1
|
Spotlight on CYP4B1. Int J Mol Sci 2023; 24:ijms24032038. [PMID: 36768362 PMCID: PMC9916508 DOI: 10.3390/ijms24032038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The mammalian cytochrome P450 monooxygenase CYP4B1 can bioactivate a wide range of xenobiotics, such as its defining/hallmark substrate 4-ipomeanol leading to tissue-specific toxicities. Similar to other members of the CYP4 family, CYP4B1 has the ability to hydroxylate fatty acids and fatty alcohols. Structural insights into the enigmatic role of CYP4B1 with functions in both, xenobiotic and endobiotic metabolism, as well as its unusual heme-binding characteristics are now possible by the recently solved crystal structures of native rabbit CYP4B1 and the p.E310A variant. Importantly, CYP4B1 does not play a major role in hepatic P450-catalyzed phase I drug metabolism due to its predominant extra-hepatic expression, mainly in the lung. In addition, no catalytic activity of human CYP4B1 has been observed owing to a unique substitution of an evolutionary strongly conserved proline 427 to serine. Nevertheless, association of CYP4B1 expression patterns with various cancers and potential roles in cancer development have been reported for the human enzyme. This review will summarize the current status of CYP4B1 research with a spotlight on its roles in the metabolism of endogenous and exogenous compounds, structural properties, and cancer association, as well as its potential application in suicide gene approaches for targeted cancer therapy.
Collapse
|
2
|
D MO, C TZ, R SP. Human orphan cytochromes P450: An update. Curr Drug Metab 2022; 23:CDM-EPUB-128186. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Molina-Ortiz D
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Torres-Zárate C
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Santes-Palacios R
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| |
Collapse
|
3
|
Schirrmann R, Erkelenz M, Lamers K, Sritharan O, Nachev M, Sures B, Schlücker S, Brandau S. Gold Nanorods Induce Endoplasmic Reticulum Stress and Autocrine Inflammatory Activation in Human Neutrophils. ACS NANO 2022; 16:11011-11026. [PMID: 35737452 DOI: 10.1021/acsnano.2c03586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold nanorods (AuNRs) are promising agents for diverse biomedical applications such as drug and gene delivery, bioimaging, and cancer treatment. Upon in vivo application, AuNRs quickly interact with cells of the immune system. On the basis of their strong intrinsic phagocytic activity, polymorphonuclear neutrophils (PMNs) are specifically equipped for the uptake of particulate materials such as AuNRs. Therefore, understanding the interaction of AuNRs with PMNs is key for the development of safe and efficient therapeutic applications. In this study, we investigated the uptake, intracellular processing, and cell biological response induced by AuNRs in PMNs. We show that uptake of AuNRs mainly occurs via phagocytosis and macropinocytosis with rapid deposition of AuNRs in endosomes within 5 min. Within 60 min, AuNR uptake induced an unfolded protein response (UPR) along with induction of inositol-requiring enzyme 1 α (IREα) and features of endoplasmic reticulum (ER) stress. This early response was followed by a pro-inflammatory autocrine activation loop that involves LOX1 upregulation on the cell surface and increased secretion of IL8 and MMP9. Our study provides comprehensive mechanistic insight into the interaction of AuNRs with immune cells and suggests potential targets to limit the unwanted immunopathological activation of PMNs during application of AuNRs.
Collapse
Affiliation(s)
- Ronja Schirrmann
- Department of Otorhinolaryngology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Michael Erkelenz
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Kim Lamers
- Department of Otorhinolaryngology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Oliver Sritharan
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- University of Duisburg-Essen, Universitätsstraße 5, 451471 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- University of Duisburg-Essen, Universitätsstraße 5, 451471 Essen, Germany
- German Cancer Consortium, Partner Site Essen-Düsseldorf, 45147 Essen, Germany
| |
Collapse
|
4
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022; 61:e202202866. [PMID: 35522818 PMCID: PMC9541901 DOI: 10.1002/anie.202202866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Odorants are relatively small molecules which are easily taken up and distributed in the human body. Despite their relevance in everyday life, however, only a limited amount of evidence about their metabolism, pathways, and bioactivities in the human body exists. With this Review, we aim to encourage future interdisciplinary research on the function and mechanisms of the biotransformation of odorants, involving different disciplines such as nutrition, medicine, biochemistry, chemistry, and sensory sciences. Starting with a general overview of the different ways of odorant uptake and enzymes involved in the metabolism of odorants, a more precise description of biotransformation processes and their function in the oral cavity, the nose, the lower respiratory tract (LRT), and the gastrointestinal tract (GIT) is given together with an overview of the different routes of odorant excretion. Finally, perspectives for future research are discussed.
