1
|
Kolić D, Šinko G, Jean L, Chioua M, Dias J, Marco-Contelles J, Kovarik Z. Cholesterol Oxime Olesoxime Assessed as a Potential Ligand of Human Cholinesterases. Biomolecules 2024; 14:588. [PMID: 38785995 PMCID: PMC11117805 DOI: 10.3390/biom14050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.
Collapse
Affiliation(s)
- Dora Kolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia; (D.K.); (G.Š.)
| | - Goran Šinko
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia; (D.K.); (G.Š.)
| | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoM, F-75006 Paris, France;
| | - Mourad Chioua
- Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - José Dias
- Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, Paris, France;
| | - José Marco-Contelles
- Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia; (D.K.); (G.Š.)
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Trancart M, Hanak AS, Dambrune C, Madi M, Voros C, Baati R, Calas AG. No-observed-adverse-effect-level (NOAEL) assessment as an optimized dose of cholinesterase reactivators for the treatment of exposure to warfare nerve agents in mice. Chem Biol Interact 2024; 392:110929. [PMID: 38417730 DOI: 10.1016/j.cbi.2024.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.
Collapse
Affiliation(s)
- Marilène Trancart
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France
| | - Anne-Sophie Hanak
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France
| | - Chloé Dambrune
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France; Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25, Rue Becquerel, F-67087, Strasbourg, France
| | - Méliati Madi
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France
| | - Camille Voros
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25, Rue Becquerel, F-67087, Strasbourg, France
| | - Rachid Baati
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25, Rue Becquerel, F-67087, Strasbourg, France
| | - André-Guilhem Calas
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France.
| |
Collapse
|
3
|
Lun J, Zhang W, Zhao Y, Song Y, Guo X. Enantiomeric Separation of Dioxopromethazine and its Stereoselective Pharmacokinetics in Rats by HPLC-MS/MS. J Pharm Sci 2021; 110:3082-3090. [PMID: 33940025 DOI: 10.1016/j.xphs.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Dioxopromethazine (DPZ) is a popular phenothiazine antihistamine that is widely used as a racemic drug in clinical to cure respiratory illness. In our work, a reliable, specific, and rapid enantioselective HPLC-MS/MS method has been established and fully validated for the quantification of R- and S-DPZ in rat plasma. After plasma alkalization (with 1 M Na2CO3), DPZ enantiomers and diphenhydramine (IS) were extracted using ethyl acetate. Completely separation of R- and S-DPZ (Rs = 2.8) within 12 min was implemented on Chiralpak AGP column (100 × 4.0 mm i.d., 5 μm) employing ammonium acetate (10 mM; pH 4.5) - methanol (90:10, v/v) as mobile phase. Themultiple reaction monitoring (MRM) mode was used for the detection of DPZ enantiomers and IS. The transitions of m/z 317.2 → 86.1 and 256.2 → 167.1 werechosen for monitoring DPZ enantiomers and IS, respectively. Good linearity (r2 > 0.995) was achieved for each DPZ enantiomer over the linear ranges of 1.00 - 80.00 ng/mL, with the lower limit of quantitation (LLOQ) of 1.00 ng/mL. The intra-day and inter-day precisions (RSDs,%) were below 12.3%, and accuracies (REs,%) were in the scope of-10.5% to 6.6%, which were within the admissible criteria. The validated bioanalytical approach was applied to the stereoselective pharmacokinetic (PK) research of DPZ in rat plasma for the first time. It was found that significant differences (p < 0.05) exist between the main PK parameters of R- and S-DPZ, indicating the pharmacokinetic behaviors of DPZ enantiomers in rats were stereoselective. The chiral inversion of the enantiomers did not occur during the assay.
