1
|
Sangeeth A, Malleswarapu M, Mishra A, Gutti RK. Long Non-Coding RNAs as Cellular Metabolism and Haematopoiesis Regulators. J Pharmacol Exp Ther 2023; 384:79-91. [PMID: 35667690 DOI: 10.1124/jpet.121.001120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a category of non-coding RNAs (ncRNAs) that are more than 200 bases long and play major regulatory roles in a wide range of biologic processes, including hematopoeisis and metabolism. Metabolism in cells is an immensely complex process that involves the interconnection and unification of numerous signaling pathways. A growing body of affirmation marks that lncRNAs do participate in metabolism, both directly and indirectly, via metabolic regulation of enzymes and signaling pathways, respectively. The complexities are disclosed by the latest studies demonstrating how lncRNAs could indeed alter tissue-specific metabolism. We have entered a new realm for discovery that is both intimidating and intriguing. Understanding the different functions of lncRNAs in various cellular pathways aids in the advancement of predictive and therapeutic capabilities for a wide variety of myelodysplastic and metabolic disorders. This review has tried to give an overview of the different ncRNAs and their effects on hematopoiesis and metabolism. We have focused on the pathway of action of several lncRNAs and have also delved into their prognostic value. Their use as biomarkers and possible therapeutic targets has also been discussed. SIGNIFICANCE STATEMENT: This review has tried to give an overview of the different ncRNAs and their effects on hematopoiesis and metabolism. The pathway of action of several lncRNAs and their prognostic value was discussed. Their use as biomarkers and possible therapeutic targets has also been elaborated.
Collapse
Affiliation(s)
- Anjali Sangeeth
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Mahesh Malleswarapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Amit Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad, India (A.S., M.M., R.K.G.) and Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India (A.M.)
| |
Collapse
|
2
|
Identification and characterization of long non-coding RNAs in juvenile and adult skeletal muscle of largemouth bass (Micropterus salmoides). Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110748. [PMID: 35460873 DOI: 10.1016/j.cbpb.2022.110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a class of transcriptional RNA molecules, which play critical roles in diverse biological processes. However, little is known about the overall expression pattern and roles of lncRNAs in skeletal muscle of largemouth bass (LMB). Here, we constructed two skeletal muscle RNA libraries to find lncRNAs that may involve in the regulation of skeletal muscle development between juvenile and adult LMB. A total of 16,147 lncRNAs and 4611 differentially expressed lncRNAs were identified. Among these identified lncRNAs, 10 lncRNAs were randomly selected to confirm their expression by real-time qPCR both in libraries, which were consistent with the RNA sequencing results. The target mRNAs of lncRNAs were predicted for GO enrichment analysis. Results showed that these targets associated with growth and development of muscle, such as skeletal muscle fiber development, myoblast proliferation and differentiation. Importantly, correlation analysis of lncRNA-miRNA-mRNA regulatory network revealed that several lncRNAs targeted miRNAs which are closely involved in the regulation of muscle development. It is the first time to identify a number of lncRNA that correlate with skeletal muscle development in LMB. Our results not only provide a comprehensive expression profile of muscle lncRNAs in this species, but also provide a theoretical basis for further elaborating genetic regulation mechanism of muscle growth and development, and pave the way for the future molecular assisted breeding in carnivorous fishes.
Collapse
|
3
|
Yu J, Loh K, Yang HQ, Du MR, Wu YX, Liao ZY, Guo A, Yang YF, Chen B, Zhao YX, Chen JL, Zhou J, Sun Y, Xiao Q. The Whole-transcriptome Landscape of Diabetes-related Sarcopenia Reveals the Specific Function of Novel lncRNA Gm20743. Commun Biol 2022; 5:774. [PMID: 35915136 PMCID: PMC9343400 DOI: 10.1038/s42003-022-03728-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/15/2022] [Indexed: 11/11/2022] Open
Abstract
While the exact mechanism remains unclear, type 2 diabetes mellitus increases the risk of sarcopenia which is characterized by decreased muscle mass, strength, and function. Whole-transcriptome RNA sequencing and informatics were performed on the diabetes-induced sarcopenia model of db/db mice. To determine the specific function of lncRNA Gm20743, the detection of Mito-Sox, reactive oxygen species, Ethynyl-2′-deoxyuridine, and myosin heavy chain was performed in overexpressed and knockdown-Gm20743 C2C12 cells. RNA-seq data and informatics revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. We characterized three core candidate lncRNAs Gm20743, Gm35438, 1700047G03Rik, and their potential function. Furthermore, the results suggested lncRNA Gm20743 may be involved in regulating mitochondrial function, oxidative stress, cell proliferation, and myotube differentiation in skeletal muscle cells. These findings significantly improve our understanding of lncRNAs that may mediate muscle mass, strength, and function in diabetes and represent potential therapeutic targets for diabetes-induced sarcopenia. The role of lncRNA Gm20743 in the development of diabetic sarcopenia is explored using a mouse model.
