1
|
Ghosh S, Nguyen MT, Choi HE, Stahl M, Kühn AL, Van der Auwera S, Grabe HJ, Völzke H, Homuth G, Myers SA, Hogaboam CM, Noth I, Martinez FJ, Petsko GA, Glimcher LH. RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening. Nat Commun 2024; 15:7138. [PMID: 39164231 PMCID: PMC11335878 DOI: 10.1038/s41467-024-51336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Telomere shortening is a prominent hallmark of aging and is emerging as a characteristic feature of Myelodysplastic Syndromes (MDS) and Idiopathic Pulmonary Fibrosis (IPF). Optimal telomerase activity prevents progressive shortening of telomeres that triggers DNA damage responses. However, the upstream regulation of telomerase holoenzyme components remains poorly defined. Here, we identify RIOK2, a master regulator of human blood cell development, as a critical transcription factor for telomere maintenance. Mechanistically, loss of RIOK2 or its DNA-binding/transactivation properties downregulates mRNA expression of both TRiC and dyskerin complex subunits that impairs telomerase activity, thereby causing telomere shortening. We further show that RIOK2 expression is diminished in aged individuals and IPF patients, and it strongly correlates with shortened telomeres in MDS patient-derived bone marrow cells. Importantly, ectopic expression of RIOK2 alleviates telomere shortening in IPF patient-derived primary lung fibroblasts. Hence, increasing RIOK2 levels prevents telomere shortening, thus offering therapeutic strategies for telomere biology disorders.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Mileena T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale University, New Haven, CT, USA
| | - Ha Eun Choi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Annemarie Luise Kühn
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gregory A Petsko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chen JL, Leeder WM, Morais P, Adachi H, Yu YT. Pseudouridylation-mediated gene expression modulation. Biochem J 2024; 481:1-16. [PMID: 38174858 DOI: 10.1042/bcj20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | | | | | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| |
Collapse
|
3
|
Martínez-Balsalobre E, García-Castillo J, García-Moreno D, Naranjo-Sánchez E, Fernández-Lajarín M, Blasco MA, Alcaraz-Pérez F, Mulero V, Cayuela ML. Telomerase RNA-based aptamers restore defective myelopoiesis in congenital neutropenic syndromes. Nat Commun 2023; 14:5912. [PMID: 37737237 PMCID: PMC10516865 DOI: 10.1038/s41467-023-41472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Telomerase RNA (TERC) has a noncanonical function in myelopoiesis binding to a consensus DNA binding sequence and attracting RNA polymerase II (RNA Pol II), thus facilitating myeloid gene expression. The CR4/CR5 domain of TERC is known to play this role, since a mutation of this domain found in dyskeratosis congenita (DC) patients decreases its affinity for RNA Pol II, impairing its myelopoietic activity as a result. In this study, we report that two aptamers, short single-stranded oligonucleotides, based on the CR4/CR5 domain were able to increase myelopoiesis without affecting erythropoiesis in zebrafish. Mechanistically, the aptamers functioned as full terc; that is, they increased the expression of master myeloid genes, independently of endogenous terc, by interacting with RNA Pol II and with the terc-binding sequences of the regulatory regions of such genes, enforcing their transcription. Importantly, aptamers harboring the CR4/CR5 mutation that was found in DC patients failed to perform all these functions. The therapeutic potential of the aptamers for treating neutropenia was demonstrated in several preclinical models. The findings of this study have identified two potential therapeutic agents for DC and other neutropenic patients.
Collapse
Affiliation(s)
- Elena Martínez-Balsalobre
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Jesús García-Castillo
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Elena Naranjo-Sánchez
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Miriam Fernández-Lajarín
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| | - María L Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Functional interaction between compound heterozygous TERT mutations causes severe telomere biology disorder. Blood Adv 2022; 6:3779-3791. [PMID: 35477117 DOI: 10.1182/bloodadvances.2022007029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Telomere biology disorders (TBDs) are a spectrum of multisystem inherited disorders characterized by bone marrow failure, resulting from mutations in genes encoding telomerase or other proteins involved in maintaining telomere length and integrity. Pathogenicity of variants in these genes can be hard to evaluate, since TBD mutations show highly variable penetrance and genetic anticipation due to inheritance of shorter telomeres with each generation. Thus, detailed functional analysis of newly identified variants is often essential. Here we describe a patient with compound heterozygous variants in the TERT gene, which encodes the catalytic subunit of telomerase, hTERT; this patient has the extremely severe Hoyeraal-Hreidarsson form of TBD, although his heterozygous parents are clinically unaffected. Molecular dynamic modeling and detailed biochemical analyses demonstrate that 1 allele (L557P) affects association of hTERT with its cognate RNA component hTR, while the other (K1050E) affects the binding of telomerase to its DNA substrate and enzyme processivity. Unexpectedly, the data demonstrate a functional interaction between the proteins encoded by the 2 alleles, with WT hTERT able to rescue the effect of K1050E on processivity, whereas L557P hTERT cannot. These data contribute to the mechanistic understanding of telomerase, indicating that RNA binding in 1 hTERT molecule affects the processivity of telomere addition by the other molecule. This work emphasizes the importance of functional characterization of TERT variants to reach a definitive molecular diagnosis for TBD patients, and in particular it illustrates the importance of analyzing the effects of compound heterozygous variants in combination to reveal interallelic effects.
Collapse
|
6
|
|
7
|
Telomerase RNA recruits RNA polymerase II to target gene promoters to enhance myelopoiesis. Proc Natl Acad Sci U S A 2021; 118:2015528118. [PMID: 34353901 DOI: 10.1073/pnas.2015528118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure and cancer predisposition syndrome caused by mutations in telomerase or telomeric proteins. Here, we report that zebrafish telomerase RNA (terc) binds to specific DNA sequences of master myeloid genes and controls their expression by recruiting RNA Polymerase II (Pol II). Zebrafish terc harboring the CR4-CR5 domain mutation found in DC patients hardly interacted with Pol II and failed to regulate myeloid gene expression in vivo and to increase their transcription rates in vitro. Similarly, TERC regulated myeloid gene expression and Pol II promoter occupancy in human myeloid progenitor cells. Strikingly, induced pluripotent stem cells derived from DC patients with a TERC mutation in the CR4-CR5 domain showed impaired myelopoiesis, while those with mutated telomerase catalytic subunit differentiated normally. Our findings show that TERC acts as a transcription factor, revealing a target for therapeutic intervention in DC patients.