Collapse
Affiliation(s)
- Jia Lun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Wenying Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Yu Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Yongbo Song
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China.
| | - Xingjie Guo
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China.
| |
Collapse
|
4
|
Benzobicyclo[3.2.1]octene Derivatives as a New Class of Cholinesterase Inhibitors. Molecules 2020; 25:molecules25214872. [PMID: 33105595 PMCID: PMC7659976 DOI: 10.3390/molecules25214872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
A library of amine, oxime, ether, epoxy and acyl derivatives of the benzobicyclo[3.2.1]octene were synthesized and evaluated as inhibitors of both human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The majority of the tested compounds exhibited higher selectivity for BChE. Structural adjustment for AChE seems to have been achieved by acylation, and the furan ring opening of furo-benzobicyclo[3.2.1]octadiene results for compound 51 with the highest AChE affinity (IC50 = 8.3 µM). Interestingly, its analogue, an oxime ether with a benzobicyclo[3.2.1]-skeleton, compound 32 was one of the most potent BChE inhibitors in this study (IC50 = 31 µM), but not as potent as endo-43, an ether derivative of the benzobicyclo[3.2.1]octene with an additional phenyl substituent (IC50 = 17 µM). Therefore, we identified several cholinesterase inhibitors with a potential for further development as potential drugs for the treatment of neurodegenerative diseases.
Collapse
|
5
|
Enantioseparation, in vitro testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases. Biochem J 2020; 477:2771-2790. [PMID: 32639532 DOI: 10.1042/bcj20200192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022]
Abstract
The enantiomers of racemic 2-hydroxyimino-N-(azidophenylpropyl)acetamide-derived triple-binding oxime reactivators were separated, and tested for inhibition and reactivation of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibited with tabun (GA), cyclosarin (GF), sarin (GB), and VX. Both enzymes showed the greatest affinity toward the methylimidazole derivative (III) of 2-hydroxyimino-N-(azidophenylpropyl)acetamide (I). The crystal structure was determined for the complex of oxime III within human BChE, confirming that all three binding groups interacted with active site residues. In the case of BChE inhibited by GF, oximes I (kr = 207 M-1 min-1) and III (kr = 213 M-1 min-1) showed better reactivation efficiency than the reference oxime 2-PAM. Finally, the key mechanistic steps in the reactivation of GF-inhibited BChE with oxime III were modeled using the PM7R6 method, stressing the importance of proton transfer from Nε of His438 to Oγ of Ser203 for achieving successful reactivation.
Collapse
|
6
|
D'Avila da Silva F, Nogara PA, Ochoa-Rodríguez E, Nuñez-Figueredo Y, Wong-Guerra M, Rosemberg DB, Rocha JBTD. Molecular docking and in vitro evaluation of a new hybrid molecule (JM-20) on cholinesterase activity from different sources. Biochimie 2019; 168:297-306. [PMID: 31770565 DOI: 10.1016/j.biochi.2019.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
The main function of AChE is the hydrolysis of the neurotransmitter acetylcholine (ACh) at the neuromuscular and in cholinergic brain synapses. In some pathologies, loss of cholinergic neurons may be associated with a deficiency of ACh in specific brain areas. Consequently, the study of new safe drugs that inhibit AChE is important, because they can increase ACh levels in the synaptic cleft without adverse effects. Here, we evaluated the effects of JM-20 (a benzodiazepine-dihydropyridine hybrid molecule) on cholinesterase (ChE) activities from distinct sources (AChE from Electrophorus electricus (EeAChE), human erythrocyte membranes (HsAChE (ghost)), total erythrocyte (HsAChE (erythrocyte)) and BChE from plasma (HsBChE) and purified enzyme from the horse (EcBChE)). Kinetic parameters were determined in the presence of 0.05-1.6 mM of substrate concentration. The interactions ChEs with JM-20 were performed using molecular docking simulations. JM-20 inhibited all tested AChE but not BChE. The IC50 values were 123 nM ± 0.2 (EeAChE), 158 nM ± 0.1 (ghost HsAChE), and 172 nM ± 0.2 (erythrocytic HsAChE). JM-20 caused a mixed type of inhibition (it altered Km and Vmax of AChE). The molecular docking indicated the binding poses and the most plausible active isomer of JM-20. Besides giving important data for future drug design, our results help us understand the mode of action of JM-20 as a specific inhibitor of AChE enzymes.
