1
|
Muroi Y, Aburaya I, Kiyokawa Y, Watanabe K, Wada K, Abe Y, Sugimoto Y. Stability of hen egg-white lysozyme during embryonic development. Biosci Biotechnol Biochem 2022; 86:1353-1361. [PMID: 35948273 DOI: 10.1093/bbb/zbac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/29/2022] [Indexed: 11/14/2022]
Abstract
It is of interest to determine whether and how egg-white proteins are maintained in fertile eggs. We previously observed that egg-white ovalbumin attained high stability during embryogenesis. Herein, we observed that the total mass of egg white and that of its gross protein content showed a decrease according to the days of incubation. The total bacteriolytic activity also lowered, in accord with previous observations. We purified lysozyme from egg-white samples on several incubation days. These purified lysozyme proteins were observed to have enzymatic and bacteriolytic activities against Micrococcus lysodeikticus as well as growth-inhibition potency against Staphylococcus aureus. As the embryogenesis proceeded, the purified lysozyme showed changes in Km and Vmax, a small decrease in the denaturation temperature, and symptoms of an increase in surface hydrophobicity. These results indicate that the lysozyme protein maintained its enzymatic and antibacterial activities until the late period of incubation while undergoing slight conformational changes.
Collapse
Affiliation(s)
- Yukiko Muroi
- Faculty of Food and Nutrition, Kyushu Nutrition and Welfare University, Kokura-Kitaku, Kitakyushu 803-8511, Japan.,Department of Food Function Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Japan
| | - Izumi Aburaya
- Faculty of Food and Nutrition, Kyushu Nutrition and Welfare University, Kokura-Kitaku, Kitakyushu 803-8511, Japan
| | - Yuki Kiyokawa
- Department of Food Function Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Japan
| | - Keiichi Watanabe
- Faculty of Food and Nutrition, Kyushu Nutrition and Welfare University, Kokura-Kitaku, Kitakyushu 803-8511, Japan.,Department of Food Function Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Japan
| | - Koji Wada
- Department of Food Function Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Japan
| | - Yoshito Abe
- Faculty of Pharmacy, International University of Health and Welfare, Ookawa City, Fukuoka Japan
| | - Yasushi Sugimoto
- Faculty of Food and Nutrition, Kyushu Nutrition and Welfare University, Kokura-Kitaku, Kitakyushu 803-8511, Japan.,Department of Food Function Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Japan
| |
Collapse
|
2
|
Mandal P, Molla AR. Solvent Perturbation of Protein Structures - A Review Study with Lectins. Protein Pept Lett 2020; 27:538-550. [PMID: 31682206 DOI: 10.2174/0929866526666191104145511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Use of organic molecules as co-solvent with water, the ubiquitous biological solvent, to perturb the structure of proteins is popular in the research area of protein structure and folding. These organic co-solvents are believed to somehow mimic the environment near the cell membrane. Apart from that they induce non-native states which can be present in the protein folding pathway or those states also may be representative of the off pathway structures leading to amyloid formation, responsible for various fatal diseases. In this review, we shall focus on organic co-solvent induced structure perturbation of various members of lectin family. Lectins are excellent model systems for protein folding study because of its wide occurrence, diverse structure and versatile biological functions. Lectins were mainly perturbed by two fluoroalcohols - 2,2,2- trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol whereas glycerol, ethylene glycol and polyethylene glycols were used in some cases. Overall, all native lectins were denatured by alcohols and most of the denatured lectins have predominant helical secondary structure. But characterization of the helical states and the transition pathway for various lectins revealed diverse result.
Collapse
Affiliation(s)
- Pritha Mandal
- Department of Chemistry, Krishnagar Government College, Krishnagar, West Bengal-741101, India
| | - Anisur R Molla
- Department of Chemistry, Bidhannagar College, Salt Lake, Kolkata -700 064, India
| |
Collapse
|
3
|
Low-pH induced structural changes, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.). Food Chem 2019; 283:183-190. [PMID: 30722859 DOI: 10.1016/j.foodchem.2018.12.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 11/23/2022]
Abstract
Lectin was incubated in corresponding acidic buffers (pH 1.0-3.5) for a certain period (0.5, 1, 2, 4, 8, 12 and 24 h) at 25 °C. Low-pH induced changes in structure, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.) were investigated in the present study. Results indicated that the alteration in structure was a progressive unfolding process mainly depending on pH environment, and the treated lectin attained a stable state at 8 h. Electrophoretic, dynamic light scattering (DLS) and size exclusion chromatography (SEC) analyses suggested that lectin monomers appeared in the solutions of pH < 2.0. Differential scanning calorimetry (DSC) confirmed that thermal stability of lectin weakened in low pH environments. Furthermore, ELISA and in vitro digestion assay showed allergenicity and digestibility significantly decreased with the structural alterations. These results showed low-pH treatments have great potential to reduce the damage of legumes protein consumption.