Collapse
|
8
|
Zheng X, Wezel F, Azoitei A, Meessen S, Wang W, Najjar G, Wang X, Kraus JM, Kestler HA, John A, Zengerling F, Bolenz C, Günes C. Shorter Leukocyte Telomere Length Is Associated with Worse Survival of Patients with Bladder Cancer and Renal Cell Carcinoma. Cancers (Basel) 2021; 13:3774. [PMID: 34359672 PMCID: PMC8345040 DOI: 10.3390/cancers13153774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Telomeres are protein-DNA complexes at the tips of linear chromosomes. They protect the DNA from end-to-end fusion and exonucleolytic degradation. Shortening of telomeric DNA during aging can generate dysfunctional telomeres, promoting tumorigenesis. More recent data indicate that both short and long telomeres of peripheral blood leukocyte (PBL) cells can serve as prognostic biomarkers for cancer risk and may be associated with survival of patients with solid cancers. Telomere length in PBL cells could also be a potential prognostic biomarker for survival in bladder cancer (BC) or renal cell carcinoma (RCC). METHODS The relative telomere length (RTL) of PBL cells was assessed in patients with BC (n = 144) and RCC (n = 144) by using qPCR. A control population of patients without malignant disease (NC, n = 73) was included for comparison. The correlation and association of RTL with histopathological parameters and overall survival (OS) were evaluated. RESULTS Patients with BC and RCC had significantly shorter telomeres compared to patients without malignant disease. Within the cancer cohorts, multivariate analysis revealed that short RTL is an independent predictor of worse survival in BC (p = 0.039) and RCC (p = 0.041). CONCLUSION Patients with BC and RCC had significantly shorter telomeres compared to the normal population. Shorter RTL in BC and RCC was an independent predictor of reduced survival.
Collapse
Affiliation(s)
- Xi Zheng
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Wenya Wang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Gregoire Najjar
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Xue Wang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (J.M.K.); (H.A.K.)
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (J.M.K.); (H.A.K.)
| | - Axel John
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| |
Collapse
|
9
|
Telomeres in Interstitial Lung Disease. J Clin Med 2021; 10:jcm10071384. [PMID: 33808277 PMCID: PMC8037770 DOI: 10.3390/jcm10071384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Interstitial lung diseases (ILD) encompass a group of conditions involving fibrosis and/or inflammation of the pulmonary parenchyma. Telomeres are repetitive DNA sequences at chromosome ends which protect against genome instability. At each cell division, telomeres shorten, but the telomerase complex partially counteracts progressive loss of telomeres by catalysing the synthesis of telomeric repeats. Once critical telomere shortening is reached, cell cycle arrest or apoptosis are triggered. Telomeres progressively shorten with age. A number of rare genetic mutations have been identified in genes encoding for components of the telomerase complex, including telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), in familial and, less frequently, in sporadic fibrotic ILDs. Defects in telomerase result in extremely short telomeres. More rapidly progressive disease is observed in fibrotic ILD patients with telomere gene mutations, regardless of underlying diagnosis. Associations with common single nucleotide polymorphisms in telomere related genes have also been demonstrated for various ILDs. Shorter peripheral blood telomere lengths compared to age-matched healthy individuals are found in a proportion of patients with fibrotic ILDs, and in idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (HP) have been linked to worse survival, independently of disease severity. Greater susceptibility to immunosuppressant-induced side effects in patients with short telomeres has been described in patients with IPF and with fibrotic HP. Here, we discuss recent evidence for the involvement of telomere length and genetic variations in the development, progression, and treatment of fibrotic ILDs.
Collapse
|
10
|
Palka C, Forino NM, Hentschel J, Das R, Stone MD. Folding heterogeneity in the essential human telomerase RNA three-way junction. RNA (NEW YORK, N.Y.) 2020; 26:1787-1800. [PMID: 32817241 PMCID: PMC7668248 DOI: 10.1261/rna.077255.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Telomeres safeguard the genome by suppressing illicit DNA damage responses at chromosome termini. To compensate for incomplete DNA replication at telomeres, most continually dividing cells, including many cancers, express the telomerase ribonucleoprotein (RNP) complex. Telomerase maintains telomere length by catalyzing de novo synthesis of short DNA repeats using an internal telomerase RNA (TR) template. TRs from diverse species harbor structurally conserved domains that contribute to RNP biogenesis and function. In vertebrate TRs, the conserved regions 4 and 5 (CR4/5) fold into a three-way junction (TWJ) that binds directly to the telomerase catalytic protein subunit and is required for telomerase function. We have analyzed the structural properties of the human TR (hTR) CR4/5 domain using a combination of in vitro chemical mapping, secondary structural modeling, and single-molecule structural analysis. Our data suggest the essential P6.1 stem-loop within CR4/5 is not stably folded in the absence of the telomerase reverse transcriptase in vitro. Rather, the hTR CR4/5 domain adopts a heterogeneous ensemble of conformations. Finally, single-molecule FRET measurements of CR4/5 and a mutant designed to stabilize the P6.1 stem demonstrate that TERT binding selects for a structural conformation of CR4/5 that is not the dominant state of the TERT-free in vitro RNA ensemble.
Collapse
Affiliation(s)
- Christina Palka
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Jendrik Hentschel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, California 94305, USA
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
11
|
Yonker LM, Hawley MH, Moschovis PP, Lu M, Kinane TB. Recognizing genetic disease: A key aspect of pediatric pulmonary care. Pediatr Pulmonol 2020; 55:1794-1809. [PMID: 32533909 PMCID: PMC7384240 DOI: 10.1002/ppul.24706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Advancement in technology has improved recognition of genetic etiologies of disease, which has impacted diagnosis and management of rare disease patients in the pediatric pulmonary clinic. This review provides an overview of genetic conditions that are likely to present with pulmonary features and require extensive care by the pediatric pulmonologist. Increased familiarity with these conditions allows for improved care of these patients by reducing time to diagnosis, tailoring management, and prompting further investigation into these disorders.
Collapse
Affiliation(s)
- Lael M Yonker
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Megan H Hawley
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Peter P Moschovis
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Mengdi Lu
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - T Bernard Kinane
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Han E, Patel NA, Yannuzzi NA, Laura DM, Fan KC, Negron CI, Prakhunhungsit S, Thorson WL, Berrocal AM. A unique case of coats plus syndrome and dyskeratosis congenita in a patient with CTC1 mutations. Ophthalmic Genet 2020; 41:363-367. [PMID: 32543263 DOI: 10.1080/13816810.2020.1772315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Coats plus syndrome (CP) is a rare condition characterized by bilateral exudative retinal telangiectasias with associated systemic disorders primarily affecting the brain, bone and gastrointestinal tract due to a mutation in the CTC1 gene. CTC1 mutations are also known to cause dyskeratosis congenita (DC), which is an inherited bone marrow failure syndrome characterized by skin pigmentation abnormalities, nail dystrophy, and oral leukoplakia. This is the first reported case of a patient diagnosed with both CP and DC caused by compound heterozygous CTC1 gene mutations. Moreover, one of the variant mutations found in this patient has never been published before.
