1
|
Yigit E, Deger O, Korkmaz K, Huner Yigit M, Uydu HA, Mercantepe T, Demir S. Propolis Reduces Inflammation and Dyslipidemia Caused by High-Cholesterol Diet in Mice by Lowering ADAM10/17 Activities. Nutrients 2024; 16:1861. [PMID: 38931216 PMCID: PMC11206409 DOI: 10.3390/nu16121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1β (IL-1β), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1β, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition.
Collapse
Affiliation(s)
- Ertugrul Yigit
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Orhan Deger
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Katip Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey; (K.K.); (S.D.)
| | - Merve Huner Yigit
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey;
| | - Huseyin Avni Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Samsun University, 55080 Samsun, Turkey;
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey;
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey; (K.K.); (S.D.)
| |
Collapse
|
2
|
Boonmuen N, Suksen K, Kaewkittikhun M, Ruknarong L, Silalai P, Saeeng R, Chairoungdua A, Soodvilai S, Tantikanlayaporn D. Genipin Analogue (G300) Inhibits Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells through the Suppression of Adipogenic Promoting Factors. JOURNAL OF NATURAL PRODUCTS 2023; 86:1335-1344. [PMID: 37137165 DOI: 10.1021/acs.jnatprod.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
While obesity is a well-known health threatening condition worldwide, effective pharmacological interventions for obesity suppression have been limited due to adverse effects. Therefore, it is important to explore alternative medical treatments for combating obesity. Inhibition of the adipogenesis process and lipid accumulation are critical targets for controlling and treating obesity. Gardenia jasminoides Ellis is a traditional herbal remedy for various ailments. A natural product from its fruit, genipin, has major pharmacological properties; it is anti-inflammatory and antidiabetic. We investigated the effects of a genipin analogue, G300, on adipogenic differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs). G300 suppressed the expression of adipogenic marker genes and adipokines secreted by adipocytes at concentrations of 10 and 20 μM, which effectively reduced the adipogenic differentiation of hBM-MSCs and lipid accumulation in adipocytes. It also improved adipocyte function by lowering inflammatory cytokine secretion and increasing glucose uptake. For the first time, we show that G300 has the potential to be a novel therapeutic agent for the treatment of obesity and its related disorders.
Collapse
Affiliation(s)
- Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology, OPS, MHESI, Thailand, https://eht.sc.mahidol.ac.th/
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Mintra Kaewkittikhun
- Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani 12120, Thailand
| | - Laongthip Ruknarong
- Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani 12120, Thailand
| | - Patamawadee Silalai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Longhaad Bangsaen Rd., Chonburi 20131, Thailand
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Longhaad Bangsaen Rd., Chonburi 20131, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology, OPS, MHESI, Thailand, https://eht.sc.mahidol.ac.th/
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, 10400, Thailand
| | - Duangrat Tantikanlayaporn
- Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
3
|
Sahin E, Saglam N, Erdem S, Alvuroglu E, Abidin I, Yulug E, Alver A. 7,8-Dihydroxyflavone alleviates Endoplasmic Reticulum Stress in cafeteria diet-induced metabolic syndrome. Life Sci 2022; 306:120781. [PMID: 35835252 DOI: 10.1016/j.lfs.2022.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
AIMS Prolonged Endoplasmic Reticulum Stress (ERS) is involved in the pathogenesis of metabolic syndrome, including type-2 diabetes mellitus, cardiovascular diseases, atherosclerosis, obesity, and fatty liver disease. There have been significant efforts to discover molecules to treat ERS and/or to ameliorate associate symptoms. In this study, we investigated the effect of 7,8-Dihydroxyflavone (7,8-DHF) on ERS in liver and pancreas tissues in a cafeteria (CAF) diet induced metabolic syndrome model. MAIN METHODS Male C57BL/6 mice were fed CAF diet for 16 weeks and 7,8-DHF was administered intraperitoneally (5 mg/kg/day) for last four weeks. 