Collapse
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Marcel W Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation, Flavour perception: from molecule to behavior, FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, Henkestr. 9, 91054, Erlangen, GERMANY
| |
Collapse
|
5
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Marcel W. Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation Flavour perception: from molecule to behavior FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy Henkestr. 9 91054 Erlangen GERMANY
| |
Collapse
|
6
|
Fransen LFH, Leonard MO. Small Airway Susceptibility to Chemical and Particle Injury. Respiration 2021; 101:321-333. [PMID: 34649249 DOI: 10.1159/000519344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Small airways (SA) in humans are commonly defined as those conducting airways <2 mm in diameter. They are susceptible to particle- and chemical-induced injury and play a major role in the development of airway disease such as COPD and asthma. Susceptibility to injury can be attributed in part to structural features including airflow dynamics and tissue architecture, but recent evidence may indicate a more prominent role for cellular composition in directing toxicological responses. Animal studies support the hypothesis that inherent cellular differences across the tracheobronchial tree, including metabolic CYP450 expression in the distal conducting airways, can influence SA susceptibility to injury. Currently, there is insufficient information in humans to make similar conclusions, prompting further necessary work in this area. An understanding of why the SA are more susceptible to certain chemical and particle exposures than other airway regions is fundamental to our ability to identify hazardous materials, their properties, and accompanying exposure scenarios that compromise lung function. It is also important for the ability to develop appropriate models for toxicity testing. Moreover, it is central to our understanding of SA disease aetiology and how interventional strategies for treatment may be developed. In this review, we will document the structural and cellular airway regional differences that are likely to influence airway susceptibility to injury, including the role of secretory club cells. We will also describe recent advances in single-cell sequencing of human airways, which have provided unprecedented details of cell phenotype, likely to impact airway chemical and particle injury.
Collapse
Affiliation(s)
| | - Martin Oliver Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
7
|
A tumor microenvironment-related mRNA-ncRNA signature for prediction early relapse and chemotherapeutic sensitivity in early-stage lung adenocarcinoma. J Cancer Res Clin Oncol 2021; 147:3195-3209. [PMID: 34291356 DOI: 10.1007/s00432-021-03718-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Postoperative early relapse of early-stage lung adenocarcinoma is implicated in poor prognosis. The purpose of our study was to develop an integrated mRNA and non-coding RNA (ncRNA) signature to identify patients at high risk of early relapse in stage I-II lung adenocarcinoma who underwent complete resection. METHODS Early-stage lung adenocarcinoma data from Gene Expression Omnibus database were divided into training set and testing set. Propensity score matching analysis was performed between patients in early relapse group and long-term nonrelapse group from training set. Transcriptome analysis, random survival forest and LASSO Cox regression model were used to build an early relapse-related multigene signature. The robustness of the signature was evaluated in testing set and RNA-Seq dataset from The Cancer Genome Atlas (TCGA). The chemotherapy sensitivity, tumor microenvironment and mutation landscape related to the signature were explored using bioinformatics analysis. RESULTS Twelve mRNAs and one ncRNA were selected. The multigene signature achieved a strong power for early relapse prediction in training set (HR 3.19, 95% CI 2.16-4.72, P < 0.001) and testing set (HR 2.91, 95% CI 1.63-5.20, P = 0.002). Decision curve analyses revealed that the signature had a good clinical usefulness. Groups divided by the signature exhibited different chemotherapy sensitivity, tumor microenvironment characteristics and mutation landscapes. CONCLUSIONS Our results indicated that the integrated mRNA-ncRNA signature may be an innovative biomarker to predict early relapse of early-stage lung adenocarcinoma, and may provide more effective treatment strategies.