Collapse
|
4
|
Alam P, Naseem F, Abdelhameed AS, Khan RH. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.05.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Garcia AF, Dyszy F, Munte CE, DeMarco R, Beltramini LM, Oliva G, Costa-Filho AJ, Araujo AP. THI1, a protein involved in the biosynthesis of thiamin in Arabidopsis thaliana: Structural analysis of THI1(A140V) mutant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1094-103. [DOI: 10.1016/j.bbapap.2014.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 01/21/2023]
|
6
|
Ghosh G, Mandal DK. Novel unfolding sequence of banana lectin: Folded, unfolded and natively unfolded-like monomeric states in guanidine hydrochloride. Biochimie 2013; 99:138-45. [PMID: 24316282 DOI: 10.1016/j.biochi.2013.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/23/2013] [Indexed: 11/16/2022]
Abstract
The sequence of unfolding events of dimeric banana lectin (Banlec), as induced by guanidine hydrochloride (GdnHCl), has been investigated by size-exclusion HPLC, fluorescence, far-UV CD, low temperature phosphorescence and selective chemical modification. 8-Anilino-1-naphthalenesulfonate (ANS) binding indicates a structured unfolding intermediate which has been characterized as dissociated monomer by size-exclusion chromatography. Interestingly, the unfolding elution pattern reveals two distinct unfolded states. One is a usual random coil. The other represents a novel species having elution behavior and structural compactness (Stokes radius) similar to dissociated monomer but showing no regular secondary structure as determined by far-UV CD, thus resembling a natively unfolded state. N-Bromosuccinimide (NBS) oxidation shows that single tryptophan residue remains unmodified in dissociated monomer intermediate while the same is oxidized in natively unfolded-like species. Such difference in tryptophan environment in these species is supported by acrylamide quenching studies, and phosphorescence results at 77 K which show a blue-shift of (0,0) band from 414.8 nm to 409.2 nm. The present results reveal subtlety of structural characteristics of unfolded states of Banlec in GdnHCl, which provide important insight in protein unfolding reaction.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India
| | - Dipak K Mandal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India.
| |
Collapse
|
7
|
Bracamonte AG, Veglia AV. Cyclodextrins nanocavities effects on basic and acid fluorescence quenching of hydroxy-indoles. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Tokunaga Y, Sakakibara Y, Kamada Y, Watanabe KI, Sugimoto Y. Analysis of core region from egg white lysozyme forming amyloid fibrils. Int J Biol Sci 2013; 9:219-27. [PMID: 23459392 PMCID: PMC3584918 DOI: 10.7150/ijbs.5380] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/21/2012] [Indexed: 12/30/2022] Open
Abstract
Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregation. In the present work we focused on its structural properties in relation to the formation of fibrils. The K peptide alone formed definite fibrils having β-sheet structures by incubation of 7 days under acidic conditions at 37°C. A substantial number of fibrils were generated under this pH condition and incubation period. Deletion and substitution of tryptophan in the K peptide resulted in no formation of fibrils. Tryptophan 62 in lysozyme was suggested to be especially crucial to forming amyloid fibrils. We also show that amyloid fibrils formation of the K peptide requires not only tryptophan 62 but also a certain length containing hydrophobic amino acids. A core region is involved in the significant formation of amyloid fibrils of lysozyme.
Collapse
Affiliation(s)
- Yuhei Tokunaga
- Laboratory of Biochemistry and Bioscience The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065 Japan
| | | | | | | | | |
Collapse
|
9
|
Molla AR, Mandal DK. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability. Biochimie 2013; 95:204-14. [PMID: 23022144 DOI: 10.1016/j.biochi.2012.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/13/2012] [Indexed: 11/23/2022]
Abstract
2,2,2-Trifuoroethanol (TFE)-induced conformational structure change of a β-sheet legume lectin, soybean agglutinin (SBA) has been investigated employing its exclusive structural forms in quaternary (tetramer) and tertiary (monomer) states, by far- and near-UV CD, FTIR, fluorescence, low temperature phosphorescence and chemical modification. Far-UV CD results show that, for SBA tetramer, native atypical β-conformation transforms to a highly α-helical structure, with the helical content reaching 57% in 95% TFE. For SBA monomer, atypical β-sheet first converts to typical β-sheet at low TFE concentration (10%), which then leads to a nonnative α-helix at higher TFE concentration. From temperature-dependent studies (5-60 °C) of TFE perturbation, typical β-sheet structure appears to be less stable than atypical β-sheet and the induced helix entails reduced thermal stability. The heat induced transitions are reversible except for atypical to typical β-sheet conversion. FTIR results reveal a partial α-helix conversion at high protein concentration but with quantitative yield. However, aggregation is detected with FTIR at lower TFE concentration, which disappears in more TFE. Near-UV CD, fluorescence and phosphorescence studies imply the existence of an intermediate with native-like secondary and tertiary structure, which could be related to the dissociation of tetramer to monomer. This has been further supported by concentration dependent far-UV CD studies. Chemical modification with N-bromosuccinimide (NBS) shows that all six tryptophans per monomer are solvent-exposed in the induced α-helical conformation. These results may provide novel and important insights into the perturbed folding problem of SBA in particular, and β-sheet oligomeric proteins in general.