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) in liver and pancreas tissues, insulin and interleukin-1β (IL-1β) in serum were analyzed by ELISA method and serum biochemistry parameters were analyzed with autoanalyzer. GRP78 and CHOP gene expression levels were determined by qRT-PCR. In addition, histopathological analyzes were performed on liver and pancreas tissues. KEY FINDINGS Findings revealed that CAF diet caused metabolic abnormalities, insulin resistance and inflammation in serum and triggered ERS in pancreas and liver tissues. 7,8-DHF treatment significantly reduced metabolic abnormalities by reducing serum biochemical parameters, HOMO-IR and IL-1β levels. qRT-PCR and ELISA results indicated that 7,8-DHF treatment down-regulated GRP78 and CHOP expression and protein levels in the liver and GRP78 expression in pancreas. Efficiency of 7,8-DHF in these tissues was also demonstrated by histopathological tests. SIGNIFICANCE In conclusion, CAF diet-induced metabolic syndrome model, 7,8-DHF suppressed ERS and ERS-induced metabolic disorders in both liver and pancreas. Therefore, 7,8-DHF may potentially be a novel therapeutic compound to ameliorate ERS and related metabolic symptoms.
Collapse
Affiliation(s)
- Elif Sahin
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon, Turkiye.
| | - Neslihan Saglam
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon, Turkiye
| | - Seniz Erdem
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon, Turkiye
| | - Elif Alvuroglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Ismail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
4
|
Derici GE, Özdaş S, Canatar İ, Koç M. Antidiabetic activities of Bolanthus spergulifolius (Caryophyllaceae) extracts on insulin-resistant 3T3-L1 adipocytes. PLoS One 2021; 16:e0252707. [PMID: 34133443 PMCID: PMC8208533 DOI: 10.1371/journal.pone.0252707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with chronic hyperglycemia featured by metabolic outcomes owing to insufficient insulin secretion and/or insulin effect defect. It is critical to investigate new therapeutic approaches for T2DM and alternative, natural agents that target molecules in potential signal pathways. Medicinal plants are significant resources in the research of alternative new drug active ingredients. Bolanthus spergulifolius (B. spergulifolius) is one of the genera of the family Caryophyllaceae. In this study, it was explored the potential anti-diabetic effects in vitro of B. spergulifolius extracts on 3T3-L1 adipocytes. The total phenolic contents (TPC) of methanolic (MeOH), ethyl acettate (EA) and aqueous extracts of B. spergulifolius were evaluated via Folin-Ciocateau. B. spergulifolius extracts showing highly TPC (Aqueous< MeOH< EA) and their different concentrations were carried out on preadipocytes differentiated in to mature 3T3-L1 adipocytes to investigate their half-maximal (50%) inhibitory concentration (IC50) value by using Thiazolyl blue tetrazolium bromide (MTT) assay. The IC50 of MeOH, EA and Aqueous extracts were observed as 305.7 ± 5.583 μg/mL, 567.4 ± 3.008 μg/mL, and 418.3 ± 4.390 μg/mL and used for further experiments. A live/dead assay further confirmed the cytotoxic effects of MeOH, EA and Aqueous extracts (respectively, 69.75 ± 1.70%, 61.75 ± 1.70%, 70 ± 4.24%, and for all p< 0.05). Also, effects of extracts on lipid accumulation in mature 3T3-L1 adipocytes were evaluated by Oil-Red O staining assay. The extracts effectively decreased lipid-accumulation compared to untreated adipocytes (for all p< 0.05). Moreover, effect of extracts on apoptosis regulated by the Bax and Bcl-2 was investigated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The extracts significantly induced apoptosis by up-regulating pro-apoptotic Bax expression but down-regulated anti-apoptotic Bcl-2 gene expression compared to untreated adipocytes (for all p< 0.05). The Glut-4 expression linked with insulin resistance was determined by qRT-PCR, Western-blot analysis, and immunofluorescence staining. In parallel, the expression of Glut-4 in adipocytes treated with extracts was significantly higher compared to untreated adipocytes (for all p< 0.05). Extracts significantly suppressed cell migration after 30 h of wounding in a scratch-assay (for all p< 0.05). Cell morphology and diameter were further evaluated by phase-contrast microscopy, scanning electron microscopy, Immunofluorescence with F-Actin and Giemsa staining. The adipocytes treated with extracts partially lost spherical morphology and showed smaller cell-diameter compared to untreated adipocytes (for all p< 0.05). In conclusion, these results suggest that extracts of B. spergulifolius cause to an induce apoptosis, decrease lipid-accumulation, wound healing, up-regulating Glut-4 level and might contribute to reducing of insulin-resistance in DM.