Collapse
|
8
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|
10
|
Wang J, Yu L, Jiang H, Zheng X, Zeng S. Epigenetic Regulation of Differentially Expressed Drug-Metabolizing Enzymes in Cancer. Drug Metab Dispos 2020; 48:759-768. [PMID: 32601104 DOI: 10.1124/dmd.120.000008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Drug metabolism is a biotransformation process of drugs, catalyzed by drug-metabolizing enzymes (DMEs), including phase I DMEs and phase II DMEs. The aberrant expression of DMEs occurs in the different stages of cancer. It can contribute to the development of cancer and lead to individual variations in drug response by affecting the metabolic process of carcinogen and anticancer drugs. Apart from genetic polymorphisms, which we know the most about, current evidence indicates that epigenetic regulation is also central to the expression of DMEs. This review summarizes differentially expressed DMEs in cancer and related epigenetic changes, including DNA methylation, histone modification, and noncoding RNAs. Exploring the epigenetic regulation of differentially expressed DMEs can provide a basis for implementing individualized and rationalized medication. Meanwhile, it can promote the development of new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer. SIGNIFICANCE STATEMENT: This review summarizes the aberrant expression of DMEs in cancer and the related epigenetic regulation of differentially expressed DMEs. Exploring the epigenetic regulatory mechanism of DMEs in cancer can help us to understand the role of DMEs in cancer progression and chemoresistance. Also, it provides a basis for developing new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| |
Collapse
|
11
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
12
|
Lin JT, Chan TC, Li CF, Huan SKH, Tian YF, Liang PI, Pan CT, Shiue YL. Downregulation of the cytochrome P450 4B1 protein confers a poor prognostic factor in patients with urothelial carcinomas of upper urinary tracts and urinary bladder. APMIS 2019; 127:170-180. [PMID: 30803053 DOI: 10.1111/apm.12939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
The objective of this study was to examine the expression level of cytochrome P450 4B1 (CYP4B1) protein and its clinical significance in specimens from patients with urothelial carcinomas (UC) including upper tract urothelial carcinoma (UTUC, n = 340) and urinary bladder urothelial carcinoma (UBUC, n = 295). Data mining on public domains identified five potential candidate transcripts which were downregulated in advanced UBUCs, indicating that it might implicate in UC progression. Immunohistochemistry was performed to analyze the CYP4B1 protein levels on 635 tissues from UC patients retrospectively. Immunoexpression of CYP4B1 was further estimated using the H-score method. Correlations between CYP4B1 H-score and important clinicopathological factors, as well as the significance of CYP4B1 expression level for disease-specific and metastasis-free survivals were evaluated. In UTUCs and UBUCs, 118 (34.7%) and 92 (31.2%) patients, respectively, were identified to be of CYP4B1 downregulation. The CYP4B1 expression level was found to be associated with several clinicopathological factors and patient survivals. Downregulation of CYP4B1 protein was correlated to advanced primary tumor (p < 0.001), nodal metastasis (p < 0.001), high histological grade (p = 0.001), vascular invasion (p < 0.001), perineural invasion (p = 0.017) and mitotic rate (p = 0.036) in UTUCs and/or UBUCs. Low CYP4B1 protein level independently predicted inferior disease-specific (p = 0.009; p < 0.001) and metastasis-free (p = 0.035; p < 0.001) survivals in UTUC and UBUC patients. Our findings showed that downregulation of CYP4B1 protein level is an independent unfavorable prognosticator. Loss of the CYP4B1 gene expression may play an important role in UC progression.
Collapse
Affiliation(s)
- Jen-Tai Lin
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Steven K H Huan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colorectal Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Tang Pan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Hua F, Guo Y, Sun Q, Yang L, Gao F. HapMap-based study: CYP2A13 may be a potential key metabolic enzyme gene in the carcinogenesis of lung cancer in non-smokers. Thorac Cancer 2019; 10:601-606. [PMID: 30807688 PMCID: PMC6449263 DOI: 10.1111/1759-7714.12954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background The aim of this study was to evaluate the association between CYP2A13 polymorphisms and lung cancer susceptibility using the HapMap database. Methods A case‐control analysis of 532 subjects with lung cancer and 614 controls with no personal history of the disease was performed. The tag SNPs rs1645690 and rs8192789 for CYP2A13 were selected, and the genetic polymorphisms were confirmed experimentally through real‐time PCR, cloning, and sequencing assay. Results SNP frequency in this study was consistent with the HapMap Project database of Han‐Chinese and lung cancer risk was associated with CYP2A13 polymorphisms in non‐smokers. CYP2A13 shares a 93.5% identity with CYP2A6 in the amino acid sequence and the homologous sequences may interfere with the study of SNPs of CYP2A13. Conclusions CYP2A13 may be a potential key metabolic enzyme gene in the carcinogenesis of lung cancer in non‐smokers. The common polymorphisms of CYP2A13 may be candidate biomarkers for lung cancer susceptibility in Han‐Chinese.
