1
|
Abou-Melha K. Synthesis, characterization, and biological application of some transition metal complexes of N'-(benzo[d][1,3]dioxol-5-ylmethylene)isonicotinohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Synthesis, spectral characterization, optical properties and X-ray structural studies of S centrosymmetric N2S2 or N2S2O2 donor Schiff base ligand and its binuclear transition metal complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021; 50:14498-14512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Collapse
Affiliation(s)
- Yingsi Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Boxin Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongdong Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
4
|
Spectral, Molecular Modeling, and Biological Activity Studies on New Schiff's Base of Acenaphthaquinone Transition Metal Complexes. Bioinorg Chem Appl 2021; 2021:6674394. [PMID: 33815493 PMCID: PMC8012121 DOI: 10.1155/2021/6674394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/07/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022] Open
Abstract
The newly synthesized Schiff's base derivative, N-allyl-2-(2-oxoacenaphthylen-1(2H)-ylidene)hydrazine-1-carbothioamide, has been characterized by different spectral techniques. Its reaction with Co(II), Ni(II), and Zn(II) acetate led to the formation of 1 : 1 (M:L) complexes. The IR and NMR spectral data revealed keto-thione form for the free ligand. On chelation with Co(II) and Ni(II), it behaved as mononegative and neutral tridentate via O, N1, and S donors, respectively, while it showed neutral bidentate mode via O and N1 atoms with Zn(II). The electronic spectra indicated that all the isolated complexes have an octahedral structure. The thermal gravimetric analyses confirmed the suggested formula and the presence of coordinated water molecules. The XRD pattern of the metal complexes showed that both Co(II) and Ni(II) have amorphous nature, while Zn(II) complex has monoclinic crystallinity with an average size of 9.10 nm. DFT modeling of the ligand and complexes supported the proposed structures. The calculated HOMO-LUMO energy gap, ΔEH-L, of the ligand complexes was 1.96–2.49 eV range where HAAT < Zn(II) < Ni(II) < Co(II). The antioxidant activity investigation showed that the ligand and Zn(II) complex have high activity than other complexes, 88.5 and 88.6%, respectively. Accordingly, the antitumor activity of isolated compounds was examined against the hepatocellular carcinoma cell line (HepG2), where both HAAT and Zn(II) complex exhibited very strong activity, IC50 6.45 ± 0.25 and 6.39 ± 0.18 μM, respectively.
Collapse
|
5
|
Spectral, modeling and anticancer activity studies on the newly synthesized N-allyl-2-(2,4-dinitrophenyl)hydrazine-1-carbothioamide and some bivalent metal complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Hakimi M, Tarani B, Mardani Z, Hassani H, Kučeráková M, Skorepova E. Synthesis and characterization of a manganese(II) complex containing N(sp2)4-donor Schiff base ligand and interaction toward biomacromolecules. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1852250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mohammad Hakimi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Behjat Tarani
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Zahra Mardani
- Inorganic Chemistry Department, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Hassan Hassani
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Monika Kučeráková
- Institute of Physic, Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Skorepova
- Institute of Physic, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Zayed EM, Zayed MA. Synthesis of novel Schiff's bases of highly potential biological activities and their structure investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 143:81-90. [PMID: 25721778 DOI: 10.1016/j.saa.2015.02.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/09/2014] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Novel bisaldehyde-hydrazide Schiff's bases AS1 (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde terephthalohydrazide) and AS2 (N',N'″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(benzohydrazide)) were prepared as new macrocyclic compounds via condensation reactions. AS1 had been prepared by condensation between (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde) bisaldehyde and terephthalohydrazide in a ratio1:1. AS2 had been obtained by condensation between (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde) bisaldehyde and benzohydrazide in ratio 1:2. The structures of AS1 and AS2 were characterized by elemental analysis (EA), mass (MS), FT-IR and (1)H-NMR spectra, and thermal analyses (TG, DTG). The activation thermodynamic parameters such as ΔE(∗), ΔH(∗), ΔS(∗) and ΔG(∗) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bonds responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities had been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillus subtilis and Staphylococcus aurous bacteria in order to assess their anti-microbial potential.
Collapse
Affiliation(s)
- Ehab M Zayed
- Green Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt
| | - M A Zayed
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
9
|
Shebl M, Khalil SME. Synthesis, spectral, X-ray diffraction, antimicrobial studies, and DNA binding properties of binary and ternary complexes of pentadentate N2O3 carbohydrazone ligands. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1302-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Recent Advances in The Discovery ofN-Myristoyltransferase Inhibitors. ChemMedChem 2014; 9:2425-37. [DOI: 10.1002/cmdc.201402174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Indexed: 01/08/2023]
|
11
|
Zhao J, Peng K, Guo Y, Zhang J, Zhao D, Chen S, Hu J. Cytotoxicity towards human alimentary system carcinoma cells resulting from diverse copper(II) complexes. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.938064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jin’an Zhao
- College of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| | - Kun Peng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Yan Guo
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Jin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Dandan Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Shufang Chen
- College of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| | - Jiyong Hu
- College of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, PR China
| |
Collapse
|
12
|
Abstract
Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.