Collapse
Affiliation(s)
- Gizem Ece Derici
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Sibel Özdaş
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
- * E-mail:
| | - İpek Canatar
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Murat Koç
- Graduate School of Public Health, Department of Traditional, Complementary and Integrative Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
5
|
Chou CW, Tan X, Hung CN, Lieberman B, Chen M, Kusi M, Mitsuya K, Lin CL, Morita M, Liu Z, Chen CL, Huang THM. Menin and Menin-Associated Proteins Coregulate Cancer Energy Metabolism. Cancers (Basel) 2020; 12:E2715. [PMID: 32971831 PMCID: PMC7564175 DOI: 10.3390/cancers12092715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Abstract
The interplay between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is central to maintain energy homeostasis. It remains to be determined whether there is a mechanism governing metabolic fluxes based on substrate availability in microenvironments. Here we show that menin is a key transcription factor regulating the expression of OXPHOS and glycolytic genes in cancer cells and primary tumors with poor prognosis. A group of menin-associated proteins (MAPs), including KMT2A, MED12, WAPL, and GATA3, is found to restrain menin's full function in this transcription regulation. shRNA knockdowns of menin and MAPs result in reduced ATP production with proportional alterations of cellular energy generated through glycolysis and OXPHOS. When shRNA knockdown cells are exposed to metabolic stress, the dual functionality can clearly be distinguished among these metabolic regulators. A MAP can negatively counteract the regulatory mode of menin for OXPHOS while the same protein positively influences glycolysis. A close-proximity interaction between menin and MAPs allows transcriptional regulation for metabolic adjustment. This coordinate regulation by menin and MAPs is necessary for cells to rapidly adapt to fluctuating microenvironments and to maintain essential metabolic functions.
Collapse
Affiliation(s)
- Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
| | - Brandon Lieberman
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| |
Collapse
|
6
|
Lan ZJ, Lei Z, Nation L, Li X, Yiannikouris A, Yerramreddy TR, Kincaid H, Eastridge K, Xiao R, Goettl R, Power R. Oral administration of NPC43 counters hyperglycemia and activates insulin receptor in streptozotocin-induced type 1 diabetic mice. BMJ Open Diabetes Res Care 2020; 8:8/1/e001695. [PMID: 32998869 PMCID: PMC7528369 DOI: 10.1136/bmjdrc-2020-001695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Adenosine, 5'-Se-methyl-5'-seleno-,2',3'-diacetate (NPC43) is a recently identified small, non-peptidyl molecule which restores normal insulin signaling in a mouse model of type 2 diabetes (Lan et al). The present study investigated the ability of NPC43 as an oral and injectable insulin-replacing agent to activate insulin receptor (INSR) and counter hyperglycemia in streptozotocin (STZ)-induced type 1 diabetic (T1D) mice. RESEARCH DESIGN AND METHODS In this study, STZ was intraperitoneally injected into wild-type mice to induce hyperglycemia and hypoinsulinemia, the main features of T1D. These STZ-induced T1D mice were given NPC43 orally or intraperitoneally and blood glucose levels were measured using a glucometer. Protein levels of phosphorylated and total Insrβ, protein kinase B (Akt) and AS160 (critical for glucose uptake) in the skeletal muscle and liver of STZ-induced T1D mice following oral NPC43 treatment were determined by western blot analysis. In addition, hepatic expression of activated Insr in STZ-induced T1D mice after intraperitoneal NPC43 treatment was measured by ELISA. Student's t-test was used for statistical analysis. RESULTS