Collapse
Affiliation(s)
- Feng Hua
- Department of Thoracic Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yonglu Guo
- Department of Respiratory, Jiuquan City People's Hospital, Jiuquan, China
| | - Qiang Sun
- Department of Infection, Jiuquan City People's Hospital, Jiuquan, China
| | - Leizhou Yang
- Department of Internal Medicine, Jining City Yanzhou District Railway Hospital, Jining, China
| | - Fang Gao
- Department of Thoracic Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
14
|
Fang D, Xiong Z, Xu J, Yin J, Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed Pharmacother 2019; 109:2054-2061. [DOI: 10.1016/j.biopha.2018.09.154] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
|
15
|
Berg T, Hegelund-Myrbäck T, Öckinger J, Zhou XH, Brännström M, Hagemann-Jensen M, Werkström V, Seidegård J, Grunewald J, Nord M, Gustavsson L. Expression of MATE1, P-gp, OCTN1 and OCTN2, in epithelial and immune cells in the lung of COPD and healthy individuals. Respir Res 2018; 19:68. [PMID: 29678179 PMCID: PMC5910606 DOI: 10.1186/s12931-018-0760-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/27/2018] [Indexed: 02/03/2023] Open
Abstract
Background Several inhaled drugs are dependent on organic cation transporters to cross cell membranes. To further evaluate their potential to impact on inhaled drug disposition, the localization of MATE1, P-gp, OCTN1 and OCTN2 were investigated in human lung. Methods Transporter proteins were analysed by immunohistochemistry in lung tissue from healthy subjects and COPD patients. Transporter mRNA was analysed by qPCR in lung tissue and in bronchoalveolar lavage (BAL) cells from smokers and non-smokers. Results We demonstrate for the first time MATE1 protein expression in the lung with localization to the apical side of bronchial and bronchiolar epithelial cells. Interestingly, MATE1 was strongly expressed in alveolar macrophages as demonstrated both in lung tissue and in BAL cells, and in inflammatory cells including CD3 positive T cells. P-gp, OCTN1 and OCTN2 were also expressed in the alveolar epithelial cells and in inflammatory cells including alveolar macrophages. In BAL cells from smokers, MATE1 and P-gp mRNA expression was significantly lower compared to cells from non-smokers whereas no difference was observed between COPD patients and healthy subjects. THP-1 cells were evaluated as a model for alveolar macrophages but did not reflect the transporter expression observed in BAL cells. Conclusions We conclude that MATE1, P-gp, OCTN1 and OCTN2 are expressed in pulmonary lung epithelium, in alveolar macrophages and in other inflammatory cells. This is important to consider in the development of drugs treating pulmonary disease as the transporters may impact drug disposition in the lung and consequently affect pharmacological efficacy and toxicity. Electronic supplementary material The online version of this article (10.1186/s12931-018-0760-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tove Hegelund-Myrbäck
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden.
| | - Johan Öckinger
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Hong Zhou
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Marie Brännström
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Michael Hagemann-Jensen
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Werkström
- Respiratory GMed, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Janeric Seidegård
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nord
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Global Patient Safety, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Lena Gustavsson
- Department of Drug Metabolism, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
16
|
Li Y, Steppi A, Zhou Y, Mao F, Miller PC, He MM, Zhao T, Sun Q, Zhang J. Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine. Sci Rep 2017; 7:4747. [PMID: 28684774 PMCID: PMC5500564 DOI: 10.1038/s41598-017-04250-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Drug and xenobiotic metabolizing enzymes (DXME) play important roles in drug responses and carcinogenesis. Recent studies have found that expression of DXME in cancer cells significantly affects drug clearance and the onset of drug resistance. In this study we compared the expression of DXME in breast tumor tissue samples from patients representing three ethnic groups: Caucasian Americans (CA), African Americans (AA), and Asian Americans (AS). We further combined DXME gene expression data with eQTL data from the GTEx project and with allele frequency data from the 1000 Genomes project to identify SNPs that may be associated with differential expression of DXME genes. We identified substantial differences among CA, AA, and AS populations in the expression of DXME genes and in activation of pathways involved in drug metabolism, including those involved in metabolizing chemotherapy drugs that are commonly used in the treatment of breast cancer. These data suggest that differential expression of DXME may associate with health disparities in breast cancer outcomes observed among these three ethnic groups. Our study suggests that development of personalized treatment strategies for breast cancer patients could be improved by considering both germline genotypes and tumor specific mutations and expression profiles related to DXME genes.
