1
|
Han Y, Quan H, Ji W, Tian Q, Liu X, Liu W. Moderate-intensity continuous training and high-intensity interval training alleviate glycolipid metabolism through modulation of gut microbiota and their metabolite SCFAs in diabetic rats. Biochem Biophys Res Commun 2024; 735:150831. [PMID: 39432925 DOI: 10.1016/j.bbrc.2024.150831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Glucose and lipid metabolism disorders are typical of diabetic patients and are important factors leading to macrovascular and microvascular complications. The aim of this study was to understand the effects of different exercises on glycolipid metabolism in diabetic rats and the role of gut flora in metabolic maintenance. We measured glycolipid metabolic indices and short-chain fatty acids (SCFAs) content and sequenced and analyzed gut microbes after 8 weeks of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) programs in type 2 diabetic rats(T2DM). We found that Enterococcaceae, Enterococcus, Subdoligranulum, Kurthia, Bacillales, and Planococcaceae may be key bacterial taxa related to T2DM and that both programs of exercise regulated the intestinal flora of rats with T2DM, improved their glycolipid metabolism, increased the abundance of SCFA-producing intestinal bacteria, and it was found that the PWY-5676 and P163-PWY pathways which are closely related to production of SCFAs were significantly upregulated in the exercise groups. Notably, MICT appeared to be more effective than HIIT in increasing the homogeneity of rat intestinal flora, enriching species, and increasing acetic acid and butyric acid content. These results suggest that exercise improves glycolipid metabolism in diabetic rats, which may be attributed to alterations in the structure of their intestinal flora.
Collapse
Affiliation(s)
- Yuxia Han
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Hongjiao Quan
- Hospital of Hunan Normal University, Changsha, 410081, China.
| | - Wei Ji
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Qinghua Tian
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Xia Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| | - Wenfeng Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, 410012, China.
| |
Collapse
|
2
|
Zhang P, Zhang C, Yao X, Xie Y, Zhang H, Shao X, Yang X, Nie Q, Ye J, Wu C, Mi H. Selenium yeast improve growth, serum biochemical indices, metabolic ability, antioxidant capacity and immunity in black carp Mylopharyngodnpiceus. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109414. [PMID: 38296006 DOI: 10.1016/j.fsi.2024.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/01/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1β, and IFN-γ and elevate TGF-1β levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.
Collapse
Affiliation(s)
- Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Chen Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xia Yang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Qin Nie
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, 168 Chengdong Avenue, Yichang, 443000, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China.
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co, Ltd, 588 Tianfu Avenue, Chengdu, 610093, China.
| |
Collapse
|
3
|
Yu SS, Du JL. Current views on selenoprotein S in the pathophysiological processes of diabetes-induced atherosclerosis: potential therapeutics and underlying biomarkers. Diabetol Metab Syndr 2024; 16:5. [PMID: 38172976 PMCID: PMC10763436 DOI: 10.1186/s13098-023-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) consistently ranks as the primary mortality factor among diabetic people. A thorough comprehension of the pathophysiological routes and processes activated by atherosclerosis (AS) caused by diabetes mellitus (DM), together with the recognition of new contributing factors, could lead to the discovery of crucial biomarkers and the development of innovative drugs against atherosclerosis. Selenoprotein S (SELENOS) has been implicated in the pathology and progression of numerous conditions, including diabetes, dyslipidemia, obesity, and insulin resistance (IR)-all recognized contributors to endothelial dysfunction (ED), a precursor event to diabetes-induced AS. Hepatic-specific deletion of SELENOS accelerated the onset and progression of obesity, impaired glucose tolerance and insulin sensitivity, and increased hepatic triglycerides (TG) and diacylglycerol (DAG) accumulation; SELENOS expression in subcutaneous and omental adipose tissue was elevated in obese human subjects, and act as a positive regulator for adipogenesis in 3T3-L1 preadipocytes; knockdown of SELENOS in Min6 β-cells induced β-cell apoptosis and reduced cell proliferation. SELENOS also participates in the early stages of AS, notably by enhancing endothelial function, curbing the expression of adhesion molecules, and lessening leukocyte recruitment-actions that collectively reduce the formation of foam cells. Furthermore, SELENOS forestalls the apoptosis of vascular smooth muscle cells (VSMCs) and macrophages, mitigates vascular calcification, and alleviates inflammation in macrophages and CD4+ T cells. These actions help stifle the creation of unstable plaque characterized by thinner fibrous caps, larger necrotic cores, heightened inflammation, and more extensive vascular calcification-features seen in advanced atherosclerotic lesion development. Additionally, serum SELENOS could function as a potential biomarker, and SELENOS single nucleotide polymorphisms (SNPs) rs4965814, rs28628459, and rs9806366, might be effective gene markers for atherosclerosis-related diseases in diabetes. This review accentuates the pathophysiological processes of atherosclerosis in diabetes and amasses current evidence on SELENOS's potential therapeutic benefits or as predictive biomarkers in the various stages of diabetes-induced atherosclerosis.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China
| | - Jian-Ling Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China.