Collapse
Affiliation(s)
- Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kim Loh
- Diabetes & Metabolic Disease Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, Australia
| | - He-Qin Yang
- Health Outcome Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Meng-Ran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong-Xin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-Fei Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu-Xing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Kesharwani D, Kumar A, Poojary M, Scaria V, Datta M. RNA sequencing reveals potential interacting networks between the altered transcriptome and ncRNome in the skeletal muscle of diabetic mice. Biosci Rep 2021; 41:BSR20210495. [PMID: 34190986 PMCID: PMC8276098 DOI: 10.1042/bsr20210495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
For a global epidemic like Type 2 diabetes mellitus (T2DM), while impaired gene regulation is identified as a primary cause of aberrant cellular physiology; in the past few years, non-coding RNAs (ncRNAs) have emerged as important regulators of cellular metabolism. However, there are no reports of comprehensive in-depth cross-talk between these regulatory elements and the potential consequences in the skeletal muscle during diabetes. Here, using RNA sequencing, we identified 465 mRNAs and 12 long non-coding RNAs (lncRNAs), to be differentially regulated in the skeletal muscle of diabetic mice and pathway enrichment analysis of these altered transcripts revealed pathways of insulin, FOXO and AMP-activated protein kinase (AMPK) signaling to be majorly over-represented. Construction of networks showed that these pathways significantly interact with each other that might underlie aberrant skeletal muscle metabolism during diabetes. Gene-gene interaction network depicted strong interactions among several differentially expressed genes (DEGs) namely, Prkab2, Irs1, Pfkfb3, Socs2 etc. Seven altered lncRNAs depicted multiple interactions with the altered transcripts, suggesting possible regulatory roles of these lncRNAs. Inverse patterns of expression were observed between several of the deregulated microRNAs (miRNAs) and the differentially expressed transcripts in the tissues. Towards validation, overexpression of miR-381-3p and miR-539-5p in skeletal muscle C2C12 cells significantly decreased the transcript levels of their targets, Nfkbia, Pik3r1 and Pi3kr1, Cdkn2d, respectively. Collectively, the findings provide a comprehensive understanding of the interactions and cross-talk between the ncRNome and transcriptome in the skeletal muscle during diabetes and put forth potential therapeutic options for improving insulin sensitivity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- CSIR-Institute of Genomics and Integrative Biology, Functional and Genomics Unit, Mall Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Amit Kumar
- CSIR-Institute of Genomics and Integrative Biology, Functional and Genomics Unit, Mall Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Mukta Poojary
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Functional and Genomics Unit, Mall Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:diagnostics11010145. [PMID: 33478141 PMCID: PMC7835902 DOI: 10.3390/diagnostics11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has opened a new paradigm to use ncRNAs as biomarkers to detect disease progression. Long non-coding RNAs (lncRNA) have garnered the most attention due to their specific cell-origin and their existence in biological fluids. Type 2 diabetes patients will develop cardiovascular disease (CVD) complications, and CVD remains the top risk factor for mortality. Understanding the lncRNA roles in T2D and CVD conditions will allow the future use of lncRNAs to detect CVD complications before the symptoms appear. This review aimed to discuss the roles of lncRNAs in T2D and CVD conditions and their diagnostic potential as molecular biomarkers for CVD complications in T2D.
