1
|
Phan CM, Hui A, Shi XC, Zheng Y, Subbaraman LN, Wu J, Jones L. The Impact of Comfort Eluting Agents and Replacement Frequency on Enhancing Contact Lens Performance. Clin Ophthalmol 2025; 19:857-873. [PMID: 40092744 PMCID: PMC11910927 DOI: 10.2147/opth.s512246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
This review explores the development and clinical implications of soft contact lenses designed to elute comfort agents, emphasizing their role in enhancing user experience and ocular health. As discomfort remains one of the primary reasons for discontinuation of lens wear, this concept aims to address this challenge by gradually releasing these agents over their period of use. This review also explores the effectiveness, safety, and user satisfaction associated with frequent replacement schedules of these lenses. Clinical trials demonstrate that lenses with eluting comfort agents significantly reduce dryness and irritation, leading to improved wear-time and overall comfort. The findings suggest that frequent replacement not only enhances lens hygiene but also maximizes the therapeutic benefits of the eluted agents, promoting a healthier ocular environment. The implications for practice highlight a shift towards more patient-centered approaches in contact lens design and management, aiming to improve adherence and satisfaction among users. This research paves the way for future innovations in contact lens technology, focusing on personalized solutions that cater to individual comfort needs.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
- Centre for Eye and Vision Research (CEVR), Science Park, Hong Kong
| | - Alex Hui
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | | | | | | | - James Wu
- Alcon Research LLC, Fort Worth, TX, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
- Centre for Eye and Vision Research (CEVR), Science Park, Hong Kong
| |
Collapse
|
2
|
Camana G, Tavano M, Li M, Castiglione F, Rossi F, Cellesi F. Design of Functional Pluronic-Based Precursors for Tailoring Hydrogel Thermoresponsiveness and Cell-Adhesive Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2749. [PMID: 37049043 PMCID: PMC10095789 DOI: 10.3390/ma16072749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
In this study, functional Pluronic F127 precursors were designed and synthesized for the preparation of thermosensitive hydrogels. Using linear Pluronic thioacetate and Pluronic multi-acrylate precursors, F127-based hydrogels were prepared through thioacetate deprotection-mediated Michael-type addition. The properties of these gels were compared to those obtained through free radical crosslinking of F127 diacrylate. Temperature was found to have a clear influence on gel swelling as a result of F127 thermoresponsiveness. The macromolecular architecture and functionality of the precursors were also optimized and characterized in terms of gelation kinetics and drug diffusion. In vitro tests were conducted on fibroblasts and endothelial cells to assess their response to cellular adhesion with Pluronic gels that were functionalized with an RGD peptide or pretreated with serum proteins to promote cell adhesion. This study provides a method for creating tailored hydrogels suitable for various biomedical applications, such as soft-tissue engineering, cell encapsulation, wound healing, and sustained delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Giulia Camana
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Mirko Tavano
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Franca Castiglione
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
3
|
Chakrabarti C, Khan Pathan S, Deep Punetha V, Pillai SA. Interaction of Tetronics® micelles with stimuli and additives and a commanding aspect towards drug delivery: An overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Begley CG, Caffery B, Nelson JD, Situ P. The effect of time on grading corneal fluorescein and conjunctival lissamine green staining. Ocul Surf 2022; 25:65-70. [PMID: 35568371 DOI: 10.1016/j.jtos.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the effect of time on grading corneal fluorescein and conjunctival lissamine green staining in dry eye disease (DED). METHODS Photographs of 68 subjects with non-Sjogren's DED (nSS DED) and 32 with Sjogren's DED (SS DED) were taken of corneal fluorescein staining, then conjunctival lissamine green staining every 30 s for at least 5 min. Photographs of one randomly selected eye were then randomly ordered and graded on a scale from 0 to 5 (severe staining) by two clinicians, masked to both site and subject. The average time required to reach the maximum grade of staining (Gmax) was calculated. RESULTS The median time (upper and lower quartiles) to corneal fluorescein Gmax was 2.6 (1.3-5.3) minutes for nSS DED and 3.8 (2.6-5.4) minutes for SS DED, a statistically significant difference (Mann Whitney U test, p = 0.018). In contrast, the median time to the Gmax for lissamine green staining of the nasal and temporal conjunctiva was 0.5 (0.5-1.1 nasal, 0.5-0.8 temporal) minutes for nSS DED and 0.5 (0.5-0.8 nasal, 0.5-0.5 temporal) minutes for SS DED subjects, which was not statistically significant (p ≥ 0.383). CONCLUSIONS The time required to reach the maximum grade of corneal fluorescein staining, but not conjunctival lissamine green staining, varied widely and was significantly longer in subjects with Sjögren's Syndrome. Early observation of corneal fluorescein staining can lead to under-grading, which may impact the diagnosis and assessment of treatment in DED. Further study of the best time to assess corneal fluorescein staining in various DED populations is warranted.
