1
|
Rajan K, Alangode A, Menon JC, Raveendran D, Nair SS, Reick M, Nair BG, Reick M, Vanuopadath M. Comparative functional characterization and in vitro immunological cross-reactivity studies on Daboia russelii and Craspedocephalus malabaricus venom. Trans R Soc Trop Med Hyg 2024; 118:682-696. [PMID: 38860309 DOI: 10.1093/trstmh/trae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Snake venom is a complex mixture of organic and inorganic constituents, including proteins and peptides. Several studies showed that antivenom efficacy differs due to intra- and inter-species venom variation. METHODS In the current study, comparative functional characterization of major enzymatic proteins present in Craspedocephalus malabaricus and Daboia russelii venom was investigated through various in vitro and immunological cross-reactivity assays. RESULTS The enzymatic assays revealed that hyaluronidase and phospholipase A2 activities were markedly higher in D. russelii. By contrast, fibrinogenolytic, fibrin clotting and L-amino acid oxidase activities were higher in C. malabaricus venom. ELISA results suggested that all the antivenoms had lower binding potential towards C. malabaricus venom. For D. russelii venom, the endpoint titration value was observed at 1:72 900 for all the antivenoms. In the case of C. malabaricus venom, the endpoint titration value was 1:2700, except for Biological E (1:8100). All these results, along with the avidity assays, indicate the strength of venom-antivenom interactions. Similarly, the western blot results suggest that all the antivenoms showed varied efficacies in binding and detecting the venom antigenic epitopes in both species. CONCLUSIONS The results highlight the need for species-specific antivenom to better manage snakebite victims.
Collapse
Affiliation(s)
- Karthika Rajan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Aswathy Alangode
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Jaideep C Menon
- Preventive Cardiology & Population Health Sciences, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682 041 , Kerala, India
| | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd, SCTIMST-TIMED, 5th Floor. M S Valiathan Building, BMT Wing - Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | - Sudarslal Sadasivan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Margaret Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Martin Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| |
Collapse
|
2
|
Salama WH, Abd-Rabou AA, Bassuiny RI, El Hakim AE, Shahein YE. Exploration of antimicrobial and anticancer activities of L-amino acid oxidase from Egyptian Naja haje venom. Toxicon 2024; 242:107708. [PMID: 38574827 DOI: 10.1016/j.toxicon.2024.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Hepatocellular carcinoma and bacterial resistance are major health burdens nowadays. Thus, providing new therapies that overcome that resistance is of great interest, particularly those derived from nature rather than chemotherapeutics to avoid cytotoxicity on normal cells. Venomous animals are among the natural sources that assisted in the discovery of novel therapeutic regimens. L-amino acid oxidase Nh-LAAO (140 kDa), purified from Egyptian Naja haje venom by a successive two-step chromatography protocol, has an optimal pH and temperature of 8 and 37 °C. Under standard assay conditions, Nh-LAAO exhibited the highest specificity toward L-Arg, L-Met and L-Leu, with Km and Vmax values of 3.5 mM and 10.4 μmol/min/ml, respectively. Among the metal ions, Ca+2, Na+, and K+ ions are activators, whereas Fe+2 inhibited LAAO activity. PMSF and EDTA slightly inhibited the Nh-LAAO activity. In addition, Nh-LAAO showed antibacterial and antifungal activities, particularly against Gentamicin-resistant P. aeruginosa and E. coli strains with MIC of 18 ± 2 μg/ml, as well as F. proliferatum and A. parasiticus among the selected human pathogenic strains. Furthermore, Nh-LAAO exhibited anti-proliferative activity against cancer HepG2 and Huh7 cells with IC50 of 79.37 and 60.11 μg/ml, respectively, with no detectable effect on normal WI-38 cells. Consequently, the apoptosis % of the HepG2 and Huh7 cells were 12 ± 1 and 34.5 ± 2.5 %, respectively, upon Nh-LAAO treatment. Further, the Nh-LAAO arrested the HepG2 and Huh7 cell cycles in the G0/G1 phase. Thus, the powerful selective cytotoxicity of L-amino acid oxidase opens up the possibility as a good candidate for clinical cancer therapy.
Collapse
Affiliation(s)
- Walaa H Salama
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt.