Collapse
Affiliation(s)
- Elaine Han
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Diana M Laura
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Kenneth C Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Catherin I Negron
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Supalert Prakhunhungsit
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA.,Department of Ophthalmology, Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Willa L Thorson
- Department of Human Genetics, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Audina M Berrocal
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| |
Collapse
|
13
|
Human Telomerase RNA: Telomerase Component or More? Biomolecules 2020; 10:biom10060873. [PMID: 32517215 PMCID: PMC7355840 DOI: 10.3390/biom10060873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that maintains the lengths of telomeres. Most studies of telomerase function have focused on the involvement of telomerase activation in the immortalization of cancer cells and cellular rejuvenation. However, some studies demonstrated that the results do not meet expectations for telomerase action in telomere maintenance. Recent results give reason to think that major telomerase components-the reverse transcriptase protein subunit and telomerase RNA-may participate in many cellular processes, including the regulation of apoptosis and autophagy, cell survival, pro-proliferative effects, regulation of gene expression, and protection against oxidative stress. However, the difficulties faced by scientist when researching telomerase component functions often reduce confidence in the minor effects observed in experiments. In this review, we focus on the analysis of the functions of telomerase components (paying more attention to the telomerase RNA component), both as a complex and as independent components, providing effects that are not associated with telomerase activity and telomere length maintenance. Despite the fact that the data on alternative roles of telomerase components look illusory, it would be wrong to completely reject the possibility of their involvement in other biological processes excluded from research/discussion. Investigations to improve the understanding of every aspect of the functioning of telomerase components will provide the basis for a more precise development of approaches to regulate cellular homeostasis, which is important for carcinogenesis and aging.
Collapse
|
14
|
Dyskerin Mutations Present in Dyskeratosis Congenita Patients Increase Oxidative Stress and DNA Damage Signalling in Dictyostelium Discoideum. Cells 2019; 8:cells8111406. [PMID: 31717312 PMCID: PMC6912284 DOI: 10.3390/cells8111406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dyskerin is a protein involved in the formation of small nucleolar and small Cajal body ribonucleoproteins. These complexes participate in RNA pseudouridylation and are also components of the telomerase complex required for telomere elongation. Dyskerin mutations cause a rare disease, X-linked dyskeratosis congenita, with no curative treatment. The social amoeba Dictyostelium discoideum contains a gene coding for a dyskerin homologous protein. In this article D. discoideum mutant strains that have mutations corresponding to mutations found in dyskeratosis congenita patients are described. The phenotype of the mutant strains has been studied and no alterations were observed in pseudouridylation activity and telomere structure. Mutant strains showed increased proliferation on liquid culture but reduced growth feeding on bacteria. The results obtained indicated the existence of increased DNA damage response and reactive oxygen species, as also reported in human Dyskeratosis congenita cells and some other disease models. These data, together with the haploid character of D. discoideum vegetative cells, that resemble the genomic structure of the human dyskerin gene, located in the X chromosome, support the conclusion that D. discoideum can be a good model system for the study of this disease.
Collapse
|
15
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
16
|
Rinelli M, Bellacchio E, Berardinelli F, Pascolini G, Grammatico P, Sgura A, Iori AP, Quattrocchi L, Novelli A, Majore S, Agolini E. Structural modeling of a novel TERC variant in a patient with aplastic anemia and short telomeres. Ann Hematol 2018; 98:805-807. [PMID: 29980875 DOI: 10.1007/s00277-018-3415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/23/2018] [Indexed: 11/28/2022]
Affiliation(s)
- M Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy.
| | - E Bellacchio
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - F Berardinelli
- Department of Science, University "Roma Tre", Rome, Italy
| | - G Pascolini
- Medical Genetics, Molecular Medicine Department, Sapienza University of Rome San Camillo-Forlanini Hospital, Rome, Italy
| | - P Grammatico
- Medical Genetics, Molecular Medicine Department, Sapienza University of Rome San Camillo-Forlanini Hospital, Rome, Italy
| | - A Sgura
- Department of Science, University "Roma Tre", Rome, Italy
| | - A P Iori
- Department of Cell Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - L Quattrocchi
- Department of Cell Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - A Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - S Majore
- Medical Genetics, Molecular Medicine Department, Sapienza University of Rome San Camillo-Forlanini Hospital, Rome, Italy
| | - E Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
17
|
|
18
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
|
20
|
Bilateral Retinal Vasculopathy Associated with Autosomal Dominant Dyskeratosis Congenita. Eur J Ophthalmol 2018; 23:772-5. [DOI: 10.5301/ejo.5000297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 12/28/2022]
|
21
|
Parchand S, Barwad A. Cytomegalovirus Retinitis as a Presenting Feature of Multisystem Disorder: Dyskeratosis Congenita. Middle East Afr J Ophthalmol 2018; 24:219-221. [PMID: 29422759 PMCID: PMC5793456 DOI: 10.4103/meajo.meajo_230_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cytomegalovirus (CMV) retinitis is an opportunistic infection commonly seen in disorders that affect the immune system of the body such as acquired immunodeficiency syndrome and hematological malignancies such as leukemia/lymphoma or organ transplantation. The occurrence of CMV retinitis in the absence of such condition should be thoroughly investigated, as it is a strong indicator of poor immune competence. We here report an interesting case of CMV retinitis as a presenting feature of rare multisystem disorder “Dyskeratosis congenita.”
Collapse
Affiliation(s)
- Swapnil Parchand
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Adarsh Barwad
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
22
|
Carneiro MC, de Castro IP, Ferreira MG. Telomeres in aging and disease: lessons from zebrafish. Dis Model Mech 2017; 9:737-48. [PMID: 27482813 PMCID: PMC4958310 DOI: 10.1242/dmm.025130] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Age is the highest risk factor for some of the most prevalent human diseases, including cancer. Telomere shortening is thought to play a central role in the aging process in humans. The link between telomeres and aging is highlighted by the fact that genetic diseases causing telomerase deficiency are associated with premature aging and increased risk of cancer. For the last two decades, this link has been mostly investigated using mice that have long telomeres. However, zebrafish has recently emerged as a powerful and complementary model system to study telomere biology. Zebrafish possess human-like short telomeres that progressively decline with age, reaching lengths in old age that are observed when telomerase is mutated. The extensive characterization of its well-conserved molecular and cellular physiology makes this vertebrate an excellent model to unravel the underlying relationship between telomere shortening, tissue regeneration, aging and disease. In this Review, we explore the advantages of using zebrafish in telomere research and discuss the primary discoveries made in this model that have contributed to expanding our knowledge of how telomere attrition contributes to cellular senescence, organ dysfunction and disease. Summary: In this Review, the authors explore the advantages of using zebrafish in telomere research and discuss the primary discoveries made in this model that have contributed to expanding our knowledge of how telomere attrition contributes to cellular senescence, organ dysfunction and disease.
