1
|
Jayasinghe JDHE, Tharanga EMT, Sirisena DMKP, Jeyakanesh JT, Wan Q, Lee J. A metallothionein from disk abalone (Haliotis discus discus): Insights into its functional roles in immune response, metal tolerance, and oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109645. [PMID: 38777254 DOI: 10.1016/j.fsi.2024.109645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Metallothioneins (MTs) are cysteine-rich metal-binding proteins whose expression is induced by exposure to essential and non-essential metals, making them potential biological markers for assessing metal pollution in various biomonitoring programs. However, the functional properties of these proteins are yet to be comprehensively characterized in most marine invertebrates. In this study, we identified and characterized an MT homolog from the disk abalone (Haliotis discus discus), referred to as disk abalone MT (AbMT). AbMT exhibited the same primary structural features as MTs from other mollusks containing two β-domains (β2β1-form). AbMT protein demonstrated metal-binding and detoxification abilities against Zn, Cu, and Cd, as evidenced by Escherichia coli growth kinetics, metal tolerance analysis, and UV absorption spectrum. Transcriptional analysis revealed that AbMT was ubiquitously expressed in all analyzed tissues and upregulated in gill tissue following challenge with Vibrio parahaemolyticus, Listeria monocytogenes, and viral hemorrhagic septicemia virus (VHSV). Additionally, overexpression of AbMT suppressed LPS-induced NO production in RAW264.7 macrophages, protected cells against H2O2-induced oxidative stress, and promoted macrophage polarization toward the M1 phase. Conclusively, these findings suggest an important role for AbMT in environmental stress protection and immune regulation in disk abalone.
Collapse
Affiliation(s)
- J D H E Jayasinghe
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeganathan Tharshan Jeyakanesh
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Essawy AE, Sherif SSE, Osman GY, Morshedy RME, Al-Nasser AS, Sheir SK. Immune responses, DNA damage and ultrastructural alterations of gills in the marine mussel Lithophaga lithophaga exposed to CuO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15800-15815. [PMID: 34632550 DOI: 10.1007/s11356-021-16889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle (NP) pollution is a worldwide problem. Copper oxide nanoparticles (CuO NPs) are one of the most used NPs in a variety of applications, which results in their increased release into the marine environment. In the present work, the marine mussel Lithophaga lithophaga was used as a model organism to evaluate the toxic effects of CuO NPs following 28 days of exposure to sub-lethal concentrations (5 and 20 μg/L). The time points were 1 day of exposure to assess the cell viability, phagocytosis in mussel haemocytes and genotoxicity (DNA damage in gills), 1, 14 and 28 days of exposure to evaluate copper concentrations in water and gills, as well as metallothionein concentration in gills, while gill histology and SEM examination were done after 28 days of exposure. The results indicated that the accumulation of CuO NPs in gills increased with concentration and time. Mussel exposure to CuO NPs increased neutral red uptake. However, the phagocytic abilities decreased in haemocytes with increased concentration. CuO NPs caused DNA damage in the gills even at low concentrations (5 µg/L). CuO NPs caused histopathological alterations in gills, such as brown cell accumulation, necrosis, dwarfism of filaments and ciliary erosion. In conclusion, exposure of the mussel L. lithophaga to CuO NPs led to concentration- and time-dependent responses for all the examined biomarkers. Thus, L. lithophaga may be used as a bioindicator organism in the assessment of CuO NP toxicity.
Collapse
Affiliation(s)
- Amina E Essawy
- Zoology Department, University of Alexandria, Alexandria, Egypt
| | | | - Gamalat Y Osman
- Invertebrates Division, Zoology Department, University of Menoufia, Shibin el Kom, Egypt
| | | | - Abir S Al-Nasser
- Department of Biology, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Sherin K Sheir
- Invertebrates Division, Zoology Department, University of Menoufia, Shibin el Kom, Egypt.
| |
Collapse
|
3
|
Liu Y, Qiu Y, Yin Q, Li X, Bai Q, Li Y, Xiao H. iTRAQ-based quantitative proteomic reveals proteomic changes in Serratia sp. CM01 and mechanism of Cr(Ⅵ) resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112899. [PMID: 34823212 DOI: 10.1016/j.ecoenv.2021.112899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Serratia sp. CM01 is a wild strain with the resistance and reduction ability of chromium(Ⅵ). The aim of this study it to investigate the underlying mechanisms of the Cr(Ⅵ) tolerance and reduction of strain CM01, and to explore its response to environmental pollution pressure at the molecular level. METHODS The iTRAQ technique was utilized to investigate the differentially expressed protein patterns related to the Cr(Ⅵ)-resistance in wild-type strain CM01 and domesticated CM01. RT-qPCR was used to verify the expression levels of several functional genes. The cell surface hydrophobicity and autoaggregation, the intracellular glucose content, and the total superoxide dismutase (SOD) activity were determined. RESULTS In total, 2750 proteins were detected and identified in WT CM01 and domesticated CM01. Compared with WT CM01, the iTRAQ results of 646 proteins were found to be significantly differentially expressed in domesticated CM01. There were 343 up-regulated and 303 down-regulated proteins, which mainly related to carbohydrate metabolism, stress responses, amino acid metabolism and some other systems. RT-qPCR results showed that the expression level of seven genes in domesticated CM01 were consistent with the iTRAQ proteomic profiles. The cell surface hydrophobicity, self-aggregation, intracellular glucose content and total SOD activity of domesticated CM01 with Cr(Ⅵ) treatment were significantly higher than without Cr(Ⅵ) treatment. CONCLUSION Domesticated CM01 displayed a complex biological network to exhibit the tolerance of Cr(Ⅵ), which may be attributed to the following aspects: (a) CM01 reduced the consumption of glucose by inhibiting the metabolism of carbohydrates, which was an energy-saving survival mode. (b) The inositol phosphate metabolism pathway played an important role. (c) Oxidative stress proteins enhanced the adaptability. (d) CM01 enhanced biosynthesis of hydrophobic amino acids to resistance to Cr(Ⅵ). (e) Several key systems and proteins, such as UvrABC system, Lon protease, porin OmpC, also may play an important role.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China; Center for Disease Control and Prevention, Chongqing 400010, China