Collapse
Affiliation(s)
- Yan Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Albert Steppi
- Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Philip Craig Miller
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Max M He
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, 54449, USA
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI, 54449, USA
| | - Tingting Zhao
- Department of Geography, Florida State University, Tallahassee, FL, 32306, USA
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
17
|
Boei JJWA, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DGJ, Lahoz A, Gmuender H, Vrieling H. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol 2017; 91:2093-2105. [PMID: 27738743 PMCID: PMC5399058 DOI: 10.1007/s00204-016-1868-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Differentiated human bronchial epithelial cells in air liquid interface cultures (ALI-PBEC) represent a promising alternative for inhalation studies with rodents as these 3D airway epithelial tissue cultures recapitulate the human airway in multiple aspects, including morphology, cell type composition, gene expression and xenobiotic metabolism. We performed a detailed longitudinal gene expression analysis during the differentiation of submerged primary human bronchial epithelial cells into ALI-PBEC to assess the reproducibility and inter-individual variability of changes in transcriptional activity during this process. We generated ALI-PBEC cultures from four donors and focussed our analysis on the expression levels of 362 genes involved in biotransformation, which are of primary importance for toxicological studies. Expression of various of these genes (e.g., GSTA1, ADH1C, ALDH1A1, CYP2B6, CYP2F1, CYP4B1, CYP4X1 and CYP4Z1) was elevated following the mucociliary differentiation of airway epithelial cells into a pseudo-stratified epithelial layer. Although a substantial number of genes were differentially expressed between donors, the differences in fold changes were generally small. Metabolic activity measurements applying a variety of different cytochrome p450 substrates indicated that epithelial cultures at the early stages of differentiation are incapable of biotransformation. In contrast, mature ALI-PBEC cultures were proficient in the metabolic conversion of a variety of substrates albeit with considerable variation between donors. In summary, our data indicate a distinct increase in biotransformation capacity during differentiation of PBECs at the air-liquid interface and that the generation of biotransformation competent ALI-PBEC cultures is a reproducible process with little variability between cultures derived from four different donors.
Collapse
Affiliation(s)
- Jan J. W. A. Boei
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Binie Klein
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Renate M. Verhoosel
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Agustin Lahoz
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria-Fundación Hospital La Fe, 46009 Valencia, Spain
| | | | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
18
|
Zaragoza-Ojeda M, Eguía-Aguilar P, Perezpeña-Díazconti M, Arenas-Huertero F. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line. Toxicol Lett 2016; 256:64-76. [DOI: 10.1016/j.toxlet.2016.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
|
19
|
Nickel S, Clerkin CG, Selo MA, Ehrhardt C. Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opin Drug Deliv 2016; 13:667-90. [DOI: 10.1517/17425247.2016.1140144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sabrina Nickel
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caoimhe G. Clerkin
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohammed Ali Selo
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, Kufa University, Al-Najaf, Iraq
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Liu X, Gao Y, Zhao B, Li X, Lu Y, Zhang J, Li D, Li L, Yin F. Discovery of microarray-identified genes associated with ovarian cancer progression. Int J Oncol 2015; 46:2467-78. [PMID: 25891226 DOI: 10.3892/ijo.2015.2971] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most lethal cancer of female reproductive system. There is a consistent and urgent need to better understand its mechanism. In this study, we retrieved 186 genes that were dysregulated by at least 4-fold in 594 ovarian serous cystadenocarcinomas in comparison with eight normal ovaries, according to The Cancer Genome Atlas Ovarian Statistics data deposited in Oncomine database. DAVID analysis of these genes enriched two biological processes indicating that the cell cycle and microtubules might play critical roles in ovarian cancer progression. Among these 186 genes, 46 were dysregulated by at least 10-fold and their expression was further confirmed by the Bonome Ovarian Statistics data deposited in Oncomine, which covered 185 cases of ovarian carcinomas and 10 cases of normal ovarian surface epithelium. Six genes, including aldehyde dehydrogenase 1 family, member A2 (ALDH1A2), alcohol dehydrogenase 1B (class I), β polypeptide (ADH1B), NEL-like 2 (chicken) (NELL2), hemoglobin, β (HBB), ATP-binding cassette, sub-family A (ABC1), member 8 (ABCA8) and hemoglobin, α1 (HBA1) were identified to be downregulated by at least 10-fold in 779 ovarian cancers compared with 18 normal controls. Using mRNA expression profiles retrieved from microarrays deposited in the Gene Expression Omnibus Profiles database, RT-qPCR measurement and bioinformatics analysis, we further indicated that high expression of HBB might predict a poorer 5-year survival, high expression of ALDH1A2 and ABCA8 might predict a poor outcome; while ALDH1A2, ADH1B, HBB and ABCA8, in particular the former two genes, might be associated with drug resistance, and ALDH1A2 and NELL2 might contribute to invasiveness and metastasis in ovarian cancer. This study thus contributes to our understanding of the mechanism of ovarian cancer progression and development, and the six identified genes may be potential therapeutic targets and biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Bingbing Zhao
