1
|
Zhang Q, Zhang Y, Guo S, Wang H. Emerging insights into the role of microRNAs regulation of ferroptosis in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167642. [PMID: 39734007 DOI: 10.1016/j.bbadis.2024.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major type of liver cancer and an important cause of cancer death. It has been reported that the hepatocyte death plays an important role in HCC. Ferroptosis is an iron-dependent programmed cell death characterized by the accumulation of free iron and lipid peroxidation. A series of studies have shown that ferroptosis contributes to the occurrence and development of HCC. MicroRNAs (miRNAs) are non-coding RNAs with a length of approximately 21-22 nt. In recent years, miRNAs have been shown to participate in regulating ferroptosis to play a vital role in HCC, but the related mechanisms are not fully understood. This review summarized the current understanding of ferroptosis, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ferroptosis in HCC, with the hope of providing new targets and ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingdan Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Kaul N, Pradhan SJ, Boin NG, Mason MM, Rosales J, Starke EL, Wilkinson EC, Chapman EG, Barbee SA. FMRP cooperates with miRISC components to repress translation and regulate neurite morphogenesis in Drosophila. RNA Biol 2024; 21:11-22. [PMID: 39190491 PMCID: PMC11352701 DOI: 10.1080/15476286.2024.2392304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and is caused by mutations in the gene encoding the Fragile X messenger ribonucleoprotein (FMRP). FMRP is an evolutionarily conserved and neuronally enriched RNA-binding protein (RBP) with functions in RNA editing, RNA transport, and protein translation. Specific target RNAs play critical roles in neurodevelopment, including the regulation of neurite morphogenesis, synaptic plasticity, and cognitive function. The different biological functions of FMRP are modulated by its cooperative interaction with distinct sets of neuronal RNA and protein-binding partners. Here, we focus on interactions between FMRP and components of the microRNA (miRNA) pathway. Using the Drosophila S2 cell model system, we show that the Drosophila ortholog of FMRP (dFMRP) can repress translation when directly tethered to a reporter mRNA. This repression requires the activity of AGO1, GW182, and MOV10/Armitage, conserved proteins associated with the miRNA-containing RNA-induced silencing complex (miRISC). Additionally, we find that untagged dFMRP can interact with a short stem-loop sequence in the translational reporter, a prerequisite for repression by exogenous miR-958. Finally, we demonstrate that dFmr1 interacts genetically with GW182 to control neurite morphogenesis. These data suggest that dFMRP may recruit the miRISC to nearby miRNA binding sites and repress translation via its cooperative interactions with evolutionarily conserved components of the miRNA pathway.
Collapse
Affiliation(s)
- Navneeta Kaul
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Sarala J. Pradhan
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Nathan G. Boin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Madeleine M. Mason
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Julian Rosales
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Emily C. Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich G. Chapman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| |
Collapse
|
4
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, Klinge CM. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104260. [PMID: 37683712 PMCID: PMC10591945 DOI: 10.1016/j.etap.2023.104260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Juw Won Park
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mayukh Banerjee
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
5
|
Shree B, Sharma V. Role of Non-Coding RNAs in TGF-β Signalling in Glioma. Brain Sci 2023; 13:1376. [PMID: 37891744 PMCID: PMC10605910 DOI: 10.3390/brainsci13101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Brain tumours and Gliomas, in particular, are among the primary causes of cancer mortality worldwide. Glioma diagnosis and therapy have not significantly improved despite decades of efforts. Autocrine TGF-β signalling promotes glioma proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and drug resistance. Non-coding RNAs such as miRNA, lncRNA, and circRNAs have emerged as critical transcriptional and post-transcriptional regulators of TGF-β pathway components in glioma. Here, we summarize the complex regulatory network among regulatory ncRNAs and TGF-β pathway during Glioma pathogenesis and discuss their role as potential therapeutic targets for Gliomas.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India;
| |
Collapse
|
6
|
He Z, Zhu Q. Circular RNAs: Emerging roles and new insights in human cancers. Biomed Pharmacother 2023; 165:115217. [PMID: 37506578 DOI: 10.1016/j.biopha.2023.115217] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules formed by mRNA exon back-splicing. Although the circRNA functions remain largely unknown, their currently known biological activities include: acting as competing endogenous RNA (ceRNA) to adsorb microRNA (miRNA), binding proteins, regulating transcription or splicing, and ability to be translated into proteins or peptides. A growing number of studies have found that many circRNAs are abnormally expressed in various cancers, and their dysregulation is highly correlated with tumor progression. Therefore, diagnosis and treatment using circRNAs as biomarkers and therapeutic targets, respectively, has gradually become an attractive research topic. In this review, we introduced the canonical biogenesis pathways and degradation mechanisms of circRNAs. In addition, we examined the biological functions of circRNAs in vivo. Finally, we discussed the current clinical applications and challenges faced by circRNA, and proposed future directions for this promising research field.