| | - Ahmed A Abd-Rabou
- HormonesDepartment, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Amr E El Hakim
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| |
Collapse
|
3
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
4
|
Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans 2021; 48:719-731. [PMID: 32267491 PMCID: PMC7200639 DOI: 10.1042/bst20200110] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
Collapse
|
5
|
Lima EOVD, Tasima LJ, Hatakeyama DM, Serino-Silva C, Rodrigues CFB, Galizio NDC, Chiarelli T, Nishiduka ES, Rocha MMTD, Sant'Anna SS, Grego KF, Tashima AK, Tanaka-Azevedo AM, Morais-Zani KD. Snake venom color and L-amino acid oxidase: An evidence of long-term captive Crotalus durissus terrificus venom plasticity. Toxicon 2021; 193:73-83. [PMID: 33515573 DOI: 10.1016/j.toxicon.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/01/2022]
Abstract
The venom color variation of Crotalus durissus terrificus (Cdt) is attributed to the presence of the toxin L-amino acid oxidase (LAAO). During the venom milking routine of Instituto Butantan, we have noticed that most venoms of captive Cdt specimens show a yellowish color, while most venoms of wild specimens are white. Here we describe a comparative analysis of long-term captive (LTC) and recently wild-caught (RWC) Cdt, focusing on LAAO variation. For the identification of LAAO in individual venoms, four different approaches were employed: evaluation of the enzymatic activity, SDS-PAGE, Western blotting, and ELISA. In addition, mass spectrometry analysis was performed using pooled samples. Although some variation among these methodologies was observed, it was possible to notice that the presence of LAAO was significantly higher in the venom of LTC individuals. LAAO was identified in 60-80% LTC specimens and in only 10-12% of RWC specimens. Furthermore, this enzyme accounts for 5.6% of total venom proteins of LTC Cdt pooled venom, while it corresponds to only 0.7% of RWC Cdt pooled venom. These findings strongly suggest that captive maintenance increases the expression of LAAO in Cdt venom.
Collapse
Affiliation(s)
| | - Lídia Jorge Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Tassia Chiarelli
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
6
|
Vanuopadath M, Shaji SK, Raveendran D, Nair BG, Nair SS. Delineating the venom toxin arsenal of Malabar pit viper (Trimeresurus malabaricus) from the Western Ghats of India and evaluating its immunological cross-reactivity and in vitro cytotoxicity. Int J Biol Macromol 2020; 148:1029-1045. [PMID: 31982532 DOI: 10.1016/j.ijbiomac.2020.01.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
The venom protein components of Malabar pit viper (Trimeresurus malabaricus) were identified by combining SDS-PAGE and ion-exchange chromatography pre-fractionation techniques with LC-MS/MS incorporating Novor and PEAKS-assisted de novo sequencing strategies. Total 97 proteins that belong to 16 protein families such as L-amino acid oxidase, metalloprotease, serine protease, phospholipase A2, 5'-nucleotidase, C-type lectins/snaclecs and disintegrin were recognized from the venom of a single exemplar species. Of the 97 proteins, eighteen were identified through de novo approaches. Immunological cross-reactivity assessed through ELISA and western blot indicate that the Indian antivenoms binds less effectively to Malabar pit viper venom components compared to that of Russell's viper venom. The in vitro cell viability assays suggest that compared to the normal cells, MPV venom induces concentration dependent cell death in various cancer cells. Moreover, crude venom resulted in chromatin condensation and apoptotic bodies implying the induction of apoptosis. Taken together, the present study enabled in dissecting the venom proteome of Trimeresurus malabaricus and revealed the immuno-cross-reactivity profiles of commercially available Indian polyvalent antivenoms that, in turn, is expected to provide valuable insights on the need in improving antivenom preparations against its bite.
Collapse
Affiliation(s)
| | | | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd., SCTIMST-TIMed, BMT Wing-Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | |
Collapse
|
7
|
Ullah A. Structure-Function Studies and Mechanism of Action of Snake Venom L-Amino Acid Oxidases. Front Pharmacol 2020; 11:110. [PMID: 32158389 PMCID: PMC7052187 DOI: 10.3389/fphar.2020.00110] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Snake venom L-amino acid oxidases (SV-LAAOs) are the least studied venom enzymes. These enzymes catalyze the stereospecific oxidation of an L-amino acid to their corresponding α-keto acid with the liberation of hydrogen peroxide (H2O2) and ammonia (NH3). They display various pathological and physiological activities including induction of apoptosis, edema, platelet aggregation/inhibition, hemorrhagic, and anticoagulant activities. They also show antibacterial, antiviral and leishmanicidal activity and have been used as therapeutic agents in some disease conditions like cancer and anti-HIV drugs. Although the crystal structures of six SV-LAAOs are present in the Protein Data Bank (PDB), there is no single article that describes all of them in particular. To better understand their structural properties and correlate it with their function, the current work describes structure characterization, structure-based mechanism of catalysis, inhibition and substrate specificity of SV-LAAOs. Sequence analysis indicates a high sequence