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaofeng Li
- The Orthopedics and Traumatology Hospital of Guangxi, Nanning, Guangxi 530022, P.R. China
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Danrong Li
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
21
|
Zarogoulidis P, Darwiche K, Kalamaras G, Huang H, Hohenforst-Schmidt W, Zarogoulidis K. Targeted versus chrono-targeted chemotherapy for inhaled chemotherapy in non-small cell lung cancer. Transl Lung Cancer Res 2015; 2:E17-22. [PMID: 25806211 DOI: 10.3978/j.issn.2218-6751.2012.12.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/18/2012] [Indexed: 11/14/2022]
Abstract
Lung cancer long term survival still remains poor and early detection is still the best methodology to treatment. Therefore several novel approaches have been investigated for anticancer drug administration. Inhaled therapies for lung diseases are used since the ancient times. Inhaled anticancer treatment administration was firstly investigated almost 30 years ago. Since then the inclusion and exclusion criteria have been investigated in correlation with the safety and efficacy of cisplatin, 5-fluoracil, carboplatin, paclitaxel, docetaxel, 9-nitro camptothecine, gemcitabine, cetuximab, granulocyte-colony stimulating factor, interleukins and recently with bevasizumab. Along with the anticancer drug formulations administered, other aspects of this local treatment have been also investigated to improve the efficiency and safety, such as; proper nebulization system, drug formulation delivery system, setting of administration, aerosol protection measures, inhalation techniques and safety issues follow up. During the last years with the use of actigraphy wrist watches, an extended investigation of the circadian rhythm of animals and humans has been performed and new insights are included in lung cancer chemotherapy administration. The "personalized" therapy administration should not be considered only as a molecular pathway inhibition, but also as a chrono-targeted anticancer treatment.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; ; Pulmonary Department-Interventional Unit, "Ruhrland" Klinik, University of Duisburg-Essen, Essen, Germany
| | - Kaid Darwiche
- Pulmonary Department-Interventional Unit, "Ruhrland" Klinik, University of Duisburg-Essen, Essen, Germany
| | - George Kalamaras
- Pulmonary Department-Sleep Medicine Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Haidong Huang
- Department of Respiratory diseases, Changhai hospital, Yangpu District, Shanghai, China
| | | | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models. Toxicol Appl Pharmacol 2014; 279:409-418. [DOI: 10.1016/j.taap.2014.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/17/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022]
|
23
|
Berg T, Hegelund Myrbäck T, Olsson M, Seidegård J, Werkström V, Zhou XH, Grunewald J, Gustavsson L, Nord M. Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol Res Perspect 2014; 2:e00054. [PMID: 25505599 PMCID: PMC4186441 DOI: 10.1002/prp2.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023] Open
Abstract
This study describes for the first time the expression levels of genes encoding membrane transporters and drug-metabolizing enzymes in the lungs of ex-smoking patients with chronic obstructive pulmonary disease (COPD). Membrane transporters and drug-metabolizing enzymes are key determinants of drug uptake, metabolism, and elimination for systemically administered as well as inhaled drugs, with consequent influence on clinical efficacy and patient safety. In this study, while no difference in gene expression was found between healthy and COPD subjects, we identified a significant regional difference in mRNA expression of both membrane transporters and drug-metabolizing enzymes between central and peripheral tissue in both healthy and COPD subjects. The majority of the differentially expressed genes were higher expressed in the central airways such as the transporters SLC2A1 (GLUT1), SLC28A3 (CNT3), and SLC22A4 (OCTN1) and the drug-metabolizing enzymes GSTZ1, GSTO2, and CYP2F1. Together, this increased knowledge of local pharmacokinetics in diseased and normal lung may improve modeling of clinical outcomes of new chemical entities intended for inhalation therapy delivered to COPD patients. In addition, based on the similarities between COPD and healthy subjects regarding gene expression of membrane transporters and drug-metabolizing enzymes, our results suggest that clinical pharmacological studies in healthy volunteers could be a valid model of COPD patients regarding drug disposition of inhaled drugs in terms of drug metabolism and drug transporters.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | | | | | | | | | | | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | - Lena Gustavsson
- Molecular Medicine, Department of Laboratory Medicine, Lund University Medicon Village, Lund, Sweden
| | | |
Collapse
|
24
|
Abstract