Collapse
Affiliation(s)
- Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
7
|
Sikorski V, Selberg S, Lalowski M, Karelson M, Kankuri E. The structure and function of YTHDF epitranscriptomic m 6A readers. Trends Pharmacol Sci 2023; 44:335-353. [PMID: 37069041 DOI: 10.1016/j.tips.2023.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Specific RNA sequences modified by a methylated adenosine, N6-methyladenosine (m6A), contribute to the post-transcriptional regulation of gene expression. The quantity of m6A in RNA is orchestrated by enzymes that write and erase it, while its effects are mediated by proteins that bind to read this modification. Dysfunction of this post-transcriptional regulatory process has been linked to human disease. Although the initial focus has been on pharmacological targeting of the writer and eraser enzymes, interest in the reader proteins has been challenged by a lack of clear understanding of their functional roles and molecular mechanisms of action. Readers of m6A-modified RNA (m6A-RNA) - the YTH (YT521-B homology) domain-containing protein family paralogs 1-3 (YTHDF1-3, referred to here as DF1-DF3) - are emerging as therapeutic targets as their links to pathological processes such as cancer and inflammation and their roles in regulating m6A-RNA fate become clear. We provide an updated understanding of the modes of action of DF1-DF3 and review their structures to unlock insights into drug design approaches for DF paralog-selective inhibition.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland
| | - Simona Selberg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland.
| |
Collapse
|
8
|
Zhang R, Chen J, Zi R, Ji L, Hu J, Wu Z, Fu Y. Enterovirus 71-induced autophagosome fusion with multivesicular bodies facilitates viral RNA packaging into exosomes. Microb Pathog 2022; 173:105875. [DOI: 10.1016/j.micpath.2022.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
9
|
Jamil M, Ahmad S, Ran Y, Ma S, Cao F, Lin X, Yan R. Argonaute1 and Gawky Are Required for the Development and Reproduction of Melon fly, Zeugodacus cucurbitae. Front Genet 2022; 13:880000. [PMID: 35812742 PMCID: PMC9260231 DOI: 10.3389/fgene.2022.880000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Argonaute family genes encode a highly conserved group of proteins that have been associated with RNA silencing in both animals and plants. This study investigates the importance of microRNA biogenesis key regulators Argonaute1 (Ago1) and Gawky genes in the post-embryonic and ovarian development of the melon fly, Zeugodacus cucurbitae. The expression levels of these genes were mapped in all developmental stages and different adult tissues. Their roles in development were investigated using RNA interference (RNAi) via two different dsRNA delivery techniques. Embryo microinjection and oral feeding of third instar larvae successfully knocked down and greatly reduced the expression level of the target genes. Additionally, ex vivo essays revealed the stability of dsRNA in food was sufficient for gene silencing, although its integrity was affected in midgut. A wide range of phenotypes were observed on pupation, segmentation, pigmentation, and ovarian development. RNAi-mediated silencing of Gawky caused high mortality and loss of body segmentation, while Ago1 knockdown affected ovarian development and pigmentation. Developmental abnormalities and ovarian malformations caused by silencing these genes suggest that these genes are crucial for viability and reproductive capacity of Z. cucurbitae, and may be used as potential target genes in pest management.