identity (>84%) among SV-LAAOs, comparatively lower sequence identity with Pig kidney D-amino acid oxidase (<50%) and very low sequence identity (<24%) with bacterial LAAOs, Fugal (L-lysine oxidase), and Zea mays Polyamine oxidase (PAAO). The three-dimensional structure of these enzymes are composed of three-domains, a FAD-binding domain, a substrate-binding domain and a helical domain. The sequence and structural analysis indicate that the amino acid residues in the loops vary in length and composition due to which the surface charge distribution also varies that may impart variable substrate specificity to these enzymes. The active site cavity volume and its average depth also vary in these enzymes. The inhibition of these enzymes by synthetic inhibitors will lead to the production of more potent antivenoms against snakebite envenomation.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
8
|
Khedrinia M, Aryapour H, Mianabadi M. Prediction of novel inhibitors for Crotalus adamanteus l-amino acid oxidase by repurposing FDA-approved drugs: a virtual screening and molecular dynamics simulation investigation. Drug Chem Toxicol 2019; 44:470-479. [PMID: 31668098 DOI: 10.1080/01480545.2019.1614022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the deadliest enzymes in the snake venom is l-amino acid oxidase (LAAO) which plays an important role in the pathophysiological effects during snake envenomation. Some effects of this enzyme on the human body are apoptosis, platelet aggregation, edema, hemorrhage, and cytotoxicity. Hence, inhibiting the enzyme activity to reduce its degradation effects is of great medical and pharmacological importance. On the other hand, drug repurposing is a process to find the new existing drug for a new medical indication. Since Crotalus adamanteus LAAO has no crystal structure in the protein data bank, first, its 3D structure was constructed by homology modeling using 1REO as the template and then modeled structure was evaluated by several algorithms. We screened the FDA-approved drugs by structure-based virtual screening, molecular dynamics (MD) simulation, and Molecular Mechanics Poisson Boltzmann Surface Area (MM/PBSA) to identify new inhibitors for the snake venom LAAO. Interestingly, docking results revealed that half of the hits belong to the propionic acid derivatives drugs. In addition, MD simulation was performed to assess the interaction profile of the docked protein-hits complexes. Meanwhile, Arg88, Gln112, Lys345, Trp356 form consistent hydrogen bond interactions with Dexketoprofen, Flurbiprofen, Ketoprofen, Morphine, and Citric acid during simulation. According to the results, each of the four compounds can be an appropriate inhibitor of LAAO and since our study was based on drug repurposing could be evaluated in phase II clinical trials.
Collapse
Affiliation(s)
- Mostafa Khedrinia
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Manijeh Mianabadi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| |
Collapse
|
9
|
Wiezel GA, Rustiguel JK, Morgenstern D, Zoccal KF, Faccioli LH, Nonato MC, Ueberheide B, Arantes EC. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie 2019; 163:33-49. [DOI: 10.1016/j.biochi.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 01/18/2023]
|
10
|
Movellan KT, Najbauer EE, Pratihar S, Salvi M, Giller K, Becker S, Andreas LB. Alpha protons as NMR probes in deuterated proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:81-91. [PMID: 30762170 PMCID: PMC6441447 DOI: 10.1007/s10858-019-00230-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 05/08/2023]
Abstract
We describe a new labeling method that allows for full protonation at the backbone Hα position, maintaining protein side chains with a high level of deuteration. We refer to the method as alpha proton exchange by transamination (α-PET) since it relies on transaminase activity demonstrated here using Escherichia coli expression. We show that α-PET labeling is particularly useful in improving structural characterization of solid proteins by introduction of an additional proton reporter, while eliminating many strong dipolar couplings. The approach benefits from the high sensitivity associated with 1.3 mm samples, more abundant information including Hα resonances, and the narrow proton linewidths encountered for highly deuterated proteins. The labeling strategy solves amide proton exchange problems commonly encountered for membrane proteins when using perdeuteration and backexchange protocols, allowing access to alpha and all amide protons including those in exchange-protected regions. The incorporation of Hα protons provides new insights, as the close Hα-Hα and Hα-HN contacts present in β-sheets become accessible, improving the chance to determine the protein structure as compared with HN-HN contacts alone. Protonation of the Hα position higher than 90% is achieved for Ile, Leu, Phe, Tyr, Met, Val, Ala, Gln, Asn, Thr, Ser, Glu, Asp even though LAAO is only active at this degree for Ile, Leu, Phe, Tyr, Trp, Met. Additionally, the glycine methylene carbon is labeled preferentially with a single deuteron, allowing stereospecific assignment of glycine alpha protons. In solution, we show that the high deuteration level dramatically reduces R2 relaxation rates, which is beneficial for the study of large proteins and protein dynamics. We demonstrate the method using two model systems, as well as a 32 kDa membrane protein, hVDAC1, showing the applicability of the method to study membrane proteins.