Collapse
Affiliation(s)
- Fernanda D'Avila da Silva
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Pablo Andrei Nogara
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Estael Ochoa-Rodríguez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Denis Broock Rosemberg
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Baumann K, Kordić L, Močibob M, Šinko G, Tomić S. Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors. Molecules 2019; 24:molecules24152833. [PMID: 31382668 PMCID: PMC6695897 DOI: 10.3390/molecules24152833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/04/2022] Open
Abstract
The development of selective butyrylcholinesterase (BChE) inhibitors may improve the treatment of Alzheimer’s disease by increasing lower synaptic levels of the neurotransmitter acetylcholine, which is hydrolysed by acetylcholinesterase, as well as by overexpressed BChE. An increase in the synaptic levels of acetylcholine leads to normal cholinergic neurotransmission and improved cognitive functions. A series of 14 novel heterocyclic β-d-gluco- and β-d-galactoconjugates were designed and screened for inhibitory activity against BChE. In the kinetic studies, 4 out of 14 compounds showed an inhibitory effect towards BChE, with benzimidazolium and 1-benzylbenzimidazolium substituted β-d-gluco- and β-d-galacto-derivatives in a 10–50 micromolar range. The analysis performed by molecular modelling indicated key residues of the BChE active site, which contributed to a higher affinity toward the selected compounds. Sugar moiety in the inhibitor should enable better blood–brain barrier permeability, and thus increase bioavailability in the central nervous system of these compounds.
Collapse
Affiliation(s)
- Krešimir Baumann
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| | - Lorena Kordić
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| | - Marko Močibob
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| | - Goran Šinko
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, P.O. Box 291, HR-10001 Zagreb, Croatia.
| | - Srđanka Tomić
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| |
Collapse
|
8
|
Assessment of scoring functions and in silico parameters for AChE-ligand interactions as a tool for predicting inhibition potency. Chem Biol Interact 2019; 308:216-223. [DOI: 10.1016/j.cbi.2019.05.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/20/2022]
|
9
|
Purgatorio R, de Candia M, Catto M, Carrieri A, Pisani L, De Palma A, Toma M, Ivanova OA, Voskressensky LG, Altomare CD. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease. Eur J Med Chem 2019; 177:414-424. [PMID: 31158754 DOI: 10.1016/j.ejmech.2019.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Due to the role of butyrylcholinesterase (BChE) in acetylcholine hydrolysis in the late stages of the Alzheimer's disease (AD), inhibitors of butyrylcholinesterase (BChE) have been recently envisaged, besides acetylcholinesterase (AChE) inhibitors, as candidates for treating mild-to-moderate AD. Herein, synthesis and AChE/BChE inhibition activity of some twenty derivatives of 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (HHAI) is reported. Most of the newly synthesized HHAI derivatives achieved the inhibition of both ChE isoforms with IC50s in the micromolar range, with a structure-dependent selectivity toward BChE. Apparently, molecular volume and lipophilicity do increase selectivity toward BChE, and indeed the N2-(4-phenylbutyl) HHAI derivative 15d, which behaves as a mixed-type inhibitor, resulted the most potent (IC50 0.17 μM) and selective (>100-fold) inhibitor toward either horse serum and human BChE. Moreover, 15d inhibited in vitro self-induced aggregation of neurotoxic amyloid-β (Aβ) peptide and displayed neuroprotective effects in neuroblastoma SH-SY5Y cell line, significantly recovering (P < 0.001) cell viability when impaired by Aβ1-42 and hydrogen peroxide insults. Overall, this study highlighted HHAI as useful and versatile scaffold for developing new small molecules targeting some enzymes and biochemical pathways involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Marco Catto
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Maddalena Toma
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Leonid G Voskressensky
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St, 6, Moscow, 117198, Russian Federation
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
10
|
Bosak A, Ramić A, Šmidlehner T, Hrenar T, Primožič I, Kovarik Z. Design and evaluation of selective butyrylcholinesterase inhibitors based on Cinchona alkaloid scaffold. PLoS One 2018; 13:e0205193. [PMID: 30289893 PMCID: PMC6173406 DOI: 10.1371/journal.pone.0205193] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