Collapse
|
23
|
Musgrove C, Jansson LI, Stone MD. New perspectives on telomerase RNA structure and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29124890 DOI: 10.1002/wrna.1456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Telomerase is an ancient ribonucleoprotein (RNP) that protects the ends of linear chromosomes from the loss of critical coding sequences through repetitive addition of short DNA sequences. These repeats comprise the telomere, which together with many accessory proteins, protect chromosomal ends from degradation and unwanted DNA repair. Telomerase is a unique reverse transcriptase (RT) that carries its own RNA to use as a template for repeat addition. Over decades of research, it has become clear that there are many diverse, crucial functions played by telomerase RNA beyond simply acting as a template. In this review, we highlight recent findings in three model systems: ciliates, yeast and vertebrates, that have shifted the way the field views the structural and mechanistic role(s) of RNA within the functional telomerase RNP complex. Viewed in this light, we hope to demonstrate that while telomerase RNA is just one example of the myriad functional RNA in the cell, insights into its structure and mechanism have wide-ranging impacts. WIREs RNA 2018, 9:e1456. doi: 10.1002/wrna.1456 This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Cherie Musgrove
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Linnea I Jansson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| |
Collapse
|
24
|
Olivieri C, Mondino A, Chinello M, Risso A, Finale E, Lanciotti M, Guala A. Clinical heterogeneity in a family with DKC1 mutation, dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome in first cousins. Pediatr Rep 2017; 9:7301. [PMID: 29081935 PMCID: PMC5643882 DOI: 10.4081/pr.2017.7301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/07/2023] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure disorder characterized by mucocutaneous features (skin pigmentation, nail dystrophy and oral leukoplakia), pulmonary fibrosis, hematologic and solid malignancies. Its severe form, recognized as Hoyeraal-Hreidarsson syndrome (HHS), also includes cerebellar hypoplasia, microcephaly, developmental delay and prenatal growth retardation. In literature phenotypic variability among DC patients sharing the same mutation is wellknown. To our knowledge this report describes for the first time a family of DC patients, characterized by a member with features of classic DC and another one with some features of HHS, both with the same mutation in DKC1. Our family confirms again that one mutation can be associated with different phenotypes and different hematological manifestations. It's possible to speculate that there are likely to be patients who do not clinically fit neatly into either classical DC or HHS, but whose clinical features are due to mutations in DKC1 or in genes responsible for autosomal DC/HHS.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Public and Pediatric Health Sciences, University of Turin
| | - Anna Mondino
- Department of Public and Pediatric Health Sciences, University of Turin
| | - Matteo Chinello
- Department of Pediatric Hematology and Oncology, Policlinico G.B. Rossi, Verona
| | - Alessandra Risso
- Departement of Hematology, City of Health and Science, University of Turin
| | | | - Marina Lanciotti
- Department of Pediatric Hematology Oncology and Bone Marrow Transplant, G. Gaslini Children's Hospital, Genoa, Italy
| | | |
Collapse
|
25
|
Waespe N, Dhanraj S, Wahala M, Tsangaris E, Enbar T, Zlateska B, Li H, Klaassen RJ, Fernandez CV, Cuvelier GDE, Wu JK, Pastore YD, Silva M, Lipton JH, Brossard J, Michon B, Abish S, Steele M, Sinha R, Belletrutti MJ, Breakey VR, Jardine L, Goodyear L, Kofler L, Cada M, Sung L, Shago M, Scherer SW, Dror Y. The clinical impact of copy number variants in inherited bone marrow failure syndromes. NPJ Genom Med 2017; 2. [PMID: 28690869 PMCID: PMC5498150 DOI: 10.1038/s41525-017-0019-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited bone marrow failure syndromes comprise a genetically heterogeneous group of diseases with hematopoietic failure and a wide array of physical malformations. Copy number variants were reported in some inherited bone marrow failure syndromes. It is unclear what impact copy number variants play in patients evaluated for a suspected diagnosis of inherited bone marrow failure syndromes. Clinical and genetic data of 323 patients from the Canadian Inherited Marrow Failure Registry from 2001 to 2014, who had a documented genetic work-up, were analyzed. Cases with pathogenic copy number variants (at least 1 kilobasepairs) were compared to cases with other mutations. Genotype-phenotype correlations were performed to assess the impact of copy number variants. Pathogenic nucleotide-level mutations were found in 157 of 303 tested patients (51.8%). Genome-wide copy number variant analysis by single-nucleotide polymorphism arrays or comparative genomic hybridization arrays revealed pathogenic copy number variants in 11 of 67 patients tested (16.4%). In four of these patients, identification of copy number variant was crucial for establishing the correct diagnosis as their clinical presentation was ambiguous. Eight additional patients were identified to harbor pathogenic copy number variants by other methods. Of the 19 patients with pathogenic copy number variants, four had compound-heterozygosity of a copy number variant with a nucleotide-level mutation. Pathogenic copy number variants were associated with more extensive non-hematological organ system involvement (p = 0.0006), developmental delay (p = 0.006) and short stature (p = 0.04) compared to nucleotide-level mutations. In conclusion, a significant proportion of patients with inherited bone marrow failure syndromes harbor pathogenic copy number variants which were associated with a more extensive non-hematological phenotype in this cohort. Patients with a phenotype suggestive of inherited bone marrow failure syndromes but without identification of pathogenic nucleotide-level mutations should undergo specific testing for copy number variants. Copy number variation in patients with inherited bone marrow failure syndromes (IBMFSs) is associated with more severe clinical symptoms. In addition to persistently low levels of red blood cells, white blood cells and/ or platelets, patients with IBMFSs also present varying degrees of physical malformations. Most cases are associated with single base-pair mutations in the DNA sequence, but Canadian researchers led by Yigal Dror at The Hospital for Sick Children in Toronto, have found that whole sections of the genome are deleted or repeated in an important proportion of patients. Those carrying copy number variants (CNV) presented more commonly with developmental delay, short stature and defects in more organ systems, than patients with point mutations. CNV analysis of patients with suspected IBMFSs could aid early disease evaluation and management.
Collapse
Affiliation(s)
- Nicolas Waespe
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Santhosh Dhanraj
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Manju Wahala
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elena Tsangaris
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tom Enbar
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bozana Zlateska
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Hongbing Li
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | - Geoff D E Cuvelier
- Pediatric Hematology/Oncology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - John K Wu
- Division of Hematology/Oncology, UBC & B.C. Children's Hospital, Vancouver, BC, Canada
| | | | | | - Jeffrey H Lipton
- Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Joseé Brossard
- Centre Hospitalier Universitaire, Sherbrooke, QC, Canada
| | - Bruno Michon
- Centre Hospitalier Universitaire, Québec, QC, Canada
| | - Sharon Abish
- Pediatric Hematology Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | | | - Roona Sinha
- Royal University Hospital, Saskatoon, SK, Canada
| | | | - Vicky R Breakey
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Lawrence Jardine
- Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Lisa Goodyear
- Pediatric Hematology/Oncology, Janeway Child Health Centre, St. John's, NF, Canada
| | - Liat Kofler
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michaela Cada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lillian Sung
- Population Health Sciences, Research Institute, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mary Shago
- Cytogenetics Laboratory, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yigal Dror
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Center for Molecular Biology of RNA, Santa Cruz, California 95064
| |
Collapse
|
27
|
Alabbas F, Weitzman S, Grant R, Bouffet E, Malkin D, Abla O, Dror Y. Underlying undiagnosed inherited marrow failure syndromes among children with cancer. Pediatr Blood Cancer 2017; 64:302-305. [PMID: 27577695 DOI: 10.1002/pbc.26120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Abstract
To study the prevalence of pediatric cancer patients who have underlying inherited bone marrow failure syndrome (IBMFS), we retrospectively reviewed the medical records of newly diagnosed pediatric cancer patients at The Hospital for Sick Children from June 2009 to May 2010, focusing on clinical, laboratory, and treatment-related findings which may indicate underlying IBMFS. We found five (1.8%) patients out of 276 who had two or more findings suggestive of IBMFS. We conclude that a small fraction of patients with cancer have clinical features that indicate investigations to rule out underlying IBMFSs. A prospective study is needed to determine their prevalence.