Collapse
Affiliation(s)
- Kumar Tekwani Movellan
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Eszter E Najbauer
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Supriya Pratihar
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Michele Salvi
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Karin Giller
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Stefan Becker
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
11
|
l-Amino acid oxidase from Cerastes vipera snake venom: Isolation, characterization and biological effects on bacteria and tumor cell lines. Toxicon 2018; 150:270-279. [DOI: 10.1016/j.toxicon.2018.06.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
|
12
|
Rashidi R, Gorji Valokola M, Kamrani Rad SZ, Etemad L, Roohbakhsh A. Antiplatelet properties of snake venoms: a mini review. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1474927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Rogayyeh Rashidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Gorji Valokola
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Zohreh Kamrani Rad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Lazo F, Vivas-Ruiz DE, Sandoval GA, Rodríguez EF, Kozlova EE, Costal-Oliveira F, Chávez-Olórtegui C, Severino R, Yarlequé A, Sanchez EF. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom. Toxicon 2017; 139:74-86. [DOI: 10.1016/j.toxicon.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/18/2017] [Accepted: 10/08/2017] [Indexed: 11/26/2022]
|
14
|
Feliciano PR, Rustiguel JK, Soares ROS, Sampaio SV, Cristina Nonato M. Crystal structure and molecular dynamics studies of L-amino acid oxidase from Bothrops atrox. Toxicon 2017; 128:50-59. [PMID: 28137621 DOI: 10.1016/j.toxicon.2017.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 11/26/2022]
Abstract
L-amino acid oxidases (LAAOs) are dimeric flavoproteins that catalyze the deamination of L-amino acid to α-keto acid, producing ammonia and hydrogen peroxide. In this study, we report the crystal structure and molecular dynamics simulations of LAAO from the venom of Bothrops atrox (BatroxLAAO). BatroxLAAO presents several biological and pharmacological properties with promising biomedical applications. BatroxLAAO structure contains the highly conserved structural pattern of LAAOs comprising a FAD-binding domain, substrate-binding domain and helical domain, and a dimeric arrangement that can be stabilized by zinc. Also, molecular dynamics results show an asymmetric behavior, and a direct communication between FAD- and substrate-binding domains of counterpart subunits. These findings shed light on the structural role of dimerization to catalytic mechanism of SV-LAAOs.
Collapse
Affiliation(s)
- Patricia R Feliciano
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Joane K Rustiguel
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo O S Soares
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Nôga DAMF, Brandão LEM, Cagni FC, Silva D, de Azevedo DLO, Araújo A, Dos Santos WF, Miranda A, da Silva RH, Ribeiro AM. Anticonvulsant Effects of Fractions Isolated from Dinoponera quadriceps (Kempt) Ant Venom (Formicidae: Ponerinae). Toxins (Basel) 2016; 9:toxins9010005. [PMID: 28025529 PMCID: PMC5308238 DOI: 10.3390/toxins9010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt) protects mice against bicuculline (BIC)-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC) resulting in six fractions referred to as DqTx1-DqTx6. A liquid chromatography-mass spectrometry (LC/MS) analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL) was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM), DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.
Collapse
Affiliation(s)
| | | | - Fernanda Carvalho Cagni
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | - Delano Silva
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Arrilton Araújo
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Antonio Miranda
- Biophysics Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | - Regina Helena da Silva
- Pharmacology Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | | |
Collapse
|
16
|
Bocian A, Urbanik M, Hus K, Łyskowski A, Petrilla V, Andrejčáková Z, Petrillová M, Legath J. Proteome and Peptidome of Vipera berus berus Venom. Molecules 2016; 21:E1398. [PMID: 27775574 PMCID: PMC6274168 DOI: 10.3390/molecules21101398] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 01/29/2023] Open
Abstract
Snake venom is a rich source of peptides and proteins with a wide range of actions. Many of the venom components are currently being tested for their usefulness in the treatment of many diseases ranging from neurological and cardiovascular to cancer. It is also important to constantly search for new proteins and peptides with properties not yet described. The venom of Vipera berus berus has hemolytic, proteolytic and cytotoxic properties, but its exact composition and the factors responsible for these properties are not known. Therefore, an attempt was made to identify proteins and peptides derived from this species venom by using high resolution two-dimensional electrophoresis and MALDI ToF/ToF mass spectrometry. A total of 11 protein classes have been identified mainly proteases but also l-amino acid oxidases, C-type lectin like proteins, cysteine-rich venom proteins and phospholipases A₂ and 4 peptides of molecular weight less than 1500 Da. Most of the identified proteins are responsible for the highly hemotoxic properties of the venom. Presence of venom phospholipases A₂ and l-amino acid oxidases cause moderate neuro-, myo- and cytotoxicity. All successfully identified peptides belong to the bradykinin-potentiating peptides family. The mass spectrometry data are available via ProteomeXchange with identifier PXD004958.
Collapse
Affiliation(s)
- Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Małgorzata Urbanik
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Konrad Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Andrzej Łyskowski
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Vladimír Petrilla
- Department of Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
- Zoo Košice, Široká 31, 040 06 Košice-Kavečany, Slovakia.
| | - Zuzana Andrejčáková
- Department of Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
| | - Monika Petrillová
- Department of General Education Subjects, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
| | - Jaroslav Legath
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia.