Collapse
|
13
|
Konarikova K, Andrezalova L, Rapta P, Slovakova M, Durackova Z, Laubertova L, Gbelcova H, Danisovic L, Bohmer D, Ruml T, Sveda M, Zitnanova I. Effect of the Schiff base complex diaqua-(N-salicylidene-l-glutamato)copper(II) monohydrate on human tumor cells. Eur J Pharmacol 2013; 721:178-84. [PMID: 24113525 DOI: 10.1016/j.ejphar.2013.09.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023]
|
14
|
Abu El-Reash GM, El-Gammal OA, Radwan AH. Molecular structure and biological studies on Cr(III), Mn(II) and Fe(III) complexes of heterocyclic carbohydrazone ligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:259-267. [PMID: 24247099 DOI: 10.1016/j.saa.2013.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
The chelating behavior of the ligand (H2APC) based on carbohydrazone core modified with pyridine end towards Cr(III), Mn(II) and Fe(III) ions have been examined. The (1)H NMR and IR data for H2APC revealed the presence of two stereoisomers syn and anti in both solid state and in solution in addition to the tautomeric versatility based on the flexible nature of the hydrazone linkage leading to varied coordination modes. The spectroscopic data confirmed that the ligand behaves as a monobasic tridentate in Cr(III) and Fe(III) complexes and as neutral tetradentate in Mn(II) complex. The electronic spectra as well as the magnetic measurements confirmed the octahedral geometry for all complexes. The bond length and angles were evaluated by DFT method using material studio program for all complexes. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and cytotoxic activities of the compounds have been screened. Cr(III) complex and H2APC showed the highest antioxidant activity using ABTS and DPPH methods. With respect to in vitro Ehrlich ascites assay, H2APC exhibited the potent activity followed by Fe(III) and Cr(III)complexes.
Collapse
Affiliation(s)
- G M Abu El-Reash
- Department of Chemistry, Faculty of Science, Mansoura University, P.O. Box 70, Mansoura, Egypt.
| | - O A El-Gammal
- Department of Chemistry, Faculty of Science, Mansoura University, P.O. Box 70, Mansoura, Egypt
| | - A H Radwan
- Department of Chemistry, Faculty of Science, Mansoura University, P.O. Box 70, Mansoura, Egypt
| |
Collapse
|
15
|
Abu El-Reash GM, El-Gammal OA, Ghazy SE, Radwan AH. Characterization and biological studies on Co(II), Ni(II) and Cu(II) complexes of carbohydrazones ending by pyridyl ring. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 104:26-34. [PMID: 23274253 DOI: 10.1016/j.saa.2012.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
The chelating behavior of ligands based on carbohydrazone core modified with pyridine end towards Co(II), Ni(II) and Cu(II) ions have been examined. The ligands derived from the condensation of carbohydrazide with 2-acetylpyridine (H(2)APC) and 4-acetylpyridine (H(2)APEC). The (1)H NMR, IR data and the binding energy calculations of H(2)APC revealed the presence of two stereoisomers syn and anti in the solid state and in the solution. The (1)H NMR, IR data and the binding energy calculations confirmed the presence of H(2)APEC in one keto form only in the solid state and in the solution. The spectroscopic data confirmed that H(2)APC behaves as a monobasic pentadentate in Co(II) and Cu(II) complexes and as mononegative tetradentate in Ni(II) complex. On the other hand, H(2)APEC acts as a mononegative tridentate in Co(II) complex, neutral tridentate in Ni(II) complex and neutral bidentate in Cu(II) complex. The electronic spectra and the magnetic measurements of complexes as well as the ESR of the copper complexes suggested the octahedral geometry. The bond length and bond angles were evaluated by DFT method using material studio program. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and in vitro Ehrlich ascites of the compounds have been screened.
Collapse
Affiliation(s)
- G M Abu El-Reash
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, PO Box 70, Mansoura, Egypt.
| | | | | | | |
Collapse
|
16
|
El-Boraey HA. Coordination behavior of tetraaza [N₄] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: synthesis, spectroscopic characterization and anticancer activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 97:255-262. [PMID: 22765944 DOI: 10.1016/j.saa.2012.05.077] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/19/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N(4)] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate d(x2-y2) ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC(50)=25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.