Collapse
Affiliation(s)
| | | | | | - Ping Situ
- Indiana University School of Optometry, Bloomington, IN, USA
| |
Collapse
|
5
|
Uptake and release of polyhexamethylene biguanide (PHMB) from hydrogel and silicone hydrogel contact lenses using a radiolabel methodology. Cont Lens Anterior Eye 2022; 45:101575. [DOI: 10.1016/j.clae.2022.101575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
|
6
|
Tahhan N, Naduvilath TJ, Woods C, Papas E. Review of 20 years of soft contact lens wearer ocular physiology data. Cont Lens Anterior Eye 2021; 45:101525. [PMID: 34686430 DOI: 10.1016/j.clae.2021.101525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Since the introduction of Silicone hydrogel (SiHy) contact lenses 20 years ago, industry has continued to modify lens materials, designs, lens care products and manufacturing processes, striving to improve contact lens physiological performance, comfort, and convenience for wearers. The purpose of this study was to investigate whether the ocular health of habitual soft contact lens wearers today is better than it was in previous decades. METHODS Baseline ocular physiology data for 3624 participants from a The Brien Holden Vision Institute clinical trials database were retrospectively reviewed. Records were grouped into 3 time periods; A: >2 decades ago (1997-1999), B: one decade ago (2009-2014) and C: recent years (since 2015). Physiology data for both neophytes and habitual contact lens wearers included; bulbar, limbal and upper palpebral conjunctival redness, corneal and conjunctival staining and conjunctival indentation from contact lenses. RESULTS Corneal staining levels are similar between neophytes and contact lens wearers at time points A and C but worse for contact lens wearers at time point B. Limbal redness was greater in contact lens wearers than in neophytes at time point A but at time points B and C they are not different to the non-contact lens wearing population. In recent years, most ocular physiological variables in habitual contact lens wearers are similar to neophytes. CONCLUSIONS While there have been changes over the past two decades in ocular physiological responses to contact lens wear, it appears that ocular health with current day contact lens wear is similar to no lens wear in most respects.
Collapse
Affiliation(s)
- Nina Tahhan
- Brien Holden Vision Institute, Sydney, New South Wales, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia.
| | | | - Craig Woods
- Brien Holden Vision Institute, Sydney, New South Wales, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Eric Papas
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Efron N, Morgan PB, Nichols JJ, Walsh K, Willcox MD, Wolffsohn JS, Jones LW. All soft contact lenses are not created equal. Cont Lens Anterior Eye 2021; 45:101515. [PMID: 34583895 DOI: 10.1016/j.clae.2021.101515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022]
Abstract
Soft contact lenses that have been prescribed by eye care practitioners are sometimes substituted for alternative lenses by unqualified, unregulated and sometimes even fully regulated lens suppliers, in the mistaken belief that there is essentially no difference between different soft lens types. This review considers the implications of inappropriately substituting soft contact lens types in terms of (a) lens properties: surface treatment, internal wetting agents, material, total diameter, back optic zone radius, thickness, edge profile, back surface design, optical design, power, colour (tint) and ultraviolet protection; and (b) lens usage: wearing modality (daily versus overnight wear) and replacement frequency. Potential aspects of patient dissatisfaction and adverse events when prescribed soft lenses are substituted for lenses with different properties or intended usage are considered. Substitution of 15 of the 16 lens properties considered (i.e. except for back surface design) was found to be related to at least one - and as many as six - potential sources of patient dissatisfaction and adverse ocular events. Contact lens are medical devices which are prescribed and fitted; they should never be substituted for another lens type in the absence of a new prescription further to a full finalised fitting, for the simple reason that all soft contact lenses are not created equal. A substituted lens may have properties that results in undesirable consequences in respect of vision, ocular health, comfort and cosmetic appearance, and may be incompatible with the lifestyle of the patient.