| |
Collapse
|
17
|
Guo C, Liu S, Dong P, Zhao D, Wang C, Tao Z, Sun MZ. Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway. Sci Rep 2015; 5:18215. [PMID: 26655928 PMCID: PMC4677388 DOI: 10.1038/srep18215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Previously, we characterized the biological properties of Akbu-LAAO, a novel L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom (SV). Current work investigated its in vitro anti-tumor activity and underlying mechanism on HepG2 cells. Akbu-LAAO inhibited HepG2 growth time and dose-dependently with an IC50 of ~38.82 μg/mL. It could induce the apoptosis of HepG2 cells. Akbu-LAAO exhibited cytotoxicity by inhibiting growth and inducing apoptosis of HepG2 as it showed no effect on its cell cycle. The inhibition of Akbu-LAAO to HepG2 growth partially relied on enzymatic-released H2O2 as catalase only partially antagonized this effect. cDNA microarray results indicated TGF-β signaling pathway was linked to the cytotoxicity of Akbu-LAAO on HepG2. TGF-β pathway related molecules CYR61, p53, GDF15, TOB1, BTG2, BMP2, BMP6, SMAD9, JUN, JUNB, LOX, CCND1, CDK6, GADD45A, CDKN1A were deregulated in HepG2 following Akbu-LAAO stimulation. The presence of catalase only slightly restored the mRNA changes induced by Akbu-LAAO for differentially expressed genes. Meanwhile, LDN-193189, a TGF-β pathway inhibitor reduced Akbu-LAAO cytotoxicity on HepG2. Collectively, we reported, for the first time, SV-LAAO showed anti-tumor cell activity via TGF-β pathway. It provides new insight of SV-LAAO exhibiting anti-tumor effect via a novel signaling pathway.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Panpan Dong
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Dongting Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Chengyi Wang
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Zhiwei Tao
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China.,Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
18
|
El Hakim A, Salama W, Hamed M, Ali A, Ibrahim N. Heterodimeric l-amino acid oxidase enzymes from Egyptian Cerastes cerastes venom: Purification, biochemical characterization and partial amino acid sequencing. J Genet Eng Biotechnol 2015; 13:165-176. [PMID: 30647580 PMCID: PMC6299811 DOI: 10.1016/j.jgeb.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/24/2022]
Abstract
Two l-amino acid oxidase enzyme isoforms, Cc-LAAOI and Cc-LAAOII were purified to apparent homogeneity from Cerastes cerastes venom in a sequential two-step chromatographic protocol including; gel filtration and anion exchange chromatography. The native molecular weights of the isoforms were 115 kDa as determined by gel filtration on calibrated Sephacryl S-200 column, while the monomeric molecular weights of the enzymes were, 60, 56 kDa and 60, 53 kDa for LAAOI and LAAOII, respectively. The tryptic peptides of the two isoforms share high sequence homology with other snake venom l-amino acid oxidases. The optimal pH and temperature values of Cc-LAAOI and Cc-LAAOII were 7.8, 50 °C and 7, 60 °C, respectively. The two isoenzymes were thermally stable up to 70 °C. The K m and V max values were 0.67 mM, 0.135 μmol/min for LAAOI and 0.82 mM, 0.087 μmol/min for LAAOII. Both isoenzymes displayed high catalytic preference to long-chain, hydrophobic and aromatic amino acids. The Mn2 + ion markedly increased the LAAO activity for both purified isoforms, while Na+, K+, Ca2 +, Mg2 + and Ba2 + ions showed a non-significant increase in the enzymatic activity of both isoforms. Furthermore, Zn2 +, Ni2 +, Co2 +, Cu2 + and AL3 + ions markedly inhibited the LAAOI and LAAOII activities. l-Cysteine and reduced glutathione completely inhibited the LAAO activity of both isoenzymes, whereas, β-mercaptoethanol, O-phenanthroline and PMSF completely inhibited the enzymatic activity of LAAOII. Furthermore, iodoacitic acid inhibited the enzymatic activity of LAAOII by 46% and had no effect on the LAAOI activity.
Collapse
Affiliation(s)
- A.E. El Hakim
- Molecular Biology Department, National Research Centre, 33 Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt1
| | - W.H. Salama
- Molecular Biology Department, National Research Centre, 33 Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt1
| | - M.B. Hamed
- Molecular Biology Department, National Research Centre, 33 Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt1
| | - A.A. Ali
- Molecular Biology Department, National Research Centre, 33 Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt1
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
| | - N.M. Ibrahim
- Molecular Biology Department, National Research Centre, 33 Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt1
| |
Collapse
|
19
|
Morais ICO, Pereira GJS, Orzáez M, Jorge RJB, Bincoletto C, Toyama MH, Monteiro HSA, Smaili SS, Pérez-Payá E, Martins AMC. L-Aminoacid Oxidase from Bothrops leucurus Venom Induces Nephrotoxicity via Apoptosis and Necrosis. PLoS One 2015; 10:e0132569. [PMID: 26193352 PMCID: PMC4508040 DOI: 10.1371/journal.pone.0132569] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022] Open
Abstract
Acute renal failure is a common complication caused by Bothrops viper envenomation. In this study, the nefrotoxicity of a main component of B. leucurus venom called L-aminoacid oxidase (LAAO-Bl) was evaluated by using tubular epithelial cell lines MDCK and HK-2 and perfused kidney from rats. LAAO-Bl exhibited cytotoxicity, inducing apoptosis and necrosis in MDCK and HK-2 cell lines in a concentration-dependent manner. MDCK apoptosis induction was accompanied by Ca2+ release from the endoplasmic reticulum, reactive oxygen species (ROS) generation and mitochondrial dysfunction with enhanced expression of Bax protein levels. LAAO-Bl induced caspase-3 and caspase-7 activation in both cell lines. LAAO-Bl (10 μg/mL) exerts significant effects on the isolated kidney perfusion increasing perfusion pressure and urinary flow and decreasing the glomerular filtration rate and sodium, potassium and chloride tubular transport. Taken together our results suggest that LAAO-Bl is responsible for the nephrotoxicity observed in the envenomation by snakebites. Moreover, the cytotoxic of LAAO-Bl to renal epithelial cells might be responsible, at least in part, for the nephrotoxicity observed in isolated kidney.