This paper describes the synthesis and anticholinesterase potency of Cinchona-based alkaloids; ten quaternary derivatives of cinchonines and their corresponding pseudo-enantiomeric cinchonidines. The quaternization of quinuclidine moiety of each compound was carried out with groups diverse in their size: methyl, benzyl and differently meta- and para-substituted benzyl groups. All of the prepared compounds reversibly inhibited human butyrylcholinesterase and acetylcholinesterase with Ki constants within nanomolar to micromolar range. Five cinchonidine derivatives displayed 95-510 times higher inhibition selectivity to butyrylcholinesterase over acetylcholinesterase and four were potent butyrylcholinesterase inhibitors with Ki constants up to 100 nM, of which N-para-bromobenzyl cinchonidinium bromide can be considered a lead for further modifications and optimizations for possible use in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb, Croatia
| | - Alma Ramić
- Faculty of Science, Horvatovac 102A, University of Zagreb, Zagreb, Croatia
| | - Tamara Šmidlehner
- Faculty of Science, Horvatovac 102A, University of Zagreb, Zagreb, Croatia
| | - Tomica Hrenar
- Faculty of Science, Horvatovac 102A, University of Zagreb, Zagreb, Croatia
| | - Ines Primožič
- Faculty of Science, Horvatovac 102A, University of Zagreb, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb, Croatia
| |
Collapse
|
11
|
Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017; 22:molecules22122098. [PMID: 29186056 PMCID: PMC6149722 DOI: 10.3390/molecules22122098] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE. In contrast, structural data on the binding of reversible ligands to BChE are lacking. In a recent effort, an inhibitor competition approach was used to probe the overlap of ligand binding sites in BChE. Here, we extend this study by solving the crystal structures of human BChE in complex with five reversible ligands, namely, decamethonium, thioflavin T, propidium, huprine, and ethopropazine. We compare these structures to equivalent AChE complexes when available in the protein data bank and supplement this comparison with kinetic data and observations from isothermal titration calorimetry. This new information now allows us to define the binding mode of various ligand families and will be of importance in designing specific reversible ligands of BChE that behave as inhibitors or reactivators.
Collapse
|
12
|
Karasova JZ, Maderycova Z, Tumova M, Jun D, Rehacek V, Kuca K, Misik J. Activity of cholinesterases in a young and healthy middle-European population: Relevance for toxicology, pharmacology and clinical praxis. Toxicol Lett 2017; 277:24-31. [PMID: 28465191 DOI: 10.1016/j.toxlet.2017.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
The activity of human cholinesterases, erythrocyte acetylcholinesterase (AChE; EC 3.1.1.7) and plasma butyrylcholinesterase (BChE; EC 3.1.1.8) represents an important marker when monitoring exposure to pesticides/nerve agents, and may also be used in occupational medicine in diagnosis and prognosis of some diseases. In this study "normal/baseline" AChE and BChE activity has been investigated in a young and healthy population, with subsequent evaluation of several intra-population factors including sex, age (categories 18-25, 26-35 and 36-45 years old) and smoker status. The modified Ellman's method was used for enzyme activity assessment in 387 young and healthy individuals (201 males and 186 females aged 18-45). A significant inter-sexual difference in AChE and BChE activity was found (AChE: 351±67 for males and 377±65 for females, (μmol/min)/(μmol of hemoglobin), p<0.001; BChE: 140±33 for males and 109±29 for females, μkat/l, p<0.001; mean±SD). Despite the finding that mean AChE activity somewhat decreased whereas BChE activity grew within the age categories of the tested subjects, no significant effect of age on cholinesterase activity was found (p>0.05). Smoking influenced cholinesterase activity - AChE activity in smokers was elevated (approx. 3% in males; 8% in females) relative to that in non-smokers (p<0.05). Smoking was found not to have any effect on BChE activity. Reference values based on confidence intervals for AChE and BChE activity were established. The presented results might be useful in routine clinical practice where the monitoring of blood AChE and plasma BChE activity is crucial for prognosis and diagnosis of organophosphate poisoning, in occupational medicine and in relevant mass casualty scenarios.