Collapse
Affiliation(s)
- Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | - Phillip B Morgan
- Eurolens Research, Division of Pharmacy and Optometry, The University of Manchester, Manchester, UK
| | - Jason J Nichols
- School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen Walsh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark D Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | | | - Lyndon W Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada; Centre for Eye and Vision Research (CEVR), Hong Kong
| |
Collapse
|
8
|
Jain P, Aida T, Motosuke M. Fluorescence Anisotropy as a Temperature-Sensing Molecular Probe Using Fluorescein. MICROMACHINES 2021; 12:1109. [PMID: 34577751 PMCID: PMC8469510 DOI: 10.3390/mi12091109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 01/28/2023]
Abstract
Fluorescence anisotropy, a technique to study the folding state of proteins or affinity of ligands, is used in this present work as a temperature sensor, to measure the microfluidic temperature field, by adding fluorophore in the liquid. Fluorescein was used as a temperature-sensing probe, while glycerol-aq. ammonia solution was used as a working fluid. Fluorescence anisotropy of fluorescein was measured by varying various parameters. Apart from this, a comparison of fluorescence anisotropy and fluorescence intensity is also performed to demonstrate the validity of anisotropy to be applied in a microfluidic field with non-uniform liquid thickness. Viscosity dependence and temperature dependence on the anisotropy are also clarified; the results indicate an appropriate selection of relation between molecule size and viscosity is important to obtain a large temperature coefficient in anisotropy. Furthermore, a practical calibration procedure of the apparatus constant is proposed. In addition, the potential of temperature imaging is confirmed by the measurement of temperature distribution under focused laser heating.
Collapse
Affiliation(s)
- Puneet Jain
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (T.A.); (M.M.)
| | - Takuya Aida
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (T.A.); (M.M.)
| | - Masahiro Motosuke
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (T.A.); (M.M.)
- Water Frontier Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 125-8585, Japan
| |
Collapse
|
9
|
Martinez-Carrasco R, Argüeso P, Fini ME. Membrane-associated mucins of the human ocular surface in health and disease. Ocul Surf 2021; 21:313-330. [PMID: 33775913 PMCID: PMC8328898 DOI: 10.1016/j.jtos.2021.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Mucins are a family of high molecular weight, heavily-glycosylated proteins produced by wet epithelial tissues, including the ocular surface epithelia. Densely-packed O-linked glycan chains added post-translationally confer the biophysical properties of hydration, lubrication, anti-adhesion and repulsion. Membrane-associated mucins (MAMs) are the distinguishing components of the mucosal glycocalyx. At the ocular surface, MAMs maintain wetness, lubricate the blink, stabilize the tear film, and create a physical barrier to the outside world. In addition, it is increasingly appreciated that MAMs function as cell surface receptors that transduce information from the outside to the inside of the cell. Recently, our team published a comprehensive review/perspectives article for molecular scientists on ocular surface MAMs, including previously unpublished data and analyses on two new genes MUC21 and MUC22, as well as new MAM functions and biological roles, comparing human and mouse (PMID: 31493487). The current article is a refocus for the audience of The Ocular Surface. First, we update the gene and protein information in a more concise form, and include a new section on glycosylation. Next, we discuss biological roles, with some new sections and further updating from our previous review. Finally, we provide a new chapter on MAM involvement in ocular surface disease. We end this with discussion of an emerging mechanism responsible for damage to the epithelia and their mucosal glycocalyces: the unfolded protein response (UPR). The UPR offers a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- Department of Ophthalmology, Tufts University School of Medicine at New England Eye Center, Tufts Medical Center, Boston, MA, 02111, USA.
| | - Pablo Argüeso
- Department of Ophthalmology, Harvard Medical School at Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, 02114, USA.
| | - M Elizabeth Fini
- Department of Ophthalmology, Tufts University School of Medicine at New England Eye Center, Tufts Medical Center: Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, O2111, USA.