Collapse
Affiliation(s)
- Isabel C. O. Morais
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - M. Orzáez
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Roberta J. B. Jorge
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos H. Toyama
- São Vicente Unit, Paulista Coastal Campus, São Paulo State University (UNESP), São Paulo, Brazil
| | - Helena S. A. Monteiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Soraya S. Smaili
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Enrique Pérez-Payá
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alice M. C. Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
20
|
Ullah A, Masood R, Spencer PJ, Murakami MT, Arni RK. Crystallization and preliminary X-ray diffraction studies of an L-amino-acid oxidase from Lachesis muta venom. Acta Crystallogr F Struct Biol Commun 2014; 70:1556-9. [PMID: 25372830 PMCID: PMC4231865 DOI: 10.1107/s2053230x14017877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/02/2014] [Indexed: 11/10/2022] Open
Abstract
Snake-venom proteins form multi-component defence systems by the recruitment and rapid evolution of nonvenomous proteins and hence serve as model systems to understand the structural modifications that result in toxicity. L-Amino-acid oxidases (LAAOs) are encountered in a number of snake venoms and have been implicated in the inhibition of platelet aggregation, cytotoxicity, haemolysis, apoptosis and haemorrhage. An L-amino-acid oxidase from Lachesis muta venom has been purified and crystallized. The crystals belonged to space group P2₁, with unit-cell parameters a=66.05, b=79.41, c=100.52 Å, β=96.55°. The asymmetric unit contained two molecules and the structure has been determined and partially refined at 3.0 Å resolution.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Rehana Masood
- Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Patrick Jack Spencer
- Comissão Nacional de Energia Nuclear, Instituto de Pesquisas Energéticas e Nucleares, IPEN, São Paulo 05508-900, Brazil
| | - Mário Tyago Murakami
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Raghuvir Krishnaswamy Arni
- Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
21
|
Vargas Muñoz LJ, Estrada-Gomez S, Núñez V, Sanz L, Calvete JJ. Characterization and cDNA sequence of Bothriechis schlegelii l-amino acid oxidase with antibacterial activity. Int J Biol Macromol 2014; 69:200-7. [DOI: 10.1016/j.ijbiomac.2014.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 11/26/2022]
|
22
|
Costa TR, Burin SM, Menaldo DL, de Castro FA, Sampaio SV. Snake venom L-amino acid oxidases: an overview on their antitumor effects. J Venom Anim Toxins Incl Trop Dis 2014; 20:23. [PMID: 24940304 PMCID: PMC4060840 DOI: 10.1186/1678-9199-20-23] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/26/2014] [Indexed: 12/02/2022] Open
Abstract
The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins.
Collapse
Affiliation(s)
- Tássia R Costa
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo State, Brazil
| | - Sandra M Burin
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo State, Brazil
| | - Danilo L Menaldo
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo State, Brazil
| | - Fabíola A de Castro
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo State, Brazil
| | - Suely V Sampaio
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo State, Brazil ; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP CEP 14040-903, Brasil
| |
Collapse
|
23
|
Izidoro LFM, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, da Silva SL, Zanchi FB, Zuliani JP, Fernandes CFC, Calderon LA, Stábeli RG, Soares AM. Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:196754. [PMID: 24738050 PMCID: PMC3971498 DOI: 10.1155/2014/196754] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022]
Abstract
L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far.