Oral administration of NPC43 at a dose of 5.4 or 10.8 mg/kg body weight (mpk) effectively lowered blood glucose levels in STZ-induced T1D mice at ≥1 hour post-treatment and the glucose-lowering activity of oral NPC43 persisted for 5 hours. Blood glucose levels were also reduced in STZ-induced T1D mice following intraperitoneal NPC43 (5.4 mpk) treatment. Protein levels of phosphorylated Insrβ, Akt and AS160 were significantly increased in the skeletal muscle and liver of STZ-induced T1D mice after oral NPC43 (5.4 mpk) treatment. In addition, activation of hepatic Insr was observed in STZ-induced T1D mice following intraperitoneal NPC43 (5.4 mpk) treatment. CONCLUSIONS We conclude that NPC43 is a de facto fast-acting oral and injectable insulin mimetic which activates Insr and mitigates hyperglycemia in a mouse model of T1D.
Collapse
Affiliation(s)
- Zi-Jian Lan
- Division of Life Sciences, Alltech, Inc, Nicholasville, Kentucky, USA
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lucinda Nation
- Division of Life Sciences, Alltech, Inc, Nicholasville, Kentucky, USA
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | - Hayley Kincaid
- Division of Life Sciences, Alltech, Inc, Nicholasville, Kentucky, USA
| | - Katie Eastridge
- Division of Life Sciences, Alltech, Inc, Nicholasville, Kentucky, USA
| | - Rijin Xiao
- Division of Life Sciences, Alltech, Inc, Nicholasville, Kentucky, USA
| | - Ryan Goettl
- Division of Life Sciences, Alltech, Inc, Nicholasville, Kentucky, USA
| | - Ronan Power
- Division of Life Sciences, Alltech, Inc, Nicholasville, Kentucky, USA
| |
Collapse
|
7
|
Dludla PV, Jack B, Viraragavan A, Pheiffer C, Johnson R, Louw J, Muller CJF. A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol Rep 2018; 5:1014-1020. [PMID: 30364542 PMCID: PMC6197677 DOI: 10.1016/j.toxrep.2018.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022] Open
Abstract
Depending on the concentration, dimethyl sulfoxide (DMSO) can be toxic to cells. 3T3-L1 adipocytes are a well-established model to study anti-obesity properties. DMSO doses ≥1% reduced cell viability and promoted cell damage in 3T3-L1 adipocytes.
Dimethyl sulfoxide (DMSO) is an effective solvent and cytoprotectant agent that can induce diverse actions in experimental settings, ranging from metabolic stress to cytotoxic effects depending on the concentration used. Therefore, for the quality of experiments and reproducibility of results it is essential to establish a precise and non-toxic dose of DMSO within a specific cell system. 3T3-L1 adipocytes, represent a well-established in vitro cell model used to assess the anti-obesity potential of extracts and compounds. Although DMSO is commonly used as a solvent for these experiments, there is limited data available on the compounding effects of using DMSO. The purpose of this study was to assess a concentration-dependent effect of DMSO on lipid content, cell viability and oxidative damage in 3T3-L1 adipocytes. Results showed that DMSO at doses ≥ 0.1% increased mitochondrial membrane potential as measured by JC-1 fluorescent staining, while doses ≥ 10% reduced the lipid content in matured adipocytes. Consistently, higher doses significantly reduced cell viability, elevated reactive oxygen species levels, depleted intracellular glutathione levels, and accelerated apoptosis and cell necrosis. An interesting finding was that a DMSO dose of 0.01% improved glutathione content of 3T3-L1 adipocytes and had minimal effects on cell viability, apoptosis or and necrosis, supporting its antioxidant effect. Therefore, this study provides compelling evidence that precaution should be taken when assessing compounds dissolved in DMSO, particularly doses ≥1% that were shown to induce oxidative stress in 3T3-L1 adipocytes.