Collapse
Affiliation(s)
- Fahad Alabbas
- Marrow Failure and Myelodysplasia Program, Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sheila Weitzman
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Grant
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Genetic and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Oussama Abla
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yigal Dror
- Marrow Failure and Myelodysplasia Program, Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Genetic and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
28
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
29
|
Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat Struct Mol Biol 2016; 23:286-92. [PMID: 26950371 PMCID: PMC4830462 DOI: 10.1038/nsmb.3184] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/05/2016] [Indexed: 01/20/2023]
Abstract
Mutations in the human telomerase RNA component (hTR), the telomerase ribonucleoprotein component dyskerin (DKC1) and the poly(A) RNase (PARN) can lead to reduced levels of hTR and to dyskeratosis congenita (DC). However, the enzymes and mechanisms responsible for hTR degradation are unknown. We demonstrate that defects in dyskerin binding lead to hTR degradation by PAPD5-mediated oligoadenylation, which promotes 3'-to-5' degradation by EXOSC10, as well as decapping and 5'-to-3' decay by the cytoplasmic DCP2 and XRN1 enzymes. PARN increased hTR levels by deadenylating hTR, thereby limiting its degradation by EXOSC10. Telomerase activity and proper hTR localization in dyskerin- or PARN-deficient cells were rescued by knockdown of DCP2 and/or EXOSC10. Prevention of hTR RNA decay also led to a rescue of localization of DC-associated hTR mutants. These results suggest that inhibition of RNA decay pathways might be a useful therapy for some telomere pathologies.
Collapse
|
30
|
Pereboeva L, Hubbard M, Goldman FD, Westin ER. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells. PLoS One 2016; 11:e0148793. [PMID: 26859482 PMCID: PMC4747510 DOI: 10.1371/journal.pone.0148793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients’ cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients.
Collapse
Affiliation(s)
- Larisa Pereboeva
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Meredith Hubbard
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
| | - Frederick D. Goldman
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
| | - Erik R. Westin
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
31
|
A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish. Nat Commun 2015; 5:3228. [PMID: 24496182 DOI: 10.1038/ncomms4228] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/09/2014] [Indexed: 02/04/2023] Open
Abstract
Dyskeratosis congenita (DC) is an inherited disorder with mutations affecting telomerase or telomeric proteins. DC patients usually die of bone marrow failure. Here we show that genetic depletion of the telomerase RNA component (TR) in the zebrafish results in impaired myelopoiesis, despite normal development of haematopoietic stem cells (HSCs). The neutropenia caused by TR depletion is independent of telomere length and telomerase activity. Genetic analysis shows that TR modulates the myeloid-erythroid fate decision by controlling the levels of the master myeloid and erythroid transcription factors spi1 and gata1, respectively. The alteration in spi1 and gata1 levels occurs through stimulation of gcsf and mcsf. Our model of TR deficiency in the zebrafish illuminates the non-canonical roles of TR, and could establish therapeutic targets for DC.
Collapse
|
32
|
Jansson LI, Akiyama BM, Ooms A, Lu C, Rubin SM, Stone MD. Structural basis of template-boundary definition in Tetrahymena telomerase. Nat Struct Mol Biol 2015; 22:883-8. [PMID: 26436828 PMCID: PMC4654688 DOI: 10.1038/nsmb.3101] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023]
Abstract
Telomerase is required to maintain repetitive G-rich telomeric DNA sequences at chromosome ends. To do so, the telomerase reverse transcriptase (TERT) subunit reiteratively uses a small region of the integral telomerase RNA (TER) as a template. An essential feature of telomerase catalysis is the strict definition of the template boundary to determine the precise TER nucleotides to be reverse transcribed by TERT. We report the 3-Å crystal structure of the Tetrahymena TERT RNA-binding domain (tTRBD) bound to the template boundary element (TBE) of TER. tTRBD is wedged into the base of the TBE RNA stem-loop, and each of the flanking RNA strands wraps around opposite sides of the protein domain. The structure illustrates how the tTRBD establishes the template boundary by positioning the TBE at the correct distance from the TERT active site to prohibit copying of nontemplate nucleotides.
Collapse
Affiliation(s)
- Linnea I Jansson
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Ben M Akiyama
- Department of Chemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Alexandra Ooms
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cheng Lu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
33
|
Akiyama BM, Parks JW, Stone MD. The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA-DNA hybrids. Nucleic Acids Res 2015; 43:5537-49. [PMID: 25940626 PMCID: PMC4477650 DOI: 10.1093/nar/gkv406] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/15/2015] [Indexed: 01/11/2023] Open
Abstract
Telomerase is an enzyme that adds repetitive DNA sequences to the ends of chromosomes and consists of two main subunits: the telomerase reverse transcriptase (TERT) protein and an associated telomerase RNA (TER). The telomerase essential N-terminal (TEN) domain is a conserved region of TERT proposed to mediate DNA substrate interactions. Here, we have employed single molecule telomerase binding assays to investigate the function of the TEN domain. Our results reveal telomeric DNA substrates bound to telomerase exhibit a dynamic equilibrium between two states: a docked conformation and an alternative conformation. The relative stabilities of the docked and alternative states correlate with the number of basepairs that can be formed between the DNA substrate and the RNA template, with more basepairing favoring the docked state. The docked state is further buttressed by the TEN domain and mutations within the TEN domain substantially alter the DNA substrate structural equilibrium. We propose a model in which the TEN domain stabilizes short RNA–DNA duplexes in the active site of the enzyme, promoting the docked state to augment telomerase processivity.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | - Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
34
|
Alter BP, Giri N, Savage SA, Rosenberg PS. Telomere length in inherited bone marrow failure syndromes. Haematologica 2014; 100:49-54. [PMID: 25304614 DOI: 10.3324/haematol.2014.114389] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres are long DNA repeats and a protein complex at chromosome ends that are essential for genome integrity. Telomeres are very short in patients with dyskeratosis congenita due to germline mutations in telomere biology genes. We compared telomere length in patients with Fanconi anemia, Diamond-Blackfan anemia and Shwachman-Diamond syndrome with telomere length in dyskeratosis congenita. Telomere length was measured in six leukocyte subsets by automated multicolor flow fluorescence in situ hybridization, and age-adjusted using Z-scores (-2.326 = 1(st) percentile) were created. We examined individual data, and used canonical variate analysis for group comparisons and outlier detection. Most dyskeratosis congenita telomere lengths were below the 1(st) percentile, while only 2 Fanconi anemia and one each Diamond-Blackfan anemia and Shwachman-Diamond syndrome were that low. However, Fanconi anemia, Diamond-Blackfan anemia and Shwachman-Diamond syndrome clustered in the bottom half of the normal range. Canonical variate analysis separated dyskeratosis congenita widely from the other three syndromes by the first canonical variable (89.7% of the variance); the second variable (10.0%) separated Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and Fanconi anemia from each other. Overall, unlike in dyskeratosis congenita, telomere lengths in patients with non-dyskeratosis congenita inherited bone marrow failure syndromes were usually in the normal range, albeit shorter than in unaffected individuals. Clinicaltrials.gov identifier: 00027274.