Collapse
Affiliation(s)
- Luiz Fernando M. Izidoro
- Faculdade de Ciências Integradas do Pontal e Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Juliana C. Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Mirian M. Mendes
- Faculdade de Ciências Integradas do Pontal e Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Tássia R. Costa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amy N. Grabner
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Veridiana M. Rodrigues
- Faculdade de Ciências Integradas do Pontal e Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Saulo L. da Silva
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei (UFSJ), Campus Altoparaopeba, Ouro Branco, MG, Brazil
| | - Fernando B. Zanchi
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Carla F. C. Fernandes
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Rodrigo G. Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| |
Collapse
|
24
|
Burin SM, Ayres LR, Neves RP, Ambrósio L, de Morais FR, Dias-Baruffi M, Sampaio SV, Pereira-Crott LS, de Castro FA. L-Amino Acid Oxidase Isolated fromBothrops pirajaiInduces Apoptosis in BCR-ABL-Positive Cells and Potentiates Imatinib Mesylate Effect. Basic Clin Pharmacol Toxicol 2013; 113:103-12. [DOI: 10.1111/bcpt.12073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/18/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Sandra M. Burin
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Lorena R. Ayres
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Renata P. Neves
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Luciana Ambrósio
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Fabiana R. de Morais
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Suely V. Sampaio
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Luciana S. Pereira-Crott
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| | - Fabíola A. de Castro
- Department of Clinical, Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, USP; Ribeirão Preto; SP; Brazil
| |
Collapse
|
25
|
MS Analysis and Molecular Characterization of Botrytis cinerea Protease Prot-2. Use in Bioactive Peptides Production. Appl Biochem Biotechnol 2013; 170:231-47. [DOI: 10.1007/s12010-013-0186-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
26
|
Vargas LJ, Quintana JC, Pereañez JA, Núñez V, Sanz L, Calvete J. Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon 2013; 64:1-11. [DOI: 10.1016/j.toxicon.2012.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 12/09/2022]
|
27
|
One-step production of α-ketoglutaric acid from glutamic acid with an engineered l-amino acid deaminase from Proteus mirabilis. J Biotechnol 2013; 164:97-104. [DOI: 10.1016/j.jbiotec.2013.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/05/2013] [Accepted: 01/09/2013] [Indexed: 11/23/2022]
|
28
|
Isolation and biochemical, functional and structural characterization of a novel l-amino acid oxidase from Lachesis muta snake venom. Toxicon 2012; 60:1263-76. [DOI: 10.1016/j.toxicon.2012.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 11/20/2022]
|
29
|
Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, Sant'anna SS, Schenberg ACG, Camargo ACM, Serrano SMT. Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics 2012; 11:1245-62. [PMID: 22869554 DOI: 10.1074/mcp.m112.019331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 L-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4' sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures.
Collapse
Affiliation(s)
- Alexandre K Tashima
- Laboratório Especial de Toxinologia Aplicada, CAT-cepid, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guo C, Liu S, Yao Y, Zhang Q, Sun MZ. Past decade study of snake venom L-amino acid oxidase. Toxicon 2012; 60:302-11. [PMID: 22579637 DOI: 10.1016/j.toxicon.2012.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/10/2012] [Accepted: 05/01/2012] [Indexed: 11/28/2022]
Abstract
As one of the major protein (enzyme) components of snake venom (SV), L-amino acid oxidase (LAAO) plays an important role in the toxicities and biological activities for SV. Accumulated researches in the past decade gradually revealed that SV-LAAOs induce platelet aggregation, cell apoptosis and cytotoxicity, and have anti-microbial, anti-leishmaniasis, anti-tumor and anti-HIV activity. Except for the enzymatic and structural characteristics of SV-LAAOs, the biological functions of SV-LAAOs and relevant action mechanisms are also summarized and discussed in the review. This work might provide useful inputs for future studies on SV-LAAOs.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | |
Collapse
|
31
|
Ullah A, Souza TACB, Abrego JRB, Betzel C, Murakami MT, Arni RK. Structural insights into selectivity and cofactor binding in snake venom L-amino acid oxidases. Biochem Biophys Res Commun 2012; 421:124-8. [PMID: 22490662 DOI: 10.1016/j.bbrc.2012.03.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 11/17/2022]
Abstract
L-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate L-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH(3)) and hydrogen peroxide (H(2)O(2)). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1 Å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62-71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode.
Collapse
Affiliation(s)
- A Ullah
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Ullah A, Coronado M, Murakami MT, Betzel C, Arni RK. Crystallization and preliminary X-ray diffraction analysis of an L-amino-acid oxidase from Bothrops jararacussu venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:211-3. [PMID: 22298002 DOI: 10.1107/s1744309111054923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022]
Abstract
Snake-venom L-amino-acid oxidases (SV-LAAOs) trigger a wide range of local and systematic effects, including inhibition of platelet aggregation, cytotoxicity, haemolysis, apoptosis and haemorrhage. These effects mainly arise from the uncontrolled release of the hydrogen peroxide that is produced by the redox reaction involving L-amino acids catalyzed by these flavoenzymes. Taking their clinical relevance into account, few SV-LAAOs have been structurally characterized and the structural determinants responsible for their broad direct and indirect pharmacological activities remain unclear. In this work, an LAAO from Bothrops jararacussu venom (BJu-LAAO) was purified and crystallized. The BJu-LAAO crystals belonged to space group P2(1), with unit-cell parameters a = 66.38, b = 72.19, c = 101.53 Å, β = 90.9°. The asymmetric unit contained two molecules and the structure was determined and partially refined at 3.0 Å resolution.