Collapse
Affiliation(s)
- Momana Jamil
- School of Life Sciences, Hainan University, Haikou, China
| | - Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, China
| | - Yingqiao Ran
- School of Plant Protection, Hainan University, Haikou, China
| | - Siya Ma
- School of Life Sciences, Hainan University, Haikou, China
| | - Fengqin Cao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Xianwu Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| | - Rihui Yan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| |
Collapse
|
10
|
Lei L, Cheng A, Wang M, Jia R. The Influence of Host miRNA Binding to RNA Within RNA Viruses on Virus Multiplication. Front Cell Infect Microbiol 2022; 12:802149. [PMID: 35531344 PMCID: PMC9069554 DOI: 10.3389/fcimb.2022.802149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
microRNAs (miRNAs), non-coding RNAs about 22 nt long, regulate the post-transcription expression of genes to influence many cellular processes. The expression of host miRNAs is affected by virus invasion, which also affects virus replication. Increasing evidence has demonstrated that miRNA influences RNA virus multiplication by binding directly to the RNA virus genome. Here, the knowledge relating to miRNAs’ relationships between host miRNAs and RNA viruses are discussed.
Collapse
Affiliation(s)
- Lin Lei
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia,
| |
Collapse
|
11
|
Gao Y, Liu C, Wu T, Liu R, Mao W, Gan X, Lu X, Liu Y, Wan L, Xu B, Chen M. Current status and perspectives of non-coding RNA and phase separation interactions. Biosci Trends 2022; 16:330-345. [DOI: 10.5582/bst.2022.01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Tiange Wu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Ruiji Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Weipu Mao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xinqiang Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xun Lu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yifan Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Lilin Wan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Frédérick PM, Simard MJ. Regulation and different functions of the animal microRNA-induced silencing complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1701. [PMID: 34725940 DOI: 10.1002/wrna.1701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Among the different types of small RNAs, microRNAs (miRNAs) are key players in controlling gene expression at the mRNA level. To be active, they must associate with an Argonaute protein to form the miRNA induced silencing complex (miRISC) and binds to specific mRNA through complementarity sequences. The miRISC binding to an mRNA can lead to multiple outcomes, the most frequent being inhibition of the translation and/or deadenylation followed by decapping and mRNA decay. In the last years, several studies described different mechanisms modulating miRISC functions in animals. For instance, the regulation of the Argonaute protein through post-translational modifications can change the miRISC gene regulatory activity as well as modulate its binding to proteins, mRNA targets and miRISC stability. Furthermore, the presence of RNA binding proteins and multiple miRISCs at the targeted mRNA 3' untranslated region (3'UTR) can also affect its function through cooperation or competition mechanisms, underlying the importance of the 3'UTR environment in miRNA-mediated repression. Another way to regulate the miRISC function is by modulation of its interactors, forming different types of miRNA silencing complexes that affect gene regulation differently. It is also reported that the subcellular localization of several components of the miRNA pathway can modulate miRISC function, suggesting an important role for vesicular trafficking in the regulation of this essential silencing complex. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Pierre-Marc Frédérick
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Martin J Simard
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| |
Collapse
|
13
|
Johnson ST, Chu Y, Liu J, Corey DR. Impact of scaffolding protein TNRC6 paralogs on gene expression and splicing. RNA (NEW YORK, N.Y.) 2021; 27:1004-1016. [PMID: 34108231 PMCID: PMC8370741 DOI: 10.1261/rna.078709.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/04/2021] [Indexed: 05/11/2023]
Abstract
TNRC6 is a scaffolding protein that bridges interactions between small RNAs, argonaute (AGO) protein, and effector proteins to control gene expression. There are three paralogs in mammalian cells, TNRC6A, TNRC6B, and TNRC6C These paralogs have ∼40% amino acid sequence identity and the extent of their unique or redundant functions is unclear. Here, we use knockout cell lines, enhanced crosslinking immunoprecipitation (eCLIP), and high-throughput RNA sequencing (RNA-seq) to explore the roles of TNRC6 paralogs in RNA-mediated control of gene expression. We find that the paralogs are largely functionally redundant and changes in levels of gene expression are well-correlated with those observed in AGO knockout cell lines. Splicing changes observed in AGO knockout cell lines are also observed in TNRC6 knockout cells. These data further define the roles of the TNRC6 isoforms as part of the RNA interference (RNAi) machinery.