Collapse
Affiliation(s)
- Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville
| | - Philip S Rosenberg
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| |
Collapse
|
35
|
Fernández García MS, Teruya-Feldstein J. The diagnosis and treatment of dyskeratosis congenita: a review. J Blood Med 2014; 5:157-67. [PMID: 25170286 PMCID: PMC4145822 DOI: 10.2147/jbm.s47437] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure (BMF) syndrome characterized by the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. However, patients usually develop BMF and are predisposed to cancer, with increased risk for squamous cell carcinoma and hematolymphoid neoplasms. DC is a disease of defective telomere maintenance and is heterogeneous at the genetic level. It can be inherited in X-linked, autosomal dominant, or autosomal recessive patterns. Mutations in at least ten telomere- and telomerase-associated genes have been described in DC. There are no targeted therapies for DC and patients usually die of BMF due to a deficient renewing capability of hematopoietic stem cells. Allogeneic hematopoietic stem cell transplantation is the only curative treatment for BMF.
Collapse
Affiliation(s)
- M Soledad Fernández García
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA ; Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | |
Collapse
|
36
|
Abstract
Germline testing for familial predisposition to myeloid malignancies is becoming more common with the recognition of multiple familial syndromes. Currently, Clinical Laboratory Improvement Amendments-approved testing exists for the following: familial platelet disorder with propensity to acute myeloid leukemia, caused by mutations in RUNX1; familial myelodysplastic syndrome/acute myeloid leukemia with mutated GATA2; familial acute myeloid leukemia with mutated CEBPA; and the inherited bone marrow failure syndromes, including dyskeratosis congenita, a disease of abnormal telomere maintenance. With the recognition of additional families with a genetic component to their myeloid diseases, new predisposition alleles are likely to be identified. Awareness of the existence of these syndromes will facilitate proper genetic counseling, appropriate testing, and clinical management of these cases.
Collapse
Affiliation(s)
- Lucy A Godley
- Section of Hematology/Oncology and the Center for Clinical Cancer Genetics, Department of Medicine, and Comprehensive Cancer Center, The University of Chicago, Chicago, IL.
| |
Collapse
|
37
|
Paiva RMA, Calado RT. Telomere dysfunction and hematologic disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:133-57. [PMID: 24993701 DOI: 10.1016/b978-0-12-397898-1.00006-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aplastic anemia is a disease in which the hematopoietic stem cell fails to adequately produce peripheral blood cells, causing pancytopenia. In some cases of acquired aplastic anemia and in inherited type of aplastic anemia, dyskeratosis congenita, telomere biology gene mutations and telomere shortening are etiologic. Telomere erosion hampers the ability of hematopoietic stem and progenitor cells to adequately replicate, clinically resulting in bone marrow failure. Additionally, telomerase mutations and short telomeres are genetic risk factors for the development of some hematologic cancers, including myelodysplastic syndrome, acute myeloid leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Raquel M A Paiva
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
38
|
Nallar SC, Kalvakolanu DV. Regulation of snoRNAs in cancer: close encounters with interferon. J Interferon Cytokine Res 2013; 33:189-98. [PMID: 23570385 DOI: 10.1089/jir.2012.0106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon (IFN) family of cytokines regulates many cellular processes, such as transcription, translation, post-translational modifications, and protein degradation. IFNs induce growth inhibition and/or cell death, depending on the cell type, by employing different proteins. This review describes a novel growth-suppressive pathway employed by IFNs that affects rRNA levels. Maturation of rRNA involves numerous noncoding small regulatory RNA-guided processes. These regulatory RNAs, called small nucleolar RNA (snoRNAs), function as a ribonucleoprotein particle (RNP) in the nucleolus. The biogenesis of snoRNPs is dependent on core protein and assembly factors. Our laboratory recently isolated a growth-suppressive protein gene associated with retinoid-IFN-induced mortality (GRIM)-1 using a genetic screen. IFN-inducible GRIM-1 (SHQ1) is an assembly factor that controls one arm of the snoRNP machinery. GRIM-1 inhibits sno/scaRNP formation to induce growth suppression via reduction in mature rRNA levels. Loss of GRIM-1 observed in certain cancers implicates it to be a novel tumor suppressor. Certain snoRNAs have been reported to act as either oncogenes or tumor suppressors in vitro. Recent studies have shown that certain sno/scaRNAs are further processed into micro RNA-like molecules to control translation of protein-coding RNAs. We present a model as to how these small regulatory RNAs influence cell growth and a potential role for GRIM-1 in this process.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, MD 21201, USA
| | | |
Collapse
|
39
|
Nickels EM, Soodalter J, Churpek JE, Godley LA. Recognizing familial myeloid leukemia in adults. Ther Adv Hematol 2013; 4:254-69. [PMID: 23926458 DOI: 10.1177/2040620713487399] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Germline testing for familial cases of myeloid leukemia in adults is becoming more common with the recognition of multiple genetic syndromes predisposing people to bone marrow disease. Currently, Clinical Laboratory Improvement Amendments approved testing exists for several myeloid leukemia predisposition syndromes: familial platelet disorder with propensity to acute myeloid leukemia (FPD/AML), caused by mutations in RUNX1; familial AML with mutated CEBPA; familial myelodysplastic syndrome and acute leukemia with mutated GATA2; and the inherited bone marrow failure syndromes, including dyskeratosis congenita, a disease of abnormal telomere maintenance. With the recognition of additional families with a genetic component to their leukemia, new predisposition alleles will likely be identified. We highlight how to recognize and manage these cases as well as outline the characteristics of the major known syndromes. We look forward to future research increasing our understanding of the scope of inherited myeloid leukemia syndromes.