Collapse
Key Words
- 3T3-L1 adipocytes
- Apoptosis
- Cell viability
- DCFH-DA, 2′, 7′-dichlorofluorescein diacetate
- DMEM, Dulbecco’s Modified Eagle’s Medium
- DMSO, dimethyl sulfoxide
- DPBS, Dulbecco’s Phosphate Buffered Saline
- Dimethyl sulfoxide
- Dimethyl sulfoxide (PubChem CID: 679)
- FBS, fetal bovine serum
- HBSS, Hank’s Balanced Salt Solution
- IBMX, 3-isobutyl-1-methylxanthine
- JC-1, 5,5′,6,6′-tetrachloro-1,1′,3,3-tetraethylbenzimidazolyl-carbocyanineiodide
- MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-DiphenyltetrazoliumBromide)
- ORO, oil red O
- Oxidative stress
- ROS, reactive oxygen species
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Amsha Viraragavan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| |
Collapse
|
8
|
Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3035184. [PMID: 29422987 PMCID: PMC5750484 DOI: 10.1155/2017/3035184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.
Collapse
|
9
|
Keilhoff G, Esser T, Titze M, Ebmeyer U, Schild L. Gynostemma pentaphyllum is neuroprotective in a rat model of cardiopulmonary resuscitation. Exp Ther Med 2017; 14:6034-6046. [PMID: 29250141 PMCID: PMC5729372 DOI: 10.3892/etm.2017.5315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/02/2017] [Indexed: 01/11/2023] Open
Abstract
Asphyxial cardiac arrest (ACA)-induced ischemia results in acute and delayed neuronal cell death. The early reperfusion phase is critical for the outcome. Intervention strategies directed to this period are promising to reduce ACA/resuscitation-dependent impairments. This study focused on the evaluation of the protective potential of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with antioxidative, glucose lowering and neuroprotective activities, in an ACA rat model. We tested the following parameters: i) Basic systemic parameters such as pCO2 and blood glucose value within the first 30 min post-ACA; ii) mitochondrial response by determining activities of citrate synthase, respiratory chain complexes I + III and II + III, and the composition of cardiolipin 6 and 24 h post-ACA; iii) neuronal vitality of the CA1 hippocampal region by immunohistochemistry 24 h and 7 days post-ACA; and iv) cognitive function by a novel object recognition test 7 days post-ACA. GP, administered after reaching spontaneous circulation, counteracted the following: i) ACA-mediated increases in arterial CO2 tension and blood glucose values; ii) transient increase in the activity of the respiratory chain complexes II + III; iii) elevation in cardiolipin content; iv) hippocampal CA1 neurodegeneration, and v) loss of normal novelty-object seeking. The protective effects of GP were accompanied by side effects of the vehicle DMSO, such as the stimulation of citrate synthase activity in control animals, inhibition of cardiolipin synthesis in ACA animals and complex II + III activity in both control and ACA animals. The results emphasize the importance of the early post-resuscitation phase for the neurological outcome after ACA/resuscitation, and demonstrated the power of GP substitution as neuroprotective intervention. Moreover, the results underline the need of a careful handling of the popular vehicle DMSO.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Torben Esser
- Department of Anesthesiology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Maximilian Titze
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Uwe Ebmeyer
- Department of Anesthesiology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Lorenz Schild
- Department of Pathological Biochemistry, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| |
Collapse
|
10
|
Trouillon R, Letizia MC, Menzies KJ, Mouchiroud L, Auwerx J, Schoonjans K, Gijs MAM. A multiscale study of the role of dynamin in the regulation of glucose uptake. Integr Biol (Camb) 2017; 9:810-819. [DOI: 10.1039/c7ib00015d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells- and organisms-on-a-chip strategies were used to highlight the role of the molecular motor dynamin in regulating the translocation of specific glucose transporters.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-STI-IMT-LMIS2
- CH-1015 Lausanne
- Switzerland
| | - M. Cristina Letizia
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-STI-IMT-LMIS2
- CH-1015 Lausanne
- Switzerland
| | - Keir J. Menzies
- Laboratory of Metabolic Signaling
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-UPSCHOONJANS
- CH-1015 Lausanne
- Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-LISP
- CH-1015 Lausanne
- Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-LISP
- CH-1015 Lausanne
- Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-UPSCHOONJANS
- CH-1015 Lausanne
- Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-STI-IMT-LMIS2
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
11
|
Parimala M, Debjani M, Vasanthi HR, Shoba FG. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization. J Adv Pharm Technol Res 2015; 6:183-9. [PMID: 26605160 PMCID: PMC4630726 DOI: 10.4103/2231-4040.165013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.