| |
Collapse
|
4
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. The Role of Selenium in Atherosclerosis Development, Progression, Prevention and Treatment. Biomedicines 2023; 11:2010. [PMID: 37509649 PMCID: PMC10377679 DOI: 10.3390/biomedicines11072010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Selenium is an essential trace element that is essential for various metabolic processes, protection from oxidative stress and proper functioning of the cardiovascular system. Se deficiency has long been associated with multiple cardiovascular diseases, including endemic Keshan's disease, common heart failure, coronary heart disease, myocardial infarction and atherosclerosis. Through selenoenzymes and selenoproteins, Se is involved in numerous crucial processes, such as redox homeostasis regulation, oxidative stress, calcium flux and thyroid hormone metabolism; an unbalanced Se supply may disrupt these processes. In this review, we focus on the importance of Se in cardiovascular health and provide updated information on the role of Se in specific processes involved in the development and pathogenesis of atherosclerosis (oxidative stress, inflammation, endothelial dysfunction, vascular calcification and vascular cell apoptosis). We also discuss recent randomised trials investigating Se supplementation as a potential therapeutic and preventive agent for atherosclerosis treatment.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| |
Collapse
|
5
|
Liu H, Wang X, Gao H, Yang C, Xie C. Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy. Front Endocrinol (Lausanne) 2023; 14:1191426. [PMID: 37441493 PMCID: PMC10333703 DOI: 10.3389/fendo.2023.1191426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular endothelial injury in diabetes mellitus (DM) is the major cause of vascular disease, which is closely related to the occurrence and development of a series of vascular complications and has a serious negative impact on a patient's health and quality of life. The primary function of normal vascular endothelium is to function as a barrier function. However, in the presence of DM, glucose and lipid metabolism disorders, insulin resistance, inflammatory reactions, oxidative stress, and other factors cause vascular endothelial injury, leading to vascular endothelial lesions from morphology to function. Recently, numerous studies have found that autophagy plays a vital role in regulating the progression of vascular endothelial injury. Therefore, this article compares the morphology and function of normal and diabetic vascular endothelium and focuses on the current regulatory mechanisms and the important role of autophagy in diabetic vascular endothelial injury caused by different signal pathways. We aim to provide some references for future research on the mechanism of vascular endothelial injury in DM, investigate autophagy's protective or injurious effect, and study potential drugs using autophagy as a target.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Schaefer-Ramadan S, Liu J, Cheng R, Rozovsky S. Selenoprotein S: A versatile disordered protein. Arch Biochem Biophys 2022; 731:109427. [PMID: 36241082 PMCID: PMC10026367 DOI: 10.1016/j.abb.2022.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | | | - Jun Liu
- Enlaza Therapeutics, 11099 N. Torrey Pines Rd, suite 290, La Jolla, CA, 92037, USA
| | - Rujin Cheng
- NGM Biopharmaceuticals, Inc., 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Vavougios GD, Zarogiannis S, Barh D, Breza M, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Innate immunity and metal ion trafficking pathway perturbations in idiopathic Parkinson's disease and Tuberculosis: A comparative transcriptomics approach. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|