Collapse
Affiliation(s)
- Hanaa A El-Boraey
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt.
| |
Collapse
|
17
|
Galić N, Dijanošić A, Kontrec D, Miljanić S. Structural investigation of aroylhydrazones in dimethylsulphoxide/water mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 95:347-353. [PMID: 22542687 DOI: 10.1016/j.saa.2012.03.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/14/2012] [Accepted: 03/25/2012] [Indexed: 05/27/2023]
Abstract
Molecular structures of aroylhydrazones derived from salicylaldehyde, o-vanilin and nicotinic acid hydrazide in DMSO and DMSO/H(2)O mixtures have been studied by NMR, UV-Vis, ATR and Raman spectroscopy. The addition of water to the system did not induce the tautomeric conversion of the existing form constituted of the ketoamino hydrazide part and the enolimino aldehyde part, but it was involved in the formation of hydrated molecules. Vibrational spectra (ATR and Raman) clearly indicated hydrogen bonding of the studied hydrazones through the carbonyl, amino and hydroxyl groups with water molecules. Increasing the water content conversion from E to Z isomer was not observed.
Collapse
Affiliation(s)
- Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
18
|
Synthesis, characterization, molecular modeling and antioxidant activity of (1E,5E)-1,5-bis(1-(pyridin-2-yl)ethylidene)carbonohydrazide (H2APC) and its zinc(II), cadmium(II) and mercury(II) complexes. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.04.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Galić N, Rubčić M, Magdić K, Cindrić M, Tomišić V. Solution and solid-state studies of complexation of transition-metal cations and Al(III) by aroylhydrazones derived from nicotinic acid hydrazide. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Singh N, Tripathi P, Bharty M, Srivastava A, Singh S, Butcher R. Ni(II) and Mn(II) complexes of NNS tridentate ligand N′-[(2-methoxyphenyl)carbonothioyl]pyridine-2-carbohydrazide (H2mcph): Synthesis, spectral and structural characterization. Polyhedron 2010. [DOI: 10.1016/j.poly.2010.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Badwaik VB, Aswar AS. Carbohydrazone polychelates: Synthesis, physicochemical characterization, solid state conductance and biological studies. RUSS J INORG CHEM+ 2009. [DOI: 10.1134/s0036023609100179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Shrivastav A, Varma S, Senger A, Khandelwal RL, Carlsen S, Sharma RK. Overexpression of Akt/PKB modulates N-myristoyltransferase activity in cancer cells. J Pathol 2009; 218:391-8. [PMID: 19360752 DOI: 10.1002/path.2550] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-myristoyltransferase (NMT) catalyses the myristoylation reaction. Since NMT activity is elevated in various cancers and activated Akt/PKB leads to cell survival, we were interested in studying if activation of Akt/PKB has any effect on NMT. Overexpression of constitutively active Akt/PKB in HepG2 cells (HepG2-CA-Akt/PKB) led to an approximately 50% reduction of NMT compared with parental HepG2 cells. Reduced NMT activity in HepG2-CA-Akt/PKB was found to be due to the NMT1 phosphorylation. We determined NMT activity in various human breast cancer cell lines with differing metastatic potentials and pseudo-normal breast cells (HBL-100). Tumourigenic or metastatic breast cancer cell lines such as MDA-MB-231, MDA-MB-435, and Hs 578T displayed reduced NMT activity. Western blot analysis revealed that NMT1 is phosphorylated in these breast cancer cells. Furthermore, patients' breast cancer tissue array revealed strong positivity and high intensity for NMT in malignant breast tissues compared with normal breast cells. A gradation in the NMT staining was observed for grade I, II, and III infiltrating ductal carcinoma breast tissues. These studies demonstrate that overexpression of Akt/PKB results in NMT1 phosphorylation and that NMT1 is phosphorylated in breast cancer cells. Immunohistochemical analysis suggests that NMT may prove to be an added diagnostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Anuraag Shrivastav
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Singh M, Butcher R, Singh N. Synthesis and X-ray structural studies of N′-(pyridine-3-carbonyl) hydrazinecarbodithioic acid ethyl ester (H2pchc) and [Mn(Hpchc)2(o-phen)]. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Singh NK, Singh M, Tripathi P, Srivastava AK, Thomas MJK. Synthesis and spectroscopic investigation of iron(III) complexes of N′-(thioaroyl)pyridine-2-carbohydrazides. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s10751-008-9824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Singh NK, Singh M, Tripathi P, Srivastava AK, Butcher RJ. Synthesis of a new N,N′-ethane-1,2-bis(4-methoxyphenyl)carbothioamide ligand and its Cu(I) and Ag(I) complexes. Polyhedron 2008. [DOI: 10.1016/j.poly.2007.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|