Collapse
Affiliation(s)
- Anisur R Molla
- Department of Chemistry and Biochemistry, Presidency University, 86/1 College Street, West Bengal, Kolkata 700 073, India
| | | |
Collapse
|
10
|
Ghosh G, Mandal DK. Differing structural characteristics of molten globule intermediate of peanut lectin in urea and guanidine-HCl. Int J Biol Macromol 2012; 51:188-95. [DOI: 10.1016/j.ijbiomac.2012.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
11
|
Correlation of TrpGly and GlyTrp Rotamer Structure with W7 and W10 UV Resonance Raman Modes and Fluorescence Emission Shifts. JOURNAL OF AMINO ACIDS 2012; 2012:735076. [PMID: 22888404 PMCID: PMC3408653 DOI: 10.1155/2012/735076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022]
Abstract
Tryptophyl glycine (TrpGly) and glycyl tryptophan (GlyTrp) dipeptides at pH 5.5 and pH 9.3 show a pattern of fluorescence emission shifts with the TrpGly zwitterion emission solely blue shifted. This pattern is matched by shifts in the UV resonance Raman (UVRR) W10 band position and the W7 Fermi doublet band ratio. Ab initio calculations show that the 1340 cm−1 band of the W7 doublet is composed of three modes, two of which determine the W7 band ratios for the dipeptides. Molecular dynamics simulations show that the dipeptides take on two conformations: one with the peptide backbone extended; one with the backbone curled over the indole. The dihedral angle critical to these conformations is χ1 and takes on three discrete values. Only the TrpGly zwitterion spends an appreciable amount of time in the extended backbone conformation as this is stabilized by two hydrogen bonds with the terminal amine cation. According to a Stark effect model, a positive charge near the pyrrole keeps the 1La transition at high energy, limiting fluorescence emission red shift, as observed for the TrpGly zwitterion. The hydrogen bond stabilized backbone provides a rationale for the Cmethylene-Cα-Ccarbonyl W10 symmetric stretch that is unique to the TrpGly zwitterion.
Collapse
|
12
|
Mandal P, Mandal DK. Localization and environment of tryptophans in different structural states of concanavalin A. J Fluoresc 2011; 21:2123-32. [PMID: 21748239 DOI: 10.1007/s10895-011-0913-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
We have investigated the localization and environment of tryptophan residues in different quaternary and conformational states (tetrameric, dimeric, monomeric and unfolded) of metallized and demetallized concanavalin A (ConA) by selective chemical modification, fluorescence, and phosphorescence. ConA has four tryptophan residues (Trp 40, Trp 88, Trp 109 and Trp 182) per subunit. The pattern of oxidation by N-bromosuccinimide (NBS) shows that NBS modifies, in dimer, only Trp 182 which remains inaccessible in tetramer, two (Trp 88 along with Trp 182) in monomer, all four in unfolded form in presence of EDTA, and three (possibly Trp 40 along with Trp 88 and Trp 182) in unfolded form from native or remetallized ConA. Utilizing wavelength-selective fluorescence approach, we have observed a red edge excitation shift (REES) of 6-8 nm for tetramer and dimer. A more pronounced REES (11 nm) is observed for oxidized monomer compared to REES (3 nm) for unoxidized species. Acrylamide quenching shows the Stern-Volmer constant (K(SV)) for dimer, monomer, unfolded ConA and unfolded apo-ConA being 3.8, 5.2, 12.8, 14.0 M(-1), respectively. Phosphorescence studies at 77 K give more structured spectra, with two (0,0) bands at 406.2 (weak) and 413.2 nm for tetramer. However, a single (0,0) band appears at 413.2 for dimer and 412.6 nm for monomer, while the (0,0) band of the oxidized monomer is red shifted to 414.4 nm. These results may provide important insight into subtlety of organization and environment of tryptophans in the context of folding and structural studies of oligomeric proteins including lectins.
Collapse
Affiliation(s)
- Pritha Mandal
- Department of Chemistry & Biochemistry, Presidency University, Kolkata 700 073, India
| | | |
Collapse
|
13
|
Sen D, Mandal DK. Pea lectin unfolding reveals a unique molten globule fragment chain. Biochimie 2011; 93:409-17. [DOI: 10.1016/j.biochi.2010.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|