Collapse
Affiliation(s)
- Mabel Parimala
- Department of Zoology, Voorhees College, Vellore, Tamil Nadu, India
| | - M Debjani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Hannah Rachel Vasanthi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | |
Collapse
|
12
|
Xu H, Xu J, Wang Y, Hu S, Wang Y, Wang J, Xue C. Fucoidan isolated from the sea cucumber Acaudina molpadioides improves insulin resistance in adipocytes via activating PKB/GLUT4 pathway. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2380-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol 2014; 6:a016964. [PMID: 24984778 DOI: 10.1101/cshperspect.a016964] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe(3+), K(+)) or efflux (e.g., Na(+)) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
14
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
15
|
Colombo Serra S, Karlsson M, Giovenzana GB, Cavallotti C, Tedoldi F, Aime S. Hyperpolarized 13C-labelled anhydrides as DNP precursors of metabolic MRI agents. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:469-77. [DOI: 10.1002/cmmi.1474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Magnus Karlsson
- Albeda Research; Gamle Carlsberg Vej 10; 2500; Valby Copenhagen; Denmark
| | | | | | - Fabio Tedoldi
- Centro Ricerche Bracco; Bracco Imaging Spa; Via Ribes 5; 10010; Colleretto Giacosa; (TO); Italy
| | - Silvio Aime
- Dipartimento di Chimica I.F.M.; Università degli Studi di Torino; Via Giuria 7; 10125; Torino; (TO); Italy
| |
Collapse
|
16
|
Deciphering the role of GLUT4 N-glycosylation in adipocyte and muscle cell models. Biochem J 2012; 445:265-73. [DOI: 10.1042/bj20120232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GLUT4 (glucose transporter 4) is responsible for the insulin-induced uptake of glucose by muscle and fat cells. In non-stimulated (basal) cells, GLUT4 is retained intracellularly, whereas insulin stimulation leads to its translocation from storage compartments towards the cell surface. How GLUT4 is retained intracellularly is largely unknown. Previously, aberrant GLUT4 N-glycosylation has been linked to increased basal cell-surface levels, while N-glycosylation-deficient GLUT4 was found to be quickly degraded. As recycling and degradation of GLUT4 are positively correlated, we hypothesized that incorrect N-glycosylation of GLUT4 might reduce its intracellular retention, resulting in an increased cell-surface recycling, in increased basal cell-surface levels, and in enhanced GLUT4 degradation. In the present study, we have investigated N-glycosylation-deficient GLUT4 in detail in 3T3-L1 preadipocytes, 3T3-L1 adipocytes and L6 myoblasts. We have found no alterations in retention, insulin response, internalization or glucose transport activity. Degradation of the mutant molecule was increased, although once present at the cell surface, its degradation was identical with that of wild-type GLUT4. Our findings indicate that N-glycosylation is important for efficient trafficking of GLUT4 to its proper compartments, but once the transporter has arrived there, N-glycosylation plays no further major role in its intracellular trafficking, nor in its functional activity.
Collapse
|