| |
Collapse
|
10
|
Yee A, Phan CM, Chan VWY, Heynen M, Jones L. Uptake and Release of a Multipurpose Solution Biocide (MAP-D) From Hydrogel and Silicone Hydrogel Contact Lenses Using a Radiolabel Methodology. Eye Contact Lens 2021; 47:249-255. [PMID: 32604136 DOI: 10.1097/icl.0000000000000724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the uptake and release of radiolabelled myristamidopropyl dimethylamine (MAP-D) on reusable daily wear contact lenses (CLs) over 7 days. METHODS Three silicone hydrogel (SH) CL materials (lotrafilcon B, balafilcon A, senofilcon A) and two conventional hydrogel (CH) materials (etafilcon A, omafilcon A) were tested. A short-term (experiment 1, N=4) and a longer-term (experiment 2, N=3) study was conducted. In experiment 1, the CLs were incubated in 2 mL of phosphate buffered solution (PBS) containing 14C MAP-D (5 μg/mL) for 8 hrs. The release of 14C MAP-D was measured at t=0.25, 0.5, 1, 2, 4, 8, and 24 hr in PBS. In experiment 2, the CLs were incubated in the 14C MAP-D solution for 8 hrs followed by a 16-hr release in PBS. This cycle was repeated daily for 7 days. At the end of both experiments, lenses were extracted to determine the total uptake of MAP-D. The radioactivity was measured using a beta scintillation counter. RESULTS In experiment 1, all three SH lenses sorbed similar amounts of MAP-D (P=0.99), all of which were higher than the two CH materials (P<0.01). However, the CH materials released a greater amount of MAP-D than the SH materials (P<0.01). In experiment 2, the uptake of MAP-D in SH materials increased over 7 days, whereas the amount of MAP-D remained constant in the CH materials (P=0.99). Similar to experiment 1, the CH lenses released more MAP-D than SH lenses after 7 days (P<0.01). CONCLUSION The SH materials absorbed greater amounts of MAP-D compared to CH materials. However, the CH materials released the greatest amount of MAP-D. Radioactive labelling of MAP-D offers a highly sensitive method of assessing the uptake and release profiles of biocides to CL materials.
Collapse
Affiliation(s)
- Alan Yee
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | | | | | | | | |
Collapse
|
11
|
CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears. Cont Lens Anterior Eye 2021; 44:157-191. [DOI: 10.1016/j.clae.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
|
12
|
Morgan PB, Murphy PJ, Gifford KL, Gifford P, Golebiowski B, Johnson L, Makrynioti D, Moezzi AM, Moody K, Navascues-Cornago M, Schweizer H, Swiderska K, Young G, Willcox M. CLEAR - Effect of contact lens materials and designs on the anatomy and physiology of the eye. Cont Lens Anterior Eye 2021; 44:192-219. [PMID: 33775377 DOI: 10.1016/j.clae.2021.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
This paper outlines changes to the ocular surface caused by contact lenses and their degree of clinical significance. Substantial research and development to improve oxygen permeability of rigid and soft contact lenses has meant that in many countries the issues caused by hypoxia to the ocular surface have largely been negated. The ability of contact lenses to change the axial growth characteristics of the globe is being utilised to help reduce the myopia pandemic and several studies and meta-analyses have shown that wearing orthokeratology lenses or soft multifocal contact lenses can reduce axial length growth (and hence myopia). However, effects on blinking, ptosis, the function of Meibomian glands, fluorescein and lissamine green staining of the conjunctiva and cornea, production of lid-parallel conjunctival folds and lid wiper epitheliopathy have received less research attention. Contact lens wear produces a subclinical inflammatory response manifested by increases in the number of dendritiform cells in the conjunctiva, cornea and limbus. Papillary conjunctivitis is also a complication of all types of contact lenses. Changes to wear schedule (daily disposable from overnight wear) or lens materials (hydrogel from SiHy) can reduce papillary conjunctivitis, but the effect of such changes on dendritic cell migration needs further study. These changes may be associated with decreased comfort but confirmatory studies are needed. Contact lenses can affect the sensitivity of the ocular surface to mechanical stimulation, but whether these changes affect comfort requires further investigation. In conclusion, there have been changes to lens materials, design and wear schedules over the past 20+ years that have improved their safety and seen the development of lenses that can reduce the myopia development. However, several changes to the ocular surface still occur and warrant further research effort in order to optimise the lens wearing experience.
