1
|
Huang M, Coral D, Ardalani H, Spegel P, Saadat A, Claussnitzer M, Mulder H, Franks PW, Kalamajski S. Identification of a weight loss-associated causal eQTL in MTIF3 and the effects of MTIF3 deficiency on human adipocyte function. eLife 2023; 12:84168. [PMID: 36876906 PMCID: PMC10023155 DOI: 10.7554/elife.84168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
Genetic variation at the MTIF3 (Mitochondrial Translational Initiation Factor 3) locus has been robustly associated with obesity in humans, but the functional basis behind this association is not known. Here, we applied luciferase reporter assay to map potential functional variants in the haplotype block tagged by rs1885988 and used CRISPR-Cas9 to edit the potential functional variants to confirm the regulatory effects on MTIF3 expression. We further conducted functional studies on MTIF3-deficient differentiated human white adipocyte cell line (hWAs-iCas9), generated through inducible expression of CRISPR-Cas9 combined with delivery of synthetic MTIF3-targeting guide RNA. We demonstrate that rs67785913-centered DNA fragment (in LD with rs1885988, r2 > 0.8) enhances transcription in a luciferase reporter assay, and CRISPR-Cas9-edited rs67785913 CTCT cells show significantly higher MTIF3 expression than rs67785913 CT cells. Perturbed MTIF3 expression led to reduced mitochondrial respiration and endogenous fatty acid oxidation, as well as altered expression of mitochondrial DNA-encoded genes and proteins, and disturbed mitochondrial OXPHOS complex assembly. Furthermore, after glucose restriction, the MTIF3 knockout cells retained more triglycerides than control cells. This study demonstrates an adipocyte function-specific role of MTIF3, which originates in the maintenance of mitochondrial function, providing potential explanations for why MTIF3 genetic variation at rs67785913 is associated with body corpulence and response to weight loss interventions.
Collapse
Affiliation(s)
- Mi Huang
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| | - Daniel Coral
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| | - Hamidreza Ardalani
- Department of Chemistry, Centre for Analysis and Synthesis, Lund UniversityLundSweden
| | - Peter Spegel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund UniversityLundSweden
| | - Alham Saadat
- Metabolism Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Melina Claussnitzer
- Metabolism Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Sebastian Kalamajski
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| |
Collapse
|
2
|
Wang Y, Luo Y, Huang Y. Schizosaccharomyces pombe
Sls1 is primarily required for
cox1
mRNA translation. Yeast 2022; 39:521-534. [DOI: 10.1002/yea.3813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| |
Collapse
|
3
|
Baleva MV, Piunova UE, Chicherin IV, Krasavina DG, Levitskii SA, Kamenski PA. Yeast Translational Activator Mss51p and Human ZMYND17 - Two Proteins with a Common Origin, but Different Functions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1151-1161. [PMID: 34565318 DOI: 10.1134/s0006297921090108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.
Collapse
Affiliation(s)
- Maria V Baleva
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Uliyana E Piunova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan V Chicherin
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Darya G Krasavina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey A Levitskii
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Piotr A Kamenski
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Chicherin IV, Dukhalin SV, Khannanov RA, Baleva MV, Levitskii SA, Patrushev MV, Sergiev PV, Kamenski P. Functional Diversity of Mitochondrial Peptidyl-tRNA Hydrolase ICT1 in Human Cells. Front Mol Biosci 2021; 8:716885. [PMID: 34336930 PMCID: PMC8322449 DOI: 10.3389/fmolb.2021.716885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are energy producing organelles of the eukaryotic cell, involved in the synthesis of key metabolites, calcium homeostasis and apoptosis. Protein biosynthesis in these organelles is a relic of its endosymbiotic origin. While mitochondrial translational factors have homologues among prokaryotes, they possess a number of unique traits. Remarkably as many as four mammalian mitochondrial proteins possess a clear similarity with translation termination factors. The review focuses on the ICT1, which combines several functions. It is a non-canonical termination factor for protein biosynthesis, a rescue factor for stalled mitochondrial ribosomes, a structural protein and a regulator of proliferation, cell cycle, and apoptosis. Such a diversity of roles demonstrates the high functionality of mitochondrial translation associated proteins and their relationship with numerous processes occurring in a living cell.
Collapse
Affiliation(s)
- I V Chicherin
- Department of Molecular Biology, M.V.Lomonosov Moscow State University, Moscow, Russia.,National Research Center "Kurchatov Institute", NBICS Center, Moscow, Russia
| | - S V Dukhalin
- Department of Molecular Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - R A Khannanov
- Department of Molecular Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - M V Baleva
- Department of Molecular Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - S A Levitskii
- Department of Molecular Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - M V Patrushev
- National Research Center "Kurchatov Institute", NBICS Center, Moscow, Russia
| | - P V Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - P Kamenski
- Department of Molecular Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
6
|
Luo Y, Wang Y, Huang Y. Schizosaccharomyces pombe Ppr10 and Mpa1 together mediate mitochondrial translational initiation. J Biol Chem 2021; 297:100869. [PMID: 34119521 PMCID: PMC8258696 DOI: 10.1016/j.jbc.2021.100869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of proteins that act primarily at different posttranscriptional steps of organellar gene expression. We have previously found that the Schizosaccharomyces pombe PPR protein mpal10 interacts with mitochondrial translational activator Mpa1, and both are essential for mitochondrial protein synthesis. However, it is unclear how these two proteins function in mitochondrial protein synthesis in S. pombe. In this study, we further investigated the role of Ppr10 and Mpa1 in mitochondrial protein synthesis. Mitochondrial translational initiation requires two initiation factors, Mti2 and Mti3, which bind to the small subunit of the mitochondrial ribosome (mt-SSU) during the formation of the mitochondrial translational initiation complex. Using sucrose gradient sedimentation analysis, we found that disruption of ppr10, mpa1, or the PPR motifs in Ppr10 impairs the association of Mti2 and Mti3 with the mt-SSU, suggesting that both Ppr10 and Mpa1 may be required for the interaction of Mti2 and Mti3 with the mt-SSU during the assembly of mitochondrial translational initiation complex. Loss of Ppr10 perturbs the association of mitochondrially encoded cytochrome b (cob1) and cytochrome c oxidase subunit 1 (cox1) mRNAs with assembled mitochondrial ribosomes. Proteomic analysis revealed that a fraction of Ppr10 and Mpa1 copurified with a subset of mitoribosomal proteins. The PPR motifs of Ppr10 are necessary for its interaction with Mpa1 and that disruption of these PPR motifs impairs mitochondrial protein synthesis. Our results suggest that Ppr10 and Mpa1 function together to mediate mitochondrial translational initiation.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
7
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
8
|
Autophagy facilitates adaptation of budding yeast to respiratory growth by recycling serine for one-carbon metabolism. Nat Commun 2020; 11:5052. [PMID: 33028817 PMCID: PMC7542147 DOI: 10.1038/s41467-020-18805-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
The mechanism and function of autophagy as a highly-conserved bulk degradation pathway are well studied, but the physiological role of autophagy remains poorly understood. We show that autophagy is involved in the adaptation of Saccharomyces cerevisiae to respiratory growth through its recycling of serine. On respiratory media, growth onset, mitochondrial initiator tRNA modification and mitochondrial protein expression are delayed in autophagy defective cells, suggesting that mitochondrial one-