Collapse
Affiliation(s)
- Samantha T Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Yongjun Chu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Jing Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
14
|
Nawalpuri B, Sharma A, Chattarji S, Muddashetty RS. Distinct temporal expression of the GW182 paralog TNRC6A in neurons regulates dendritic arborization. J Cell Sci 2021; 134:271120. [PMID: 34328181 DOI: 10.1242/jcs.258465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023] Open
Abstract
Precise development of the dendritic architecture is a critical determinant of mature neuronal circuitry. MicroRNA (miRNA)-mediated regulation of protein synthesis plays a crucial role in dendritic morphogenesis, but the role of miRNA-induced silencing complex (miRISC) protein components in this process is less studied. Here, we show an important role of a key miRISC protein, the GW182 paralog TNRC6A, in the regulation of dendritic growth. We identified a distinct brain region-specific spatiotemporal expression pattern of GW182 during rat postnatal development. We found that the window of peak GW182 expression coincides with the period of extensive dendritic growth, both in the hippocampus and cerebellum. Perturbation of GW182 function during a specific temporal window resulted in reduced dendritic growth of cultured hippocampal neurons. Mechanistically, we show that GW182 modulates dendritic growth by regulating global somatodendritic translation and actin cytoskeletal dynamics of developing neurons. Furthermore, we found that GW182 affects dendritic architecture by regulating the expression of actin modulator LIMK1. Taken together, our data reveal a previously undescribed neurodevelopmental expression pattern of GW182 and its role in dendritic morphogenesis, which involves both translational control and actin cytoskeletal rearrangement. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur 613401, India.,Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Arpita Sharma
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore 560065, India.,Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh EH8 9XD, Edinburgh, UK
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India.,Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Jia R, Song Z, Lin J, Li Z, Shan G, Huang C. Gawky modulates MTF-1-mediated transcription activation and metal discrimination. Nucleic Acids Res 2021; 49:6296-6314. [PMID: 34107019 PMCID: PMC8216474 DOI: 10.1093/nar/gkab474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Metal-induced genes are usually transcribed at relatively low levels under normal conditions and are rapidly activated by heavy metal stress. Many of these genes respond preferentially to specific metal-stressed conditions. However, the mechanism by which the general transcription machinery discriminates metal stress from normal conditions and the regulation of MTF-1-meditated metal discrimination are poorly characterized. Using a focused RNAi screening in Drosophila Schneider 2 (S2) cells, we identified a novel activator, the Drosophila gawky, of metal-responsive genes. Depletion of gawky has almost no effect on the basal transcription of the metallothionein (MT) genes, but impairs the metal-induced transcription by inducing the dissociation of MTF-1 from the MT promoters and the deficient nuclear import of MTF-1 under metal-stressed conditions. This suggests that gawky serves as a 'checkpoint' for metal stress and metal-induced transcription. In fact, regular mRNAs are converted into gawky-controlled transcripts if expressed under the control of a metal-responsive promoter, suggesting that whether transcription undergoes gawky-mediated regulation is encrypted therein. Additionally, lack of gawky eliminates the DNA binding bias of MTF-1 and the transcription preference of metal-specific genes. This suggests a combinatorial control of metal discrimination by gawky, MTF-1, and MTF-1 binding sites.