Collapse
Affiliation(s)
- Eric M Nickels
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
40
|
Akiyama BM, Gomez A, Stone MD. A conserved motif in Tetrahymena thermophila telomerase reverse transcriptase is proximal to the RNA template and is essential for boundary definition. J Biol Chem 2013; 288:22141-9. [PMID: 23760279 DOI: 10.1074/jbc.m113.452425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ends of linear chromosomes are extended by telomerase, a ribonucleoprotein complex minimally consisting of a protein subunit called telomerase reverse transcriptase (TERT) and the telomerase RNA (TER). TERT functions by reverse transcribing a short template region of TER into telomeric DNA. Proper assembly of TERT and TER is essential for telomerase activity; however, a detailed understanding of how TERT interacts with TER is lacking. Previous studies have identified an RNA binding domain (RBD) within TERT, which includes three evolutionarily conserved sequence motifs: CP2, CP, and T. Here, we used site-directed hydroxyl radical probing to directly identify sites of interaction between the TERT RBD and TER, revealing that the CP2 motif is in close proximity to a conserved region of TER known as the template boundary element (TBE). Gel shift assays on CP2 mutants confirmed that the CP2 motif is an RNA binding determinant. Our results explain previous work that established that mutations to the CP2 motif of TERT and to the TBE of TER both permit misincorporation of nucleotides into the growing DNA strand beyond the canonical template. Taken together, these results suggest a model in which the CP2 motif binds the TBE to strictly define which TER nucleotides can be reverse transcribed.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
41
|
Iizuka T, Sawabe M, Takubo K, Liu M, Homma Y, Suzuki M, Arai T. hTERT promoter polymorphism, -1327C>T, is associated with the risk of epithelial cancer. SPRINGERPLUS 2013; 2:249. [PMID: 23762817 PMCID: PMC3676739 DOI: 10.1186/2193-1801-2-249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/24/2013] [Indexed: 12/24/2022]
Abstract
Telomeres are repetitive nucleotide sequences that cap the end of eukaryotic chromosomes. Attrition of these structures has been associated with carcinogenesis in many tissues, and therefore, they are essential for chromosome stabilization. Telomeres are maintained by telomerase complexes, of which human telomerase reverse transcriptase (hTERT) is an essential component. A functional polymorphism, -1327C>T (rs2735940), located in the promoter of the hTERT gene is associated with telomere length in peripheral blood leukocytes. We hypothesized that this polymorphism might affect susceptibility to various epithelial malignancies. The -1327C>T polymorphism was examined in 1,551 consecutive autopsy cases (mean age, 80.3 years), and we focused on its effect on the risks of overall and each primary malignancies. The polymorphism was further studied in 391 clinical prostate cancer patients who were diagnosed via prostate biopsy, using autopsy cases as controls. In the autopsy cases, the risk of epithelial malignancy, after adjusting for age, sex, smoking, and drinking habits, was significantly lower for the TT genotype than the CC (reference) genotype (adjusted odds ratio = 0.61, 95% CI = 0.42-0.90). Among primary malignancies, latent prostate cancer, colorectal cancer, and lung cancer were the most strongly associated with the polymorphism. In the study using clinical prostate cancer patients, susceptibility to clinical prostate cancer was lower for -1327 T carriers than for -1327 T non-carriers, but this finding was not significant. The data suggest that the hTERT promoter polymorphism, -1327C>T, is an independent factor influencing the risk of various epithelial malignancies in elderly Japanese.
Collapse
Affiliation(s)
- Toshihiko Iizuka
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan ; Department of Diagnostic Pathology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655 Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, Alter BP, Savage SA. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet 2013; 132:473-80. [PMID: 23329068 PMCID: PMC3600110 DOI: 10.1007/s00439-013-1265-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/06/2013] [Indexed: 01/09/2023]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.
Collapse
Affiliation(s)
- Bari J. Ballew
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Kevin Jacobs
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Joseph Boland
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| |
Collapse
|
43
|
Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet 2012; 8:e1002696. [PMID: 22661914 PMCID: PMC3355073 DOI: 10.1371/journal.pgen.1002696] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 03/20/2012] [Indexed: 01/03/2023] Open
Abstract
Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835 healthy individuals and 60 individuals with reduced telomerase activity. Healthy individuals showed a broad range in average telomere length in granulocytes and lymphocytes at any given age. The average telomere length declined with age at a rate that differed between age-specific breakpoints and between cell types. Gender differences between leukocyte telomere lengths were observed for all cell subsets studied; interestingly, this trend could already be detected at birth. Heterozygous carriers for mutations in either the telomerase reverse transcriptase (hTERT) or the telomerase RNA template (hTERC) gene displayed striking and comparable telomere length deficits. Further, non-carrier relatives of such heterozygous individuals had somewhat shorter leukocyte telomere lengths than expected; this difference was most profound for granulocytes. Failure to maintain telomere homeostasis as a result of partial telomerase deficiency is thought to trigger cell senescence or cell death, eventually causing tissue failure syndromes. Our data are consistent with these statements and suggest that the likelihood of similar processes occurring in normal individuals increases with age. Our work highlights the essential role of telomerase in the hematopoietic system and supports the notion that telomerase levels in hematopoietic cells, while limiting and unable to prevent overall telomere shortening, are nevertheless crucial to maintain telomere homeostasis with age. Human blood cells all originate from a common precursor, the hematopoietic stem cell. Telomerase, the enzyme responsible for adding telomere repeats to chromosome ends, is active in human hematopoietic stem cells but appears unable to maintain a constant telomere length with age. We first document the telomere length of different blood cell subsets from 835 healthy individuals between birth and 100 years, to delineate the normal rate of telomere attrition with age. Telomere lengths of blood cells were found to be slightly longer in women than in men, from birth and throughout life. We then compared this reference data to the telomere length in similar blood cell subsets from individuals with reduced telomerase activity as a result of a mutation in one of the genes encoding telomerase and from their direct relatives. Strikingly short telomeres were found in telomerase-deficient individuals, consistent with their cellular pathology and disease susceptibility, and somewhat shorter telomeres than expected were found in cells of relatives with normal telomerase maintenance. Our data can be used as a reference for blood cell telomere length in studies of normal and accelerated aging.
Collapse
Affiliation(s)
- Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gabriela M. Baerlocher
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Experimental Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Irma Vulto
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven S. Poon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Peter M. Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- * E-mail: ;
| |
Collapse
|
44
|
Abstract
Progressive DNA damage and mitochondrial decline are both considered to be prime instigators of natural ageing. Traditionally, these two pathways have been viewed largely in isolation. However, recent studies have revealed a molecular circuit that directly links DNA damage to compromised mitochondrial biogenesis and function via p53. This axis of ageing may account for both organ decline and disease development associated with advanced age and could illuminate a path for the development of relevant therapeutics.
Collapse
|
45
|
Jenkins EC, Tassone F, Ye L, Hoogeveen AT, Brown WT, Hagerman RJ, Hagerman PJ. Reduced telomere length in individuals with FMR1 premutations and full mutations. Am J Med Genet A 2012; 158A:1060-5. [PMID: 22489017 DOI: 10.1002/ajmg.a.35275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 12/16/2011] [Indexed: 01/04/2023]
Abstract
We reported previously that 10 older men (66.4 ± 4.6 years) with premutation alleles (55-200 CGG repeats) of the FMR1 gene, with or without FXTAS, had decreased telomere length when compared to sex- and age-matched controls. Extending our use of light intensity measurements from a telomere probe hybridized to interphase preparations, we have now found shortened telomeres in 9 younger male premutation carriers (31.7 ± 17.6 years). We have also shown decreased telomere length in T lymphocytes from 6 male individuals (12.0 ± 1.8 years) with full mutation FMR1 alleles (>200 CGG repeats). These findings support our hypothesis that reduced telomere length is a component of the sub-cellular pathology of FMR1-associated disorders. The experimental approach involved pair-wise comparisons of light intensity values of 20 cells from an individual with either premutation or full mutation CGG-repeat expansions relative to an equivalent number of cells from a sex- and age-matched control. In addition, we demonstrated reduced telomere size in T-lymphocyte cultures from eight individuals with the FMR1 premutation using six different measures. Four relied on detection of light intensity differences, and two involved measuring the whole chromosome, including the telomere, in microns. This new approach confirmed our findings with light intensity measurements and demonstrated the feasibility of direct linear measurements for detecting reductions in telomere size. We have thus confirmed our hypothesis that reduced telomere length is associated with both premutation and full mutation-FMR1 alleles and have demonstrated that direct measurements of telomere length can reliably detect such reductions.