Collapse
Affiliation(s)
- Jana Zdarova Karasova
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic.
| | - Zuzana Maderycova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Martina Tumova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Department, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Cellular Biology and Pharmacology, College of Medicine, Florida, International University, Miami, USA
| | - Jan Misik
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Characterization of butyrylcholinesterase in bovine serum. Chem Biol Interact 2017; 266:17-27. [PMID: 28189703 DOI: 10.1016/j.cbi.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
Human butyrylcholinesterase (HuBChE) protects from nerve agent toxicity. Our goal was to determine whether bovine serum could be used as a source of BChE. Bovine BChE (BoBChE) was immunopurified from 100 mL fetal bovine serum (FBS) or 380 mL adult bovine serum by binding to immobilized monoclonal mAb2. Bound proteins were digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The results proved that FBS and adult bovine serum contain BoBChE. The concentration of BoBChE was estimated to be 0.04 μg/mL in FBS, and 0.03 μg/mL in adult bovine serum, values lower than the 4 μg/mL BChE in human serum. Nondenaturing gel electrophoresis showed that monoclonal mAb2 bound BoBChE but not bovine acetylcholinesterase (BoAChE) and confirmed that FBS contains BoBChE and BoAChE. Recombinant bovine BChE (rBoBChE) expressed in serum-free culture medium spontaneously reactivated from inhibition by chlorpyrifos oxon at a rate of 0.0023 min-1 (t1/2 = 301 min-1) and aged at a rate of 0.0138 min-1 (t1/2 = 50 min-1). Both BoBChE and HuBChE have 574 amino acids per subunit and 90% sequence identity. However, the apparent size of serum BoBChE and rBoBChE tetramers was much greater than the 340,000 Da of HuBChE tetramers. Whereas HuBChE tetramers include short polyproline rich peptides derived from lamellipodin, no polyproline peptides have been identified in BoBChE. We hypothesize that BoBChE tetramers use a large polyproline-rich protein to organize subunits into a tetramer and that the low concentration of BoBChE in serum is explained by limited quantities of an unidentified polyproline-rich protein.
Collapse
|
14
|
de Candia M, Zaetta G, Denora N, Tricarico D, Majellaro M, Cellamare S, Altomare CD. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. Eur J Med Chem 2017; 125:288-298. [DOI: 10.1016/j.ejmech.2016.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/15/2022]
|
15
|
Stojan J. Conformational rigidity of cholinesterases allows for the prediction of combined effects in a particular double mutant. Chem Biol Interact 2016; 259:110-114. [PMID: 27174135 DOI: 10.1016/j.cbi.2016.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
The conformational rigidity of Drosophila melanogaster AChE, was checked by kinetic means on recombinant enzyme with the substitutions of two important amino acids, one at the catalytic anionic site (W83A), one at the peripheral anionic site (W321A) and the double mutant with both tryptophans substituted by alanines (W83A/W321A). It was hypothesized that the individual mutations would affect only the binding affinities of substrate molecules at each site and that a predictable effect would show up in the corresponding double mutant. Simple inspection revealed that bell shaped curves of activity at wide substrate concentration range in the catalytic anionic site mutants carry much less information than the analogous asymmetric ones of the wild type and peripheral anionic site mutant. Therefore, a concurrent kinetic analysis of the curves for all four enzymes was undertaken by constraining mutation independent parameters: unchanged affinity at the catalytic/peripheral anionic site of the opposite mutant in comparison to the parameters for wild type enzyme. Additionally, the parameters for W83A mutated enzyme were employed for the characterization of double mutant (W83A/W321A) protein by setting the dissociation constant for the substrate at the peripheral anionic site as determined for W321A mutant. Simultaneous analysis exactly reproduced the behavior of the double mutant without any significant change of previously reported values for the wild type enzyme (Stojan et al., 2004). This kinetic behavior is completely in line with the crystallographic evidence of structural rigidity in cholinesterases.
