1
|
Mackinnon SR, Zarganes-Tzitzikas T, Adams CJ, Brennan PE, Yue WW. Luminescence-based complementation assay to assess target engagement and cell permeability of glycolate oxidase (HAO1) inhibitors. Biochimie 2024:S0300-9084(24)00199-8. [PMID: 39151880 DOI: 10.1016/j.biochi.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Glycolate oxidase (HAO1) catalyses the synthesis of glyoxylate, a common metabolic intermediate that causes renal failure if accumulated. HAO1 inhibition is an emerging treatment for primary hyperoxaluria, a rare disorder of glyoxylate metabolism. Here we report the first cell-based measurement of inhibitor uptake and engagement with HAO1, by adapting the cellular thermal shift assay (CETSA) based on Nano luciferase complementation and luminescence readout. By profiling the interaction between HAO1 and four well-characterised inhibitors in intact and lysed HEK293T cells, we showed that our CETSA method differentiates between low-permeability/high-engagement and high-permeability/low-engagement ligands and is able to rank HAO1 inhibitors in line with both recombinant protein methods and previously reported indirect cellular assays. Our methodology addresses the unmet need for a robust, sensitive, and scalable cellular assay to guide HAO1 inhibitor development and, in broader terms, can be rapidly adapted for other targets to simultaneously monitor compound affinity and cellular permeability.
Collapse
Affiliation(s)
- Sabrina R Mackinnon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tryfon Zarganes-Tzitzikas
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford, UK
| | - Cassandra J Adams
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building (NDMRB), University of Oxford, Oxford, UK
| | - Paul E Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building (NDMRB), University of Oxford, Oxford, UK.
| | - Wyatt W Yue
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
3
|
Mackinnon SR, Bezerra GA, Krojer T, Szommer T, von Delft F, Brennan PE, Yue WW. Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening. Front Chem 2022; 10:844598. [PMID: 35601556 PMCID: PMC9114433 DOI: 10.3389/fchem.2022.844598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Primary hyperoxaluria type I (PH1) is caused by AGXT gene mutations that decrease the functional activity of alanine:glyoxylate aminotransferase. A build-up of the enzyme’s substrate, glyoxylate, results in excessive deposition of calcium oxalate crystals in the renal tract, leading to debilitating renal failure. Oxidation of glycolate by glycolate oxidase (or hydroxy acid oxidase 1, HAO1) is a major cellular source of glyoxylate, and siRNA studies have shown phenotypic rescue of PH1 by the knockdown of HAO1, representing a promising inhibitor target. Here, we report the discovery and optimization of six low-molecular-weight fragments, identified by crystallography-based fragment screening, that bind to two different sites on the HAO1 structure: at the active site and an allosteric pocket above the active site. The active site fragments expand known scaffolds for substrate-mimetic inhibitors to include more chemically attractive molecules. The allosteric fragments represent the first report of non-orthosteric inhibition of any hydroxy acid oxidase and hold significant promise for improving inhibitor selectivity. The fragment hits were verified to bind and inhibit HAO1 in solution by fluorescence-based activity assay and surface plasmon resonance. Further optimization cycle by crystallography and biophysical assays have generated two hit compounds of micromolar (44 and 158 µM) potency that do not compete with the substrate and provide attractive starting points for the development of potent and selective HAO1 inhibitors.