Collapse
Affiliation(s)
- Edmund C Jenkins
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Akiyama BM, Loper J, Najarro K, Stone MD. The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA. RNA (NEW YORK, N.Y.) 2012; 18:653-60. [PMID: 22315458 PMCID: PMC3312553 DOI: 10.1261/rna.031377.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The unique cellular activity of the telomerase reverse transcriptase ribonucleoprotein (RNP) requires proper assembly of protein and RNA components into a functional complex. In the ciliate model organism Tetrahymena thermophila, the La-domain protein p65 is required for in vivo assembly of telomerase. Single-molecule and biochemical studies have shown that p65 promotes efficient RNA assembly with the telomerase reverse transcriptase (TERT) protein, in part by inducing a bend in the conserved stem IV region of telomerase RNA (TER). The domain architecture of p65 consists of an N-terminal domain, a La-RRM motif, and a C-terminal domain (CTD). Using single-molecule Förster resonance energy transfer (smFRET), we demonstrate the p65(CTD) is necessary for the RNA remodeling activity of the protein and is sufficient to induce a substantial conformational change in stem IV of TER. Moreover, nuclease protection assays directly map the site of p65(CTD) interaction to stem IV and reveal that, in addition to bending stem IV, p65 binding reorganizes nucleotides that comprise the low-affinity TERT binding site within stem-loop IV.
Collapse
Affiliation(s)
| | - John Loper
- Department of Chemistry and Biochemistry
| | | | - Michael D. Stone
- Department of Chemistry and Biochemistry
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding author.E-mail .
| |
Collapse
|
47
|
Jongmans M, Verwiel E, Heijdra Y, Vulliamy T, Kamping E, Hehir-Kwa J, Bongers E, Pfundt R, van Emst L, van Leeuwen F, van Gassen K, Geurts van Kessel A, Dokal I, Hoogerbrugge N, Ligtenberg M, Kuiper R. Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita. Am J Hum Genet 2012; 90:426-33. [PMID: 22341970 DOI: 10.1016/j.ajhg.2012.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/29/2011] [Accepted: 01/06/2012] [Indexed: 01/18/2023] Open
Abstract
Revertant mosaicism is an infrequently observed phenomenon caused by spontaneous correction of a pathogenic allele. We have observed such reversions caused by mitotic recombination of mutant TERC (telomerase RNA component) alleles in six patients from four families affected by dyskeratosis congenita (DC). DC is a multisystem disorder characterized by mucocutaneous abnormalities, dystrophic nails, bone-marrow failure, lung fibrosis, liver cirrhosis, and cancer. We identified a 4 nt deletion in TERC in a family with an autosomal-dominant form of DC. In two affected brothers without bone-marrow failure, sequence analysis revealed pronounced overrepresentation of the wild-type allele in blood cells, whereas no such skewing was observed in the other tissues tested. These observations suggest that this mosaic pattern might have resulted from somatic reversion of the mutated allele to the normal allele in blood-forming cells. SNP-microarray analysis on blood DNA from the two brothers indeed showed independent events of acquired segmental isodisomy of chromosome 3q, including TERC, indicating that the reversions must have resulted from mitotic recombination events. Subsequently, after developing a highly sensitive method of detecting mosaic homozygosity, we have found four additional cases with a mosaic-reversion pattern in blood cells; these four cases are part of a cohort of 17 individuals with germline TERC mutations. This shows that revertant mosaicism is a recurrent event in DC. This finding has important implications for improving diagnostic testing and understanding the variable phenotype of DC.
Collapse
|
48
|
Aviv A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res 2012; 730:68-74. [PMID: 21600224 PMCID: PMC3202050 DOI: 10.1016/j.mrfmmm.2011.05.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 02/07/2023]
Abstract
Humans display a large inter-individual variation in leukocyte telomere length (LTL), which is influenced by heredity, sex, race/ethnicity, paternal age at conception and environmental exposures. LTL dynamics (birth LTL and its age-dependent attrition thereafter) mirror telomere dynamics in hematopoietic stem cells (HSCs). LTL at birth is evidently a major determinant of LTL throughout the human lifespan, such that individuals endowed with short (or long) LTL at birth probably have short (or long) LTL later in life. Therefore, the associations of short LTL with atherosclerosis and with diminished survival in the elderly may relate to short birth LTL, accelerated age-dependent LTL attrition, or both. The mechanisms underlying these associations are still not well understood, but they stem in part from genetic factors in control of telomere maintenance and the rate of HSC replication.
Collapse
Affiliation(s)
- Abraham Aviv
- The Center for Human Development and Aging, University of Medicine and Dentistry, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
49
|
Dehkordy SF, Aghamohammadi A, Ochs HD, Rezaei N. Primary immunodeficiency diseases associated with neurologic manifestations. J Clin Immunol 2011; 32:1-24. [PMID: 22038677 DOI: 10.1007/s10875-011-9593-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/09/2011] [Indexed: 01/04/2023]
Abstract
Primary immunodeficiency diseases (PID) are a heterogeneous group of inherited disorders of the immune system, predisposing individuals to recurrent infections, allergy, autoimmunity, and malignancies. A considerable number of these conditions have been found to be also associated with neurologic signs and symptoms. These manifestations are considered core features of some immunodeficiency syndromes, such as ataxia-telangiectasia and purine nucleoside phosphorylase deficiency, or occur less prominently in some others. Diverse pathological mechanisms including defective responses to DNA damage, metabolic errors, and autoimmune phenomena have been associated with neurologic abnormalities; however, several issues remain to be elucidated. Greater awareness of these associated features and gaining a better understanding of the contributing mechanisms will lead to prompt diagnosis and treatment and possibly development of novel preventive and therapeutic strategies. In this review, we aim to provide a brief description of the clinical and genetic characteristics of PID associated with neurologic complications.
Collapse
Affiliation(s)
- Soodabeh Fazeli Dehkordy
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | | | | | | |
Collapse
|
50
|
Abstract
Telomere biology disorders are a complex set of illnesses defined by the presence of very short telomeres. Individuals with classic dyskeratosis congenita have the most severe phenotype, characterized by the triad of nail dystrophy, abnormal skin pigmentation, and oral leukoplakia. More significantly, these individuals are at very high risk of bone marrow failure, cancer, and pulmonary fibrosis. A mutation in one of six different telomere biology genes can be identified in 50–60% of these individuals. DKC1, TERC, TERT, NOP10, and NHP2 encode components of telomerase or a telomerase-associated factor and TINF2, a telomeric protein. Progressively shorter telomeres are inherited from generation to generation in autosomal dominant dyskeratosis congenita, resulting in disease anticipation. Up to 10% of individuals with apparently acquired aplastic anemia or idiopathic pulmonary fibrosis also have short telomeres and mutations in TERC or TERT. Similar findings have been seen in individuals with liver fibrosis or acute myelogenous leukemia. This report reviews basic aspects of telomere biology and telomere length measurement, and the clinical and genetic features of those disorders that constitute our current understanding of the spectrum of illness caused by defects in telomere biology. We also suggest a grouping schema for the telomere disorders.
Collapse
|