Collapse
|
6
|
RNA-sequencing analysis reveals the potential contribution of lncRNAs in palmitic acid-induced insulin resistance of skeletal muscle cells. Biosci Rep 2020; 40:221488. [PMID: 31833538 PMCID: PMC6944669 DOI: 10.1042/bsr20192523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) has been considered as the common pathological basis and developmental driving force for most metabolic diseases. Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators in modulation of glucose and lipid metabolism. However, the comprehensive profile of lncRNAs in skeletal muscle cells under the insulin resistant status and the possible biological effects of them were not fully studied. In this research, using C2C12 myotubes as cell models in vitro, deep RNA-sequencing was performed to profile lncRNAs and mRNAs between palmitic acid-induced IR C2C12 myotubes and control ones. The results revealed that a total of 144 lncRNAs including 70 up-regulated and 74 down-regulated (|fold change| > 2, q < 0.05) were significantly differentially expressed in palmitic acid-induced insulin resistant cells. In addition, functional annotation analysis based on the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases revealed that the target genes of the differentially expressed lncRNAs were significantly enriched in fatty acid oxidation, lipid oxidation, PPAR signaling pathway, and insulin signaling pathway. Moreover, Via qPCR, most of selected lncRNAs in myotubes and db/db mice skeletal muscle showed the consistent expression trends with RNA-sequencing. Co-expression analysis also explicated the key lncRNA–mRNA interactions and pointed out a potential regulatory network of candidate lncRNA ENSMUST00000160839. In conclusion, the present study extended the skeletal muscle lncRNA database and provided novel potential regulators for future genetic and molecular studies on insulin resistance, which is helpful for prevention and treatment of the related metabolic diseases.
Collapse
|
7
|
Brocker CN, Kim D, Melia T, Karri K, Velenosi TJ, Takahashi S, Aibara D, Bonzo JA, Levi M, Waxman DJ, Gonzalez FJ. Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nat Commun 2020; 11:5847. [PMID: 33203882 PMCID: PMC7673042 DOI: 10.1038/s41467-020-19554-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Exploring the molecular mechanisms that prevent inflammation during caloric restriction may yield promising therapeutic targets. During fasting, activation of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) promotes the utilization of lipids as an energy source. Herein, we show that ligand activation of PPARα directly upregulates the long non-coding RNA gene Gm15441 through PPARα binding sites within its promoter. Gm15441 expression suppresses its antisense transcript, encoding thioredoxin interacting protein (TXNIP). This, in turn, decreases TXNIP-stimulated NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, caspase-1 (CASP1) cleavage, and proinflammatory interleukin 1β (IL1B) maturation. Gm15441-null mice were developed and shown to be more susceptible to NLRP3 inflammasome activation and to exhibit elevated CASP1 and IL1B cleavage in response to PPARα agonism and fasting. These findings provide evidence for a mechanism by which PPARα attenuates hepatic inflammasome activation in response to metabolic stress through induction of lncRNA Gm15441.
Collapse
Affiliation(s)
- Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Thomas J Velenosi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
- Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, 20057, USA
| | - Daisuke Aibara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Moshe Levi
- Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, 20057, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
8
|
Zhang TN, Wang W, Yang N, Huang XM, Liu CF. Regulation of Glucose and Lipid Metabolism by Long Non-coding RNAs: Facts and Research Progress. Front Endocrinol (Lausanne) 2020; 11:457. [PMID: 32765426 PMCID: PMC7381111 DOI: 10.3389/fendo.2020.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA with a length that exceeds 200 nucleotides. Previous studies have shown that lncRNAs play an important role in the pathogenesis of various diseases. Research in both animal models and humans has begun to unravel the profound complexity of lncRNAs and demonstrated that lncRNAs exert direct effects on glucose and lipid metabolism both in vivo and in vitro. Such research has elucidated the regulatory role of lncRNAs in glucose and lipid metabolism in human disease. lncRNAs mediate glucose and lipid metabolism under physiological and pathological conditions and contribute to various metabolism disorders. This review provides an update on our understanding of the regulatory role of lncRNAs in glucose and lipid metabolism in various diseases. As our understanding of the function of lncRNAs improves, the future is promising for the development of new diagnostic biomarkers that utilize lncRNAs and treatments that target lncRNAs to improve clinical outcomes.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Tie-Ning Zhang
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT, United States
- Xin-Mei Huang
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Chun-Feng Liu
| |
Collapse
|