Collapse
Affiliation(s)
- Philip B Morgan
- Eurolens Research, Division of Pharmacy and Optometry, University of Manchester, UK.
| | - Paul J Murphy
- University of Waterloo, School of Optometry and Vision Science, Waterloo, Canada
| | - Kate L Gifford
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Paul Gifford
- School of Optometry and Vision Science, UNSW Sydney, Australia
| | | | - Leah Johnson
- CooperVision Specialty EyeCare, Gilbert, AZ, United States
| | - Dimitra Makrynioti
- School of Health Rehabilitation Sciences, University of Patras (Aigio), Greece
| | - Amir M Moezzi
- Centre for Ocular Research and Education, University of Waterloo, Canada
| | - Kurt Moody
- Johnson & Johnson Vision Care, Jacksonville, FL, United States
| | | | | | - Kasandra Swiderska
- Eurolens Research, Division of Pharmacy and Optometry, University of Manchester, UK
| | | | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Australia
| |
Collapse
|
13
|
Yee A, Walsh K, Schulze M, Jones L. The impact of patient behaviour and care system compliance on reusable soft contact lens complications. Cont Lens Anterior Eye 2021; 44:101432. [PMID: 33678542 DOI: 10.1016/j.clae.2021.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
Reusable soft daily wear contact lenses (CLs) remain popular and were fit to just over half of all wearers in the most recent international CL prescribing survey. Unlike daily disposable CLs, reusables require cleaning and disinfecting after every use, along with storage in a CL case. These additional requirements add a number of steps to the daily wear and care routine, increasing the opportunities for CL wearers to exhibit non-compliant behaviour. The impact of non-compliance ranges from poor lens comfort through to potentially sight-threatening infective keratitis. The coronavirus pandemic has refocused the profession on the importance of hand hygiene in particular, and the need for promoting safe CL wear in general. This review summarises typical non-compliant behaviour related to reusable CLs, and examines strategies and opportunities to better support wearers. Patient education has a central role in encouraging compliant behaviour, although patient recall of information is low, and personal belief systems may result in continuation of non-compliant behaviour despite awareness of the risks. CL care solutions are required for the daily disinfection of lenses, however misuse of multipurpose solutions (MPS) and hydrogen peroxide (H2O2)-based care systems can challenge their ability to be fully efficacious. Standard efficacy testing is reviewed, with consideration of how well current protocols model real-world use of CL solutions. Although some recommendations are in place for the inclusion of additional variables such as lens cases, CL materials, organic soil and efficacy against Acanthamoeba, opportunity still exists to reevaluate global standards to ensure consistency of testing in all markets. Finally, potential future innovations are discussed which may further support increased safety in reusable lens wear through novel antimicrobial additions to both CL materials and cases.
Collapse
Affiliation(s)
- Alan Yee
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| | - Karen Walsh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| | - Marc Schulze
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| |
Collapse
|
14
|
O’Hagan S, Kell DB. Structural Similarities between Some Common Fluorophores Used in Biology, Marketed Drugs, Endogenous Metabolites, and Natural Products. Mar Drugs 2020; 18:E582. [PMID: 33238416 PMCID: PMC7700180 DOI: 10.3390/md18110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
It is known that at least some fluorophores can act as 'surrogate' substrates for solute carriers (SLCs) involved in pharmaceutical drug uptake, and this promiscuity is taken to reflect at least a certain structural similarity. As part of a comprehensive study seeking the 'natural' substrates of 'orphan' transporters that also serve to take up pharmaceutical drugs into cells, we have noted that many drugs bear structural similarities to natural products. A cursory inspection of common fluorophores indicates that they too are surprisingly 'drug-like', and they also enter at least some cells. Some are also known to be substrates of efflux transporters. Consequently, we sought to assess the structural similarity of common fluorophores to marketed drugs, endogenous mammalian metabolites, and natural products. We used a set of some 150 fluorophores along with standard fingerprinting methods and the Tanimoto similarity metric. Results: The great majority of fluorophores tested exhibited significant similarity (Tanimoto similarity > 0.75) to at least one drug, as judged via descriptor properties (especially their aromaticity, for identifiable reasons that we explain), by molecular fingerprints, by visual inspection, and via the "quantitative estimate of drug likeness" technique. It is concluded that this set of fluorophores does overlap with a significant part of both the drug space and natural products space. Consequently, fluorophores do indeed offer a much wider opportunity than had possibly been realised to be used as surrogate uptake molecules in the competitive or trans-stimulation assay of membrane transporter activities.