| | - Yanlun Qiu
- Center for Disease Control and Prevention, Beibei District, Chongqing 400700, China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Xinglong Li
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
4
|
Tang T, Liu X, Wang L, Zuh AA, Qiao W, Huang J. Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115385. [PMID: 32798984 DOI: 10.1016/j.envpol.2020.115385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Bioaccumulation and toxicity of per-and polyfluoroalkyl substances and metal in plants have been confirmed, however their contamination in soil and plants still requires extensive investigation. In this study the combined effects of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium (Cr) on water spinach (Ipomoea aquatica Forsk) were investigated. Compared with each single stress, the combination of F53B and Cr (VI) reduced the biomass and height and increasingly accumulated in the roots and destroyed the cell structure. Besides, the co-contamination led to the immobilization of F53B and Cr (VI) in soil, which affected their migration in soil and transfer to plants. The antioxidant response and photosynthesis of the plant weakened under the single Cr (VI) and enhanced under the single F53B treatment; however the contamination of F53B and Cr (VI) could also reduce this effect, as confirmed by the gene expression of MTa, psbA and psbcL genes. This study provides an evidence of the environmental risks resulting from the coexistence of F53B and Cr (VI).
Collapse
Affiliation(s)
- Tianhao Tang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaochun Liu
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Longqian Wang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Achuo Anitta Zuh
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Zhang R, Tian Y. Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00038-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Chromium is widely used in industry, and improper disposal of wastewater and industrial residues containing excessive chromium can contaminate water and soil, endangering both environmental and human health. Natural biopolymers and their derivatives have been investigated for removal of chromium (Cr) from wastewater. Cellulose, lignin, tannin, chitin, chitosan, and polypeptides are abundant in nature, and have high potential as adsorbents due to their easy access, low cost, and the recyclability of the captured heavy metals. In order to improve their mechanical strength, recyclability, specific surface area, binding site number, and adsorption rate as adsorbents, native materials have also been modified. This review discusses the source of chromium contamination and the main species of interest, as well as their toxicity. The structures of the aforementioned biopolymers were analyzed, and the adsorption mechanism of chromium and the main influencing factors on this process are discussed. The modification methods of various adsorbents and their adsorption effects on chromium are also detailed, and the developmental direction of research on the use of biopolymer adsorption remediation to control chromium contamination is discussed.
Graphical abstract
Collapse
|
6
|
Sheir SK, Handy RD, Henry TB. Effect of pollution history on immunological responses and organ histology in the marine mussel Mytilus edulis exposed to cadmium. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:701-716. [PMID: 23344845 DOI: 10.1007/s00244-012-9868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/29/2012] [Indexed: 06/01/2023]
Abstract
The effect of previous toxicant exposure (i.e., exposure history) on an organism's response to re-exposure to the toxicant is of considerable interest. The marine mussel Mytilus edulis was collected from reference and polluted sites in southwest England, and groups of mussels from each site were exposed to 20 μg/L CdCl2 for 0, 1, 4, and 8 days and compared with unexposed controls. End points evaluated were tissue metal and electrolyte concentrations, haemolymph chemistry, haemocyte characteristics [counts, neutral red uptake (NRU), and phagocytosis], histology, and expression of metallothionein gene (mt10) expression in digestive glands. Field-collected animals differed by collection site for some end points at time zero, at which time tissue Fe and Pb concentrations were greater and NRU and condition index lower in mussels from the polluted site. Subsequent exposure to cadmium (Cd) in the laboratory caused Cd accumulation mainly in digestive gland, but there were no site-specific effects on tissue trace-metal concentrations. NRU, phagocytosis, and haemolymph Na(+) and K(+) concentrations differed among sites and Cd treatment, but there were no clear trends. Exposure to Cd resulted in lower Ca(2+) concentrations in gill, digestive gland, and haemolymph in animals from the polluted site compared with controls (Kruskal-Wallis, p ≤ 0.05). Lesions, including necrosis, inflammation, and neoplasia, were observed in animals from the polluted site, but the frequency of these lesions appeared to decrease unexpectedly after Cd exposure. Expression of mt10 increased 3-fold in Cd-exposed animals from the polluted site compared with all other groups (Kruskal-Wallis, p = 0.01). We conclude that Cd exposure affected some immune responses in M. edulis, but pre-exposure history influenced toxicological outcomes of Cd exposure in the laboratory.
Collapse
Affiliation(s)
- Sherin K Sheir
- Department of Zoology, Menofia University, Shebeen El-Koom, Egypt.
| | | | | |
Collapse
|
7
|
Devos A, Voiseux C, Caplat C, Fievet B. Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2841-2847. [PMID: 22997013 DOI: 10.1002/etc.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose-response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc.
Collapse
Affiliation(s)
- Alexandre Devos
- Radioecology Laboratory of Cherbourg-Octeville, Institute of Radioprotection and Nuclear Safety/PRP-ENV/SERIS, Cherbourg-Octeville, France
| | | | | | | |
Collapse
|