracellular processes underlying heart failure, and we touch upon crucial points that need consideration before GDF15 can be integrated as a biomarker in standard care or when considering GDF15 for therapeutic intervention.
Collapse
Affiliation(s)
- Marian Wesseling
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
- Laboratory for Clinical Chemistry and HematologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Julius H.C. de Poel
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Saskia C.A. de Jager
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
- Laboratory for Translational ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
11
|
Chen X, Yuan W, Li Y, Luo J, Hou N. Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac biology. Int J Biol Sci 2020; 16:2454-2463. [PMID: 32760212 PMCID: PMC7378646 DOI: 10.7150/ijbs.47142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway undertakes a pivotal role in organ size control and the process of physiology and pathology in tissue. Its downstream effectors YAP1 and TAZ receive upstream stimuli and exert transcription activity to produce biological output. Studies have demonstrated that the Hippo pathway contributes to maintenance of cardiac homeostasis and occurrence of cardiac disease. And these cardiac biological events are affected by crosstalk among Hippo-YAP1/TAZ, Wnt/β-catenin, Bone morphogenetic protein (BMP) and G-protein-coupled receptor (GPCR) signaling, which provides new insights into the Hippo pathway in heart. This review delineates the interaction among Hippo, Wnt, BMP and GPCR pathways and discusses the effects of these pathways in cardiac biology.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
12
|
Chen X, Li Y, Luo J, Hou N. Molecular Mechanism of Hippo-YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Front Physiol 2020; 11:389. [PMID: 32390875 PMCID: PMC7191303 DOI: 10.3389/fphys.2020.00389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo-YAP1/TAZ pathway is a highly conserved central mechanism that controls organ size through the regulation of cell proliferation and other physical attributes of cells. The transcriptional factors Yes-associated protein 1 (YAP1) and PDZ-binding motif (TAZ) act as downstream effectors of the Hippo pathway, and their subcellular location and transcriptional activities are affected by multiple post-translational modifications (PTMs). Studies have conclusively demonstrated a pivotal role of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration. Targeted therapeutics for the YAP1/TAZ could be an effective treatment option for cardiac regeneration and disease. This review article provides an overview of the Hippo-YAP1/TAZ pathway and the increasing impact of PTMs in fine-tuning YAP1/TAZ activation; in addition, we discuss the potential contributions of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Tao H, Lin H, Sun Z, Pei F, Zhang J, Chen S, Liu H, Chen Z. Klf4 Promotes Dentinogenesis and Odontoblastic Differentiation via Modulation of TGF-β Signaling Pathway and Interaction With Histone Acetylation. J Bone Miner Res 2019; 34:1502-1516. [PMID: 31112333 PMCID: PMC8895434 DOI: 10.1002/jbmr.3716] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors bind to cell-specific cis-regulatory elements, such as enhancers and promoters, to initiate much of the gene expression program of different biological process. Odontoblast differentiation is a necessary step for tooth formation and is also governed by a complex gene regulatory network. Our previous in vitro experiments showed that Krüppel-like factor 4 (KLF4) can promote odontoblastic differentiation of both mouse dental papillary cells (mDPCs) and human dental pulp cells; however, its mechanism remains unclear. We first used Wnt1-Cre; KLF4fx/fx (Klf4 cKO) mice to examine the role of KLF4 during odontoblast differentiation in vivo and demonstrated significantly impaired dentin mineralization and enlarged pulp/root canals. Additionally, combinatory analysis using RNA-seq and ATAC-seq revealed genomewide direct regulatory targets of KLF4 in mouse odontoblasts. We found that KLF4 can directly activate the TGF-β signaling pathway at the beginning of odontoblast differentiation with Runx2 as a cofactor. Furthermore, we found that KLF4 can directly upregulate the expression levels of Dmp1 and Sp7, which are markers of odontoblastic differentiation, through binding to their promoters. Interestingly, as a transcription factor, KLF4 can also recruit histone acetylase as a regulatory companion to the downstream target genes to positively or negatively regulate transcription. To further investigate other regulatory companions of KLF4, we chose histone acetylase HDAC3 and P300. Immunoprecipitation demonstrated that KLF4 interacted with P300 and HDAC3. Next, ChIP analysis detected P300 and HDAC3 enrichment on the promoter region of KLF4 target genes Dmp1 and Sp7. HDAC3 mainly interacted with KLF4 on day 0 of odontoblastic induction, whereas P300 interacted on day 7 of induction. These temporal-specific interactions regulated Dmp1 and Sp7 transcription, thus regulating dentinogenesis. Taken together, these results demonstrated that KLF4 regulates Dmp1 and Sp7 transcription via the modulation of histone acetylation and is vital to dentinogenesis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Huangheng Tao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | - Zheyi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fei Pei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Chen YA, Lu CY, Cheng TY, Pan SH, Chen HF, Chang NS. WW Domain-Containing Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness Maintenance, Tissue Homeostasis, and Tumorigenesis. Front Oncol 2019; 9:60. [PMID: 30805310 PMCID: PMC6378284 DOI: 10.3389/fonc.2019.00060] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The Hippo pathway is a conserved signaling pathway originally defined in Drosophila melanogaster two decades ago. Deregulation of the Hippo pathway leads to significant overgrowth in phenotypes and ultimately initiation of tumorigenesis in various tissues. The major WW domain proteins in the Hippo pathway are YAP and TAZ, which regulate embryonic development, organ growth, tissue regeneration, stem cell pluripotency, and tumorigenesis. Recent reports reveal the novel roles of YAP/TAZ in establishing the precise balance of stem cell niches, promoting the production of induced pluripotent stem cells (iPSCs), and provoking signals for regeneration and cancer initiation. Activation of YAP/TAZ, for example, results in the expansion of progenitor cells, which promotes regeneration after tissue damage. YAP is highly expressed in self-renewing pluripotent stem cells. Overexpression of YAP halts stem cell differentiation and yet maintains the inherent stem cell properties. A success in reprograming iPSCs by the transfection of cells with Oct3/4, Sox2, and Yap expression constructs has recently been shown. In this review, we update the current knowledge and the latest progress in the WW domain proteins of the Hippo pathway in relevance to stem cell biology, and provide a thorough understanding in the tissue homeostasis and identification of potential targets to block tumor development. We also provide the regulatory role of tumor suppressor WWOX in the upstream of TGF-β, Hyal-2, and Wnt signaling that cross talks with the Hippo pathway.
Collapse
Affiliation(s)
- Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Lu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tian-You Cheng
- Department of Optics and Photonics, National Central University, Chungli, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|