Collapse
Affiliation(s)
- Steve O’Hagan
- Department of Chemistry, The University of Manchester, Manchester M13 9PT, UK;
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Molecular, Integrative and Systems Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Nirbhavane P, Sharma G, Singh B, Begum G, Jones MC, Rauz S, Vincent R, Denniston AK, Hill LJ, Katare OP. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf B Biointerfaces 2020; 190:110902. [PMID: 32143010 DOI: 10.1016/j.colsurfb.2020.110902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
Topical administration of corticosteroids is the cornerstone treatment of anterior uveitis, but poor corneal penetration and retention cause hindrance in their therapeutic utility. The conventional eye drops are less valuable in conditions where inflammation reaches deeper regions of the eye. Therefore, there is a clear need for an effective drug delivery system, which can increase corticosteroid penetration after topical application. To address this, cationic nanostructured lipid carriers of the drug triamcinolone acetonide (cTA-NLC) were prepared. The cTA-NLC were prepared by a hot microemulsion method and evaluated for drug release, permeation, cell uptake, cytotoxicity, anti-inflammatory activity and ocular irritancy. The cTA-NLC are nanometric in size (< 200 nm), with a zeta potential of about +35 mv and % drug EE of 88 %. The nanocarriers exhibited slow and sustained release of around 84 % in 24 h and transcorneal drug permeation of 51 % in 8 h. The nanocarriers exhibited no cytotoxicity (% cell viability of>90 %). The cell uptake study showed that nanocarriers could retain inside the cells for 24 h. The developed formulation could significantly reduce the TNF-α level in LPS induced inflamed cells. The studies indicated that cTA-NLC could be a promising option for the topical treatment of uveitis.
Collapse
Affiliation(s)
- Pradip Nirbhavane
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ghazala Begum
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marie-Christine Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Saaeha Rauz
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rachel Vincent
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alastair K Denniston
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - O P Katare
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Beshtawi IM, Qaddomi J, Khuffash H, El-Titi S, Ghannam M, Otaibi R. Ocular surface response and subjective symptoms associated to lens care solutions in Palestine. JOURNAL OF OPTOMETRY 2019; 12:248-255. [PMID: 31327625 PMCID: PMC6978592 DOI: 10.1016/j.optom.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE To compare the biocompatibility and subjective symptoms of four multipurpose solutions marketed in Palestine with hydrogel contact lenses. METHODS 50 habitual soft contact lens wearers were recruited in this interventional crossover study. Subjects were asked to attend the optometry clinic five times. A new pair of hydrogel lenses (Bioxifilcon-B) were fitted each time. This pair was soaked randomly overnight in one of the following four-multipurpose solutions (NEOPLUS®, AvizorUnicaSensitive®, ReNuMultiPlus® and COMPLETERevitaLens®) which contain different disinfecting agents (PHMB, Phx, PAPB, and PQ-1+Alexidine, respectively), or non-preserved saline. At each visit, corneal staining, ocular redness and subjective symptoms were assessed. RESULTS The percentage of corneal staining increased significantly (P≤0.050) after soaking the lenses with PHMB (86%), PAPB (64%) and Phx (32%) based-solutions. However, a non-significant increase was noticed after the use of PQ-1+Alexidine based solution (30%, P=0.083). Ocular redness evaluation showed a significant increase (P≤0.050) in limbal hyperemia after the use of all solutions, while bulbar redness was significantly increased after the use of biguanide-based solutions (P≤0.050). The subjective assessment analysis showed a non-significant change in comfort, dryness, photophobia and scratchiness (P≥0.050) at 2-h intervention using all solutions, except for the PHMB based solution which showed a significant change in subjective symptoms (P≤0.050). CONCLUSION The combination of Bioxifilcon-B hydrogel contact lenses and solution containing PHMB, PAPB and Phx-disinfectants induced a significant increase in corneal staining after 2h of CL-wear with a higher severity when the PHMB-based solution was used, while the PQ-1+Alexidine-based solution did not. Only the PHMB-based solution triggered a significant change in subjective symptoms which might which suggests that it might be related to the severity of staining rather than the induction of staining.