Collapse
Affiliation(s)
- Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljublajna, Vrazov trg 2, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Maraković N, Knežević A, Vinković V, Kovarik Z, Šinko G. Design and synthesis of N-substituted-2-hydroxyiminoacetamides and interactions with cholinesterases. Chem Biol Interact 2016; 259:122-132. [PMID: 27238725 DOI: 10.1016/j.cbi.2016.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/20/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
Abstract
Within this study, we designed and synthesized four new oxime compounds of the N-substituted 2-hydroxyiminoacetamide structure and evaluated their interactions with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Our aim was to explore the possibility of extending the dual-binding mode of interaction between the enzyme and the inhibitor to a so-called triple-binding mode of interaction through the introduction of an additional binding moiety. N-substituted 2-hydroxyiminoacetamide 1 was prepared via BOP catalyzed amidation of hydroxyiminoacetic acid with 3-azido-1-phenylpropylamine. An azide group enabled us to prepare more elaborate structures 2-4 by the copper-catalyzed azide-alkyne cycloaddition. The new compounds 1-4 differed in their presumed AChE peripheral site binding moiety, which ranged from an azide group to functionalized heterocycles. Molecular docking studies revealed that all three binding moieties are involved in the non-covalent interactions with ChEs for all of the four compounds, albeit not always in the complete accordance with the proposed hypothesis. All of the four compounds reversibly inhibited the ChEs with their inhibition potency increasing in the same order for both enzymes (1 < 2 < 4 < 3). A higher preference for binding to BChE (KI from 0.30 μmol/L to 130 μmol/L) over AChE (KI from 50 μmol/L to 1200 μmol/L) was observed for all of the compounds. Compounds were screened for reactivation of cyclosarin-, sarin- and VX-inhibited AChE and BChE.
Collapse
Affiliation(s)
- Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia
| | | | - Vladimir Vinković
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
17
|
Reilly PJ, Rovira C. Computational Studies of Glycoside, Carboxylic Ester, and Thioester Hydrolase Mechanisms: A Review. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter J. Reilly
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Carme Rovira
- Departament de Química Orgànica
and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
18
|
Pharmacogenetics of Neurodegenerative Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-3-319-15344-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Borowiecki P, Paprocki D, Dranka M. First chemoenzymatic stereodivergent synthesis of both enantiomers of promethazine and ethopropazine. Beilstein J Org Chem 2014; 10:3038-55. [PMID: 25670974 PMCID: PMC4311712 DOI: 10.3762/bjoc.10.322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/01/2014] [Indexed: 12/17/2022] Open
Abstract
Enantioenriched promethazine and ethopropazine were synthesized through a simple and straightforward four-step chemoenzymatic route. The central chiral building block, 1-(10H-phenothiazin-10-yl)propan-2-ol, was obtained via a lipase-mediated kinetic resolution protocol, which furnished both enantiomeric forms, with superb enantioselectivity (up to E = 844), from the racemate. Novozym 435 and Lipozyme TL IM have been found as ideal biocatalysts for preparation of highly enantioenriched phenothiazolic alcohols (up to >99% ee), which absolute configurations were assigned by Mosher's methodology and unambiguously confirmed by XRD analysis. Thus obtained key-intermediates were further transformed into bromide derivatives by means of PBr3, and subsequently reacted with appropriate amine providing desired pharmacologically valuable (R)- and (S)-stereoisomers of title drugs in an ee range of 84-98%, respectively. The modular amination procedure is based on a solvent-dependent stereodivergent transformation of the bromo derivative, which conducted in toluene gives mainly the product of single inversion, whereas carried out in methanol it provides exclusively the product of net retention. Enantiomeric excess of optically active promethazine and ethopropazine were established by HPLC measurements with chiral columns.