Collapse
Affiliation(s)
- Anwar Ullah
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto-SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Cheng CH, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng KC. Cloning of a novel L-amino acid oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-amino acid oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9142-9149. [PMID: 21797276 DOI: 10.1021/jf201598z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
L-amino acid oxidases (L-AAOs) have been isolated from many organisms, such as snake, and are known to have antibacterial activity. To the best of the authors' knowledge, this is the first report of the cloning of cDNA encoding a novel Trichoderma harzianum ETS 323 L-amino acid oxidase (Th-L-AAO). The protein was overexpressed in Escherichia coli and purified to homogeneity. Comparisons of its deduced amino acid sequence with the sequence of other L-AAOs revealed the similarity to be between 9 and 24%. The molecular mass of the purified protein was 52 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme substrate specificity was highest for L-phenylalanine, and its optimal pH and temperature for activity were 7 and 40 °C, respectively; exogenous metal ions had no significant effect on activity. Circular dichroism spectroscopy indicated that the secondary structure of Th-L-AAO is composed of 17% α-helices, 28% β-sheets, and 55% random coils. The bacterially expressed Th-L-AAO also mediated antibacterial activity against both gram-positive and gram-negative food spoilage microorganisms. Furthermore, a three-dimensional protein structure was created to provide more information about the structural composition of Th-L-AAO, suggesting that the N-terminal sequence of Th-L-AAO may have contributed to the antibacterial activity of this protein.
Collapse
Affiliation(s)
- Chi-Hua Cheng
- Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Yang CA, Cheng CH, Lo CT, Liu SY, Lee JW, Peng KC. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4519-4526. [PMID: 21456553 DOI: 10.1021/jf104603w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are poorly understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ETS 323. Here, we show a FAD-binding glycoprotein with the best substrate specificity constant for L-phenylalanine. Although the amino acid sequence of Th-LAAO revealed limited homology (16-24%) to other LAAO members, a highly conserved FAD-binding motif was identified in the N-terminus. Th-LAAO was shown to be a homodimeric protein, but the monomeric form was predominant when grown in the presence of deactivated Rhizoctonia solani. Furthermore, in vitro assays demonstrated that Th-LAAO had an antagonistic effect against Rhizoctonia solani and a stimulatory one on hyphal density and sporulation in T. harzianum ETS 323. These findings further our understanding of T. harzianum as a biocontrol agent and provide insight into the biological function of l-amino acid oxidase.
Collapse
Affiliation(s)
- Chia-Ann Yang
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
35
|
de Melo Alves Paiva R, de Freitas Figueiredo R, Antonucci GA, Paiva HH, de Lourdes Pires Bianchi M, Rodrigues KC, Lucarini R, Caetano RC, Linhari Rodrigues Pietro RC, Gomes Martins CH, de Albuquerque S, Sampaio SV. Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by l-amino acid oxidase from Bothrops atrox snake venom. Biochimie 2011; 93:941-7. [DOI: 10.1016/j.biochi.2011.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
36
|
Alves RM, Feliciano PR, Sampaio SV, Nonato MC. A rational protocol for the successful crystallization of L-amino-acid oxidase from Bothrops atrox. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:475-8. [PMID: 21505245 PMCID: PMC3080154 DOI: 10.1107/s1744309111003770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/29/2011] [Indexed: 11/10/2022]
Abstract
Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme L-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 Å resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 Å, β = 96.03°. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V(M) of 2.12 Å(3) Da(-1), corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques.
Collapse
Affiliation(s)
- Raquel Melo Alves
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirao Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| | - Patricia Rosa Feliciano
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| | - Suely Vilela Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirao Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP–USP, Avenida do Café s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil
| |
Collapse
|
37
|
Sajevic T, Leonardi A, Križaj I. Haemostatically active proteins in snake venoms. Toxicon 2011; 57:627-45. [PMID: 21277886 DOI: 10.1016/j.toxicon.2011.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
Abstract
Snake venom proteins that affect the haemostatic system can cause (a) lowering of blood coagulability, (b) damage to blood vessels, resulting in bleeding, (c) secondary effects of bleeding, e.g. hypovolaemic shock and organ damage, and (d) thrombosis. These proteins may, or may not, be enzymes. We review the data on the most relevant haemostatically active proteinases, phospholipases A₂, L-amino acid oxidases and 5'-nucleotidases from snake venoms. We also survey the non-enzymatic effectors of haemostasis from snake venoms--disintegrins, C-type lectins and three-finger toxins. Medical applications have already been found for some of these snake venom proteins. We describe those that have already been approved as drugs to treat haemostatic disorders or are being used to diagnose such health problems. No clinical applications, however, currently exist for the majority of snake venom proteins acting on haemostasis. We conclude with the most promising potential uses in this respect.
Collapse
Affiliation(s)
- Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
38
|
Chen WM, Lin CY, Chen CA, Wang JT, Sheu SY. Involvement of an l-amino acid oxidase in the activity of the marine bacterium Pseudoalteromonas flavipulchra against methicillin-resistant Staphylococcus aureus. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|