Pulmonary disease has been the primary target of inhaled therapeutics for over 50 years. During that period, increasing interest has arisen in the use of this route of administration to gain access to the systemic circulation for the treatment of a number of diseases beyond the airways. In order to effectively employ this route, the barriers to transport from the lungs following deposition of aerosols must be considered, including the nature of the disease (whether proximal, as in pulmonary hypertension, or distal, as in diabetes). Delivery to the systemic circulation begins with the efficiency of aerosol generation and subsequent deposition in the airways and proceeds to the influence of mechanisms of clearance, including absorption, metabolism, and mucociliary and cell-mediated transport, on the residence time of the drugs in the lungs. The nature of the drug (small or large molecules/low or high molecular weight), susceptibility to degradation and general physicochemical properties play a role in the chemistry of its formulation, physics of aerosol delivery and biology of disposition.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- Systems & Translational Sciences, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| | - Anthony J. Hickey
- Technology for Industry and the Environment, Discovery – Sciences – Technologies Group, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| |
Collapse
|
25
|
Zarogoulidis P, Darwiche K, Hohenforst-Schmidt W, Huang H, Li Q, Freitag L, Zarogoulidis K. Inhaled gene therapy in lung cancer: proof-of-concept for nano-oncology and nanobiotechnology in the management of lung cancer. Future Oncol 2013; 9:1171-94. [PMID: 23902248 DOI: 10.2217/fon.13.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lung cancer still remains one of the leading causes of death among cancer patients. Although novel targeted therapies have been established in everyday treatment practice, and conventional platinum-based doublets have demonstrated effective results regarding overall and progression-free survival, we have still failed to achieve long-term survival. Therefore, several strategies of applying locoregional therapy are under investigation. Aerosol chemotherapy is already under investigation and, taking this a step further, aerosol gene therapies with multiple delivery systems are being developed. Several efforts have demonstrated its efficiency and effectiveness, but there are still multiple factors that have to be considered and combined to achieve an overall more effective multifunctional treatment. In the current review, we present data regarding aerosol delivery systems, transporters, carriers, vectors, genes, toxicity, efficiency, specificity, lung microenvironment and delivery gene therapy systems. Finally, we present current studies and future perspectives.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
26
|
Darwiche K, Zarogoulidis P, Karamanos NK, Domvri K, Chatzaki E, Constantinidis TC, Kakolyris S, Zarogoulidis K. Efficacy versus safety concerns for aerosol chemotherapy in non-small-cell lung cancer: a future dilemma for micro-oncology. Future Oncol 2013; 9:505-25. [PMID: 23560374 DOI: 10.2217/fon.12.205] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inhaled chemotherapy was first used more than 30 years ago. Since then, numerous chemotherapeutic agents have been used in either in vitro or in vivo studies. Several aspects of the methodology of the drug administration have been thoroughly demonstrated and explained. However, the safety concerns of these studies were not thoroughly investigated and different results regarding the same drug formulations have been reported. There are cases where the studies failed to demonstrate the long-term effects of the chemotherapeutic drug formulations to the lung parenchyma. Acute and latent effects observed in a small number of human trial studies are still under investigation of inhaled chemotherapy administration. This review provides data regarding all up-to-date inhaled chemotherapy studies and presents the methodological parameters of the safety measures incorporated. In addition, a commentary regarding the safety concerns for the medical staff participating in these studies will be presented.
Collapse
Affiliation(s)
- Kaid Darwiche
- University Pulmonary Department-Interventional Unit, Ruhrland Clinic, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Salnikova LE, Smelaya TV, Golubev AM, Rubanovich AV, Moroz VV. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications. Mol Biol Rep 2013; 40:6163-76. [PMID: 24068433 DOI: 10.1007/s11033-013-2727-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
Abstract
This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.
Collapse
Affiliation(s)
- Lyubov E Salnikova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow, 117971, Russia,
| | | | | | | | | |
Collapse
|
28
|
Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv 2013; 4:1027-45. [PMID: 23919477 DOI: 10.4155/tde.13.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary drug delivery is an effective route for local or systemic drug administration. However, compared with other routes of administration, there is a scarcity of information on how drugs are absorbed from the lung. The different cell composition lining the airways and alveoli makes this task extremely complicated. Lung cell lines and primary culture cells are useful in studying the absorption mechanisms. However, it is imperative that these cell cultures express essential features required to study these mechanisms such as intact tight junctions and transporters. In vivo, the drug has to face defensive physical and immunological barriers such as mucociliary clearance and alveolar macrophages. Knowledge of the physicochemical properties of the drug and aerosol formulation is required. All of these factors interact together leading to either successful drug deposition followed by absorption or drug elimination. These aspects concerning drug transport in the lung are addressed in this review.
Collapse
|
29
|
Current status and future perspectives of mass spectrometry imaging. Int J Mol Sci 2013; 14:11277-301. [PMID: 23759983 PMCID: PMC3709732 DOI: 10.3390/ijms140611277] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023] Open
Abstract
Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology.