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Daniel Paprocki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maciej Dranka
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
20
|
Brus B, Košak U, Turk S, Pišlar A, Coquelle N, Kos J, Stojan J, Colletier JP, Gobec S. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J Med Chem 2014; 57:8167-79. [PMID: 25226236 DOI: 10.1021/jm501195e] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Butyrylcholinesterase (BChE) is regarded as a promising drug target as its levels and activity significantly increase in the late stages of Alzheimer's disease. To discover novel BChE inhibitors, we used a hierarchical virtual screening protocol followed by biochemical evaluation of 40 highest scoring hit compounds. Three of the compounds identified showed significant inhibitory activities against BChE. The most potent, compound 1 (IC50 = 21.3 nM), was resynthesized and resolved into its pure enantiomers. A high degree of stereoselective activity was revealed, and a dissociation constant of 2.7 nM was determined for the most potent stereoisomer (+)-1. The crystal structure of human BChE in complex with compound (+)-1 was solved, revealing the binding mode and providing clues for potential optimization. Additionally, compound 1 inhibited amyloid β(1-42) peptide self-induced aggregation into fibrils (by 61.7% at 10 μM) and protected cultured SH-SY5Y cells against amyloid-β-induced toxicity. These data suggest that compound 1 represents a promising candidate for hit-to-lead follow-up in the drug-discovery process against Alzheimer's disease.
Collapse
Affiliation(s)
- Boris Brus
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu F, Gaohua L, Zhao P, Jamei M, Huang SM, Bashaw ED, Lee SC. Predicting nonlinear pharmacokinetics of omeprazole enantiomers and racemic drug using physiologically based pharmacokinetic modeling and simulation: application to predict drug/genetic interactions. Pharm Res 2014; 31:1919-29. [PMID: 24590877 DOI: 10.1007/s11095-013-1293-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/31/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE The objective of this study is to develop a physiologically-based pharmacokinetic (PBPK) model for each omeprazole enantiomer that accounts for nonlinear PK of the two enantiomers as well as omeprazole racemic drug. METHODS By integrating in vitro, in silico and human PK data, we first developed PBPK models for each enantiomer. Simulation of racemic omeprazole PK was accomplished by combining enantiomer models that allow mutual drug interactions to occur. RESULTS The established PBPK models for the first time satisfactorily predicted the nonlinear PK of esomeprazole, R-omeprazole and the racemic drug. The modeling exercises revealed that the strong time-dependent inhibition of CYP2C19 by esomeprazole greatly altered the R-omeprazole PK following administration of racemic omeprazole as in contrast to R-omeprazole given alone. When PBPK models incorporated both autoinhibition of each enantiomer and mutual interactions, the ratios between predicted and observed AUC following single and multiple dosing of omeprazole were 0.97 and 0.94, respectively. CONCLUSIONS PBPK models of omeprazole enantiomers and racemic drug were developed. These models can be utilized to assess CYP2C19-mediated drug and genetic interaction potential for omeprazole and esomeprazole.
Collapse
Affiliation(s)
- Fang Wu
- Office of Clinical Pharmacology, Office of Translational Sciences Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Stojan J. The significance of low substrate concentration measurements for mechanistic interpretation in cholinesterases. Chem Biol Interact 2013; 203:44-50. [DOI: 10.1016/j.cbi.2012.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/05/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
23
|
Bosak A, Smilović IG, Stimac A, Vinković V, Sinko G, Kovarik Z. Peripheral site and acyl pocket define selective inhibition of mouse butyrylcholinesterase by two biscarbamates. Arch Biochem Biophys 2012; 529:140-5. [PMID: 23219600 DOI: 10.1016/j.abb.2012.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/22/2012] [Accepted: 11/28/2012] [Indexed: 11/20/2022]
Abstract
In this study we related metacarb (N-(2-(3,5-bis(dimethylcarbamoyloxy)phenyl)-2-hydroxyethyl)propan-2-aminium chloride) and isocarb (N-(2-(3,4-bis(dimethylcarbamoyloxy)phenyl)-2-hydroxyethyl)propan-2-aminium chloride) inhibition selectivity, as well as stereoselectivity of mouse acetylcholinesterase (AChE; 3.1.1.7) and butyrylcholinesterase (BChE; 3.1.1.8) to the active site residues by studying the progressive inhibition of AChE, BChE and six AChE mutants with racemic and (R)-enantiomers of metacarb and isocarb. Metacarb and isocarb proved to be very potent BChE inhibitors with inhibition rate constants in the range of 10(3)-10(4)M(-1)s(-1). For metacarb and isocarb, inhibition of BChE w.t. was 260 and 35 times, respectively, faster than inhibition of AChE w.t. For four mutants inhibition was faster than for AChE w.t. but none reached the inhibition rate of BChE. The highest increase in the inhibition rate (about 30 times for metacarb and 13 times for isocarb) was achieved with mutants F295L/Y337A and Y124Q meaning that selective inhibition of mouse BChE is dictated mainly by two amino acids from BChE: leucine 286 from the acyl pocket and glutamine 119 from the peripheral site. Wild type enzymes displayed pronounced stereoselectivity for (R)-enantiomers of metacarb and isocarb. Interestingly, the residues that define selective inhibition of mouse BChE by biscarbamates also affect the stereoselectivity of enzymes.
Collapse
Affiliation(s)
- Anita Bosak
- Institute for Medical Research and Occupational Health, POB 291, HR-10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
24
|
Holas O, Musilek K, Pohanka M, Kuca K. The progress in the cholinesterase quantification methods. Expert Opin Drug Discov 2012; 7:1207-23. [DOI: 10.1517/17460441.2012.729037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Macdonald IR, Martin E, Rosenberry TL, Darvesh S. Probing the peripheral site of human butyrylcholinesterase. Biochemistry 2012; 51:7046-53. [PMID: 22901043 PMCID: PMC3438789 DOI: 10.1021/bi300955k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) catalyze the hydrolysis of the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. For both enzymes, hydrolysis takes place near the bottom of a 20 Å deep active site gorge. A number of amino acid residues within the gorge have been identified as important in facilitating efficient catalysis and inhibitor binding. Of particular interest is the catalytic triad, consisting of serine, histidine, and glutamate residues, that mediates hydrolysis. Another site influencing the catalytic process is located above the catalytic triad toward the periphery of the active site gorge. This peripheral site (P-site) contains a number of aromatic amino acid residues as well as an aspartate residue that is able to interact with cationic substrates and guide them down the gorge to the catalytic triad. In human AChE, certain aryl residues in the vicinity of the anionic aspartate residue (D74), such as W286, have been implicated in ligand binding and have therefore been considered part of the P-site of the enzyme. The present study was undertaken to explore the P-site of human BuChE and determine whether, like AChE, aromatic side chains near the peripheral aspartate (D70) of this enzyme contribute to ligand binding. Results obtained, utilizing inhibitor competition studies and BuChE mutant species, indicate the participation of aryl residues (F329 and Y332) in the E-helix component of the BuChE active site gorge, along with the anionic aspartate residue (D70), in binding ligands to the P-site of the enzyme.
Collapse
Affiliation(s)
- Ian R Macdonald
- Department of Anatomy & Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|