Collapse
Affiliation(s)
- Ithar M Beshtawi
- Optometry Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, West Bank, Palestine.
| | - Jamal Qaddomi
- Nursing Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, West Bank, Palestine
| | - Hanady Khuffash
- Optometry Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, West Bank, Palestine
| | - Safa El-Titi
- Medicine Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, West Bank, Palestine
| | - Malak Ghannam
- Optometry Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, West Bank, Palestine
| | - Reema Otaibi
- Medicine Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, West Bank, Palestine
| |
Collapse
|
17
|
Walsh K, Jones L. The use of preservatives in dry eye drops. Clin Ophthalmol 2019; 13:1409-1425. [PMID: 31447543 PMCID: PMC6682755 DOI: 10.2147/opth.s211611] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Topical ocular preparations are widely recommended by health care professionals, or chosen by patients, to help manage dry eye disease (DED). The chronic and progressive nature of DED may result in the administration of topical products several times a day, over a period of many years. Given DED is a condition that by definition affects the ocular surface, it is important to understand how the repeated use of eye drops may impact the ocular surface, influence clinical signs, affect symptoms, and impact the overall disease process of dry eye. The component in topical preparations with the greatest potential to adversely affect the ocular surface is the preservative. This paper reviews the literature in relation to the use of preservatives in formulations for dry eye. The ocular effects of benzalkonium chloride (BAK) are summarised and compared to the performance of alternative preservatives and preservative-free formulations. Use of preserved and preservative-free drops in relation to the management of varying stages of DED is discussed.
Collapse
Affiliation(s)
- Karen Walsh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| |
Collapse
|
18
|
Pucker AD, Jones-Jordan LA, Marx S, Powell DR, Kwan JT, Srinivasan S, Sickenberger W, Jones L. Clinical factors associated with contact lens dropout. Cont Lens Anterior Eye 2019; 42:318-324. [DOI: 10.1016/j.clae.2018.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/19/2018] [Accepted: 12/01/2018] [Indexed: 02/01/2023]
|
19
|
Webster A, Chintala SK, Kim J, Ngan M, Itakura T, Panjwani N, Argüeso P, Barr JT, Jeong S, Fini ME. Dynasore protects the ocular surface against damaging oxidative stress. PLoS One 2018; 13:e0204288. [PMID: 30303976 PMCID: PMC6179211 DOI: 10.1371/journal.pone.0204288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023] Open
Abstract
Water soluble "vital" dyes are commonly used clinically to evaluate health of the ocular surface; however, staining mechanisms remain poorly understood. Recent evidence suggests that sublethal damage stimulates vital dye uptake by individual living cells. Since cell damage can also stimulate reparative plasma membrane remodeling, we hypothesized that dye uptake occurs via endocytic vesicles. In support of this idea, we show here that application of oxidative stress to relatively undifferentiated monolayer cultures of human corneal epithelial cells stimulates both dye uptake and endocytosis, and that dye uptake is blocked by co-treatment with three different endocytosis inhibitors. Stress application to stratified and differentiated corneal epithelial cell cultures, which are a better model of the ocular surface, also stimulated dye uptake; however, endocytosis was not stimulated, and two of the endocytosis inhibitors did not block dye uptake. The exception was Dynasore and its more potent analogue Dyngo-4a, both small molecules developed to target dynamin family GTPases, but also having off-target effects on the plasma membrane. Significantly, while Dynasore blocked stress-stimulated dye uptake at the ocular surface of ex vivo mouse eyes when treatment was performed at the same time as eyes were stressed, it had no effect when used after stress was applied and the ocular surface was already damaged. Thus, Dynasore could not be working by inhibiting endocytosis. Employing cytotoxicity and western blotting assays, we went on to demonstrate an alternative mechanism. We show that Dynasore is remarkably protective of cells and their surface glycocalyx, preventing damage due to stress, and thus precluding dye entry. These unexpected and novel findings provide greater insight into the mechanisms of vital dye uptake and point the direction for future study. Significantly, they also suggest that Dynasore and its analogues might be used therapeutically to protect the ocular surface and to treat ocular surface disease.
Collapse
Affiliation(s)
- Andrew Webster
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Shravan K. Chintala
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Jasmine Kim
- Program in Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Michelle Ngan
- Program in Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Tatsuo Itakura
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - Joseph T. Barr
- The Ohio State University College of Optometry, Columbus, OH, United States of America
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and USC Roski Eye Institute/Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - M. Elizabeth Fini
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|