Collapse
Affiliation(s)
- Sabrina R. Mackinnon
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gustavo A. Bezerra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tobias Krojer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tamas Szommer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Paul E. Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paul E. Brennan, ; Wyatt W. Yue,
| | - Wyatt W. Yue
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paul E. Brennan, ; Wyatt W. Yue,
| |
Collapse
|
4
|
Ding J, Gumpena R, Boily MO, Caron A, Chong O, Cox JH, Dumais V, Gaudreault S, Graff AH, King A, Knight J, Oballa R, Surendradoss J, Tang T, Wu J, Lowther WT, Powell DA. Dual Glycolate Oxidase/Lactate Dehydrogenase A Inhibitors for Primary Hyperoxaluria. ACS Med Chem Lett 2021; 12:1116-1123. [PMID: 34267881 DOI: 10.1021/acsmedchemlett.1c00196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Both glycolate oxidase (GO) and lactate dehydrogenase A (LDHA) influence the endogenous synthesis of oxalate and are clinically validated targets for treatment of primary hyperoxaluria (PH). We investigated whether dual inhibition of GO and LDHA may provide advantage over single agents in treating PH. Utilizing a structure-based drug design (SBDD) approach, we developed a series of novel, potent, dual GO/LDHA inhibitors. X-ray crystal structures of compound 15 bound to individual GO and LDHA proteins validated our SBDD strategy. Dual inhibitor 7 demonstrated an IC50 of 88 nM for oxalate reduction in an Agxt-knockdown mouse hepatocyte assay. Limited by poor liver exposure, this series of dual inhibitors failed to demonstrate significant PD modulation in an in vivo mouse model. This work highlights the challenges in optimizing in vivo liver exposures for diacid containing compounds and limited benefit seen with dual GO/LDHA inhibitors over single agents alone in an in vitro setting.
Collapse
Affiliation(s)
- Jinyue Ding
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Rajesh Gumpena
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Marc-Olivier Boily
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Alexandre Caron
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Oliver Chong
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Jennifer H. Cox
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Valerie Dumais
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Samuel Gaudreault
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Aaron H. Graff
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Andrew King
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, 720 20th Street South, Birmingham, Alabama 35294, United States
| | - Renata Oballa
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Jayakumar Surendradoss
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Tim Tang
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Joyce Wu
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - W. Todd Lowther
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - David A. Powell
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| |
Collapse
|
5
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
6
|
Lyu SY, Lin KH, Yeh HW, Li YS, Huang CM, Wang YL, Shih HW, Hsu NS, Wu CJ, Li TL. The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:918-929. [PMID: 31588923 PMCID: PMC6778850 DOI: 10.1107/s2059798319011938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022]
Abstract
Structural and enzymological explorations of p-hydroxy-mandelate oxidase and its mutants uncover an unprecedented electrophilic/nucleophilic duality for the flavin mononucleotide cofactor as well as an intramolecular disproportionation mechanism for an oxidative decarboxylation reaction. The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportionation reaction via an N5-alkanol-FMNred C′α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism.
Collapse
Affiliation(s)
- Syue Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsien Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun Man Huang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hao Wei Shih
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chang Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Yeh HW, Lin KH, Lyu SY, Li YS, Huang CM, Wang YL, Shih HW, Hsu NS, Wu CJ, Li TL. Biochemical and structural explorations of α-hydroxyacid oxidases reveal a four-electron oxidative decarboxylation reaction. Acta Crystallogr D Struct Biol 2019; 75:733-742. [PMID: 31373572 PMCID: PMC6677016 DOI: 10.1107/s2059798319009574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/03/2019] [Indexed: 11/05/2022] Open
Abstract
p-Hydroxymandelate oxidase (Hmo) is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes mandelate to benzoylformate. How the FMN-dependent oxidation is executed by Hmo remains unclear at the molecular level. A continuum of snapshots from crystal structures of Hmo and its mutants in complex with physiological/nonphysiological substrates, products and inhibitors provides a rationale for its substrate enantioselectivity/promiscuity, its active-site geometry/reactivity and its direct hydride-transfer mechanism. A single mutant, Y128F, that extends the two-electron oxidation reaction to a four-electron oxidative decarboxylation reaction was unexpectedly observed. Biochemical and structural approaches, including biochemistry, kinetics, stable isotope labeling and X-ray crystallography, were exploited to reach these conclusions and provide additional insights.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Syue-Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Man Huang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hao-Wei Shih