Collapse
|
30
|
Kropotova ES, Zinov’eva OL, Zyryanova AF, Choinzonov EL, Afanas’ev SG, Cherdyntseva NV, Beresten’ SF, Oparina NY, Mashkova TD. Expression of genes involved in retinoic acid biosynthesis in human gastric cancer. Mol Biol 2013. [DOI: 10.1134/s0026893313020076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Salnikova LE, Smelaya TV, Moroz VV, Golubev AM, Rubanovich AV. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. Int J Infect Dis 2013; 17:e433-42. [PMID: 23411129 DOI: 10.1016/j.ijid.2013.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/20/2012] [Accepted: 01/06/2013] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES To establish the contribution of genetic host factors to the risk of community-acquired pneumonia (CAP) and nosocomial pneumonia (NP) in the population of the Russian Federation. METHODS A total of 796 subjects (CAP: 334 patients, 134 controls; NP: 216 critically ill patients with NP, 105 critically ill patients without NP) were included in two case-control studies. We analyzed 13 polymorphisms in 11 genes (IL-6, TNF-α, MBL2, CCR5, NOS3, CYP1A1 (three sites), GSTM1, GSTT1, ABCB1, ACE, and MTHFR) using a tetra-primer allele-specific PCR method. RESULTS Individual single nucleotide polymorphism (SNP) analysis revealed a strong association between CYP1A1 rs2606345 and CAP (p=3.9 × 10(-5), odds ratio (OR) 0.42, 95% confidence interval (CI) 0.27-0.63). Three genes (CYP1A1, ACE, and IL-6) were identified that account for part of the increase in vulnerability to both diseases, CAP and NP. The carriage of three predisposing genotypes versus protective genotypes increased the CAP risk (p=0.001, OR 7.01, 95% CI 1.99-24.70) and NP risk (p=0.028, OR 4.34, 95% CI 1.15-16.45). CONCLUSIONS Genetic predisposition to CAP and NP is attributed to the cumulative contribution of polymorphisms at the CYP1A1, IL-6, and ACE genes, independently of age, gender, causative pathogen, and the use of mechanical ventilation, in patients in the Russian Federation.
Collapse
Affiliation(s)
- Lyubov E Salnikova
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 117971, Russia.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Zarogouldis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schimdt W, Goldberg EP, Zarogoulidis K. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13:10828-10862. [PMID: 23109824 PMCID: PMC3472716 DOI: 10.3390/ijms130910828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022] Open
Abstract
Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer.
Collapse
Affiliation(s)
- Paul Zarogouldis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
- Pulmonary Department-Interventional Unit, “Ruhrland Klinik”, University of Essen, Essen 45239, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-697-727-1974; Fax: +30-231-099-2433
| | - Nikos K. Karamanos
- Laboratory of Biochemistry, University of Patras, Patras 25200, Greece; E-Mail:
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Haidong Huang
- Department of Respiratory diseases, Changhai hospital, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | | | - Eugene P. Goldberg
- Biomaterials Science & Engineering, Department of Materials Science & Engineering, University of Florida, FL 32611, USA; E-Mail:
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| |
Collapse
|
34
|
Courcot E, Leclerc J, Lafitte JJ, Mensier E, Jaillard S, Gosset P, Shirali P, Pottier N, Broly F, Lo-Guidice JM. Xenobiotic metabolism and disposition in human lung cell models: comparison with in vivo expression profiles. Drug Metab Dispos 2012; 40:1953-65. [PMID: 22798553 DOI: 10.1124/dmd.112.046896] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Numerous lung cell lines are currently used as in vitro models for pharmacological and toxicological studies. However, no exhaustive report about the metabolic capacities of these models in comparison with those of lung tissues is available. In the present study, we used a high-throughput quantitative real-time reverse transcription-polymerase chain reaction strategy to characterize the expression profiles of 380 genes encoding proteins involved in the metabolism and disposition of xenobiotics in 10 commonly used lung cell lines (A549, H292, H358, H460, H727, Calu-1, 16HBE, 1 HAEO, BEAS-2B, and L-132) and four primary cultures of human bronchial epithelial cells. Expression results were then compared with those previously obtained in human nontumoral and tumoral lung tissues. Our results revealed disparities in gene expression between lung cell lines or when comparing lung cell lines with primary cells or lung tissues. Primary cell cultures displayed the highest similarities with bronchial mucosa in terms of transcript profiling and therefore seem to be the most relevant in vitro model for investigating the metabolism and bioactivation of toxicants and drugs in bronchial epithelium. H292 and BEAS-2B cell lines, which exhibited the highest homology in gene expression pattern with primary cells and the lowest number of dysregulated genes compared with nontumoral lung tissues, could be used as surrogates for toxicological and pharmacological studies. Overall, our study should provide references for researchers to choose the most appropriate in vitro model for analyzing the cellular effects of drugs or airborne toxicants on the airway.
Collapse
|