Collapse
Affiliation(s)
- Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
16
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
17
|
Munakata F, Suzawa M, Ui-Tei K. Identification of Phosphorylated Amino Acids in Human TNRC6A C-Terminal Region and Their Effects on the Interaction with the CCR4-NOT Complex. Genes (Basel) 2021; 12:genes12020271. [PMID: 33668648 PMCID: PMC7917804 DOI: 10.3390/genes12020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Human GW182 family proteins have Argonaute (AGO)-binding domains in their N-terminal regions and silencing domains, which interact with RNA silencing-related proteins, in their C-terminal regions. Thus, they function as scaffold proteins between the AGO protein and RNA silencing-related proteins, such as carbon catabolite repressor4-negative on TATA (CCR4-NOT) or poly(A)-binding protein (PABP). Our mass spectrometry analysis and the phosphorylation data registered in PhosphoSitePlus, a post-translational modification database, suggested that the C-terminal region of a human GW182 family protein, TNRC6A, has at least four possible phosphorylation sites, which are located near the region interacting with the CCR4-NOT complex. Among them, two serine residues at amino acid positions 1332 and 1346 (S1332 and S1346) were certainly phosphorylated in human HeLa cells, but other two serine residues (S1616 and S1691) were not phosphorylated. Furthermore, it was revealed that the phosphorylation patterns of TNRC6A affect the interaction with the CCR4-NOT complex. When S1332 and S1346 were dephosphorylated, the interactions of TNRC6A with the CCR4-NOT complex were enhanced, and when S1616 and S1691 were phosphorylated, such interaction was suppressed. Thus, phosphorylation of TNRC6A was considered to regulate the interaction with RNA silencing-related factors that may affect RNA silencing activity.
Collapse
Affiliation(s)
- Fusako Munakata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (F.M.); (M.S.)
| | - Masataka Suzawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (F.M.); (M.S.)
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (F.M.); (M.S.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
- Correspondence: ; Tel.: +81-3-5841-3044
| |
Collapse
|
18
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
19
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
20
|
Liu Z, Johnson ST, Zhang Z, Corey DR. Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. Nucleic Acid Ther 2019; 29:323-334. [PMID: 31670606 PMCID: PMC6885777 DOI: 10.1089/nat.2019.0815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The trinucleotide repeat containing 6 (TNRC6) family of proteins are core components of RNA interference (RNAi) and consist of three paralogs (TNRC6A, TNRC6B, and TNRC6C). The TNRC6 paralogs associate with argonaute (AGO) protein, the core RNAi factor, and bridge its interactions with other proteins. We obtained TNRC6A and TNRC6B single and double knockout cell lines to investigate how the TNRC6 paralogs contribute to RNAi. We found that TNRC6 proteins are not required for gene silencing when duplex RNAs are fully complementary. TNRC6 expression was necessary for regulation by a microRNA. TNRC6A, but not TNRC6B, expression was necessary for transcriptional activation by a duplex RNA targeting a gene promoter. By contrast, AGO2 is required for all three gene expression pathways. TNRC6A can affect the Dicer localization in cytoplasm versus the nucleus, but none of the three TNRC6 paralogs was necessary for nuclear localization of AGO2. Our data suggest that the roles of the TNRC6 paralogs differ in some details and that TNRC6 is not required for clinical therapeutic silencing mechanisms that involve fully complementary duplex RNAs.
Collapse
Affiliation(s)
- Zhongtian Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.,Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Samantha T Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
21
|
Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov 2019; 5:45. [PMID: 31636958 PMCID: PMC6796862 DOI: 10.1038/s41421-019-0113-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
|