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
8
|
Zhang Y, Su C, Lei J, Chen L, Hu H, Zeng S, Yu L. Studies on the L-2-hydroxy-acid oxidase 2 catalyzed metabolism of S-mandelic acid and its analogues. Drug Metab Pharmacokinet 2019; 34:187-193. [PMID: 30876779 DOI: 10.1016/j.dmpk.2019.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 11/15/2022]
Abstract
Mandelic acid (MA) is generally used as a biomarker of the exposure of styrene, which is classified as a class of hazardous environmental pollutants, and also used as an important chiral intermediate in pharmaceutical industry. The previous studies have found the excretion of phenylglyoxylic acid (PGA) in human and rat, a metabolite of MA, was mainly from S-MA rather than R-MA. The metabolic mechanism, however, is not clear. In order to explore the possible metabolic mechanism, the enzyme types involved in the stereoselectivity metabolism of MA were firstly studied, and then human and rat long-chain 2-hydroxy-acid oxidase 2 (HAO2) were recombinantly expressed to study the metabolic profiles of S-MA and its analogues. The results indicated that HAO2 might catalyze the stereoselectivity metabolism of S-MA in rats. Human HAO2 (hHAO2) and rat HAO2 (rHAO2) isozymes β1 and β2 were successfully cloned and expressed with high purity and good enzyme activities. The enzyme kinetic profiles of these enzymes were different for S-MA and analogues. The order of catalytic efficiency for hHAO2 and rHAO2, however, was reverse. It might be relevance to the difference in active amino acid residues and loop 4 in human and rat L-2-hydroxy acid oxidase isozyme B crystal structures.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Su
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxiu Lei
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Moya-Garzón MD, Martín Higueras C, Peñalver P, Romera M, Fernandes MX, Franco-Montalbán F, Gómez-Vidal JA, Salido E, Díaz-Gavilán M. Salicylic Acid Derivatives Inhibit Oxalate Production in Mouse Hepatocytes with Primary Hyperoxaluria Type 1. J Med Chem 2018; 61:7144-7167. [DOI: 10.1021/acs.jmedchem.8b00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Dolores Moya-Garzón
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Cristina Martín Higueras
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Pablo Peñalver
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Manuela Romera
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Miguel X. Fernandes
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Francisco Franco-Montalbán
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
10
|
Affiliation(s)
- Barbara Cellini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona (VR), Italy
| |
Collapse
|
11
|
Elhoul MB, Machillot P, Benoît M, Lederer F. Translational misreading, amino acid misincorporation and misinterpretations. The case of the flavocytochrome b 2 H373Q variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:353-358. [PMID: 28007443 DOI: 10.1016/j.bbapap.2016.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/24/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
Abstract
Amino acid misincorporation during protein synthesis occurs naturally at a low level. Protein sequence errors, depending on the level and the nature of the misincorporation, can have various consequences. When site-directed mutagenesis is used as a tool for understanding the role of a side chain in enzyme catalysis, misincorporation in a variant with intrinsically low activity may lead to misinterpretations concerning the enzyme mechanism. We report here one more example of such a problem, dealing with flavocytochrome b2 (Fcb2), a lactate dehydrogenase, member of a family of FMN-dependent L-2-hydroxy acid oxidizing enzymes. Two papers have described the properties of the Fcb2 catalytic base H373Q variant, each one using a different expression system with the same base change for the mutation. The two papers found similar apparent kinetic parameters. But the first one demonstrated the existence of a low level of histidine misincorporation, which led to an important correction of the variant residual activity (Gaume et al. (1995) Biochimie, 77, 621). The second paper did not investigate the possibility of a misincorporation (Tsai et al. (2007) Biochemistry, 46, 7844). The two papers had different mechanistic conclusions. We show here that in this case the misincorporation does not depend on the expression system. We bring the proof that Tsai et al. (2007) were led to an erroneous mechanistic conclusion for having missed the phenomenon as well as for having misinterpreted the crystal structure of the variant. This work is another illustration of the caution one should exercise when characterizing enzyme variants with low activity.
Collapse
Affiliation(s)
- Mouna Ben Elhoul
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Paul Machillot
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Mireille Benoît
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Florence Lederer
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
12
|
Liebow A, Li X, Racie T, Hettinger J, Bettencourt BR, Najafian N, Haslett P, Fitzgerald K, Holmes RP, Erbe D, Querbes W, Knight J. An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria. J Am Soc Nephrol 2016; 28:494-503. [PMID: 27432743 DOI: 10.1681/asn.2016030338] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023] Open
Abstract
Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound.
Collapse
Affiliation(s)
- Abigail Liebow
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy Racie
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Julia Hettinger
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Brian R Bettencourt
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Nader Najafian
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Patrick Haslett
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Kevin Fitzgerald
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Erbe
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - William Querbes
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1055-62. [PMID: 26854734 DOI: 10.1016/j.bbadis.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
Collapse
|
14
|
Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I. Mol Ther 2015; 24:719-25. [PMID: 26689264 DOI: 10.1038/mt.2015.224] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 11/08/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is caused by deficient alanine-glyoxylate aminotransferase, the human peroxisomal enzyme that detoxifies glyoxylate. Glycolate is one of the best-known substrates leading to glyoxylate production, via peroxisomal glycolate oxidase (GO). Using genetically modified mice, we herein report GO as a safe and efficient target for substrate reduction therapy (SRT) in PH1. We first generated a GO-deficient mouse (Hao1(-/-)) that presented high urine glycolate levels but no additional phenotype. Next, we produced double KO mice (Agxt1(-/-) Hao1(-/-)) that showed low levels of oxalate excretion compared with hyperoxaluric mice model (Agxt1(-/-)). Previous studies have identified some GO inhibitors, such as 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole (CCPST). We herein report that CCPST inhibits GO in Agxt1(-/-) hepatocytes and significantly reduces their oxalate production, starting at 25 µM. We also tested the ability of orally administered CCPST to reduce oxalate excretion in Agxt1(-/-) mice, showing that 30-50% reduction in urine oxalate can be achieved. In summary, we present proof-of-concept evidence for SRT in PH1. These encouraging results should be followed by a medicinal chemistry programme that might yield more potent GO inhibitors and eventually could result in a pharmacological treatment for this rare and severe inborn error of metabolism.
Collapse
|
15
|
Frishberg Y, Zeharia A, Lyakhovetsky R, Bargal R, Belostotsky R. Mutations inHAO1encoding glycolate oxidase cause isolated glycolic aciduria. J Med Genet 2014; 51:526-9. [DOI: 10.1136/jmedgenet-2014-102529] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Cao Y, Han S, Yu L, Qian H, Chen JZ. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism. J Phys Chem B 2014; 118:5406-17. [PMID: 24801764 DOI: 10.1021/jp5022399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-chain L-α-hydroxy acid oxidase (LCHAO) is a flavin mononucleotide (FMN)-dependent oxidase that dehydrogenates l-α-hydroxy acids to keto acids. There were two different mechanisms, named as hydride transfer (HT) mechanism and carbanion (CA) mechanism, respectively, proposed about the catalytic process for the FMN-dependent L-α-hydroxy acid oxidases on the basis of biochemical data. However, crystallographic and kinetic studies could not provide enough evidence to prove one of the mechanisms or eliminate the alternative. In the present studies, theoretical computations were carried out to study the molecular mechanism for LCHAO-catalyzed dehydrogenation of L-lactate. Our molecular dynamics (MD) simulations indicated that L-lactate prefers to bind with LCHAO in a hydride transfer mode rather than a carbanion mode. Quantum mechanics/molecular mechanics (QM/MM) calculations were further carried out to obtain the optimized structures of reactants, transition states, and products at the level of ONIOM-EE (B3LYP/6-311++G(d,p)//B3LYP/6-31G(d,p):AMBER). Quantum chemical studies indicated that LCHAO-catalyzed dehydrogenation of L-lactate would be a stepwise catalytic reaction in a hydride transfer mechanism but not a carbanion mechanism. MD simulations, binding free energy calculations, and QM/MM computations were also implemented on the complex between L-lactate and Y129F mutant LCHAO. By comparing the Y129F mutant system with the wild-type system, it was further confirmed that the key residue Tyr129 in the active site of LCHAO would not affect L-lactate's binding to LCHAO but play an important role on the catalytic reaction process through an H-bond interaction.
Collapse
Affiliation(s)
- Yang Cao
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University , 866 Yuhangtang Rd., Hangzhou, Zhejiang 310058, China
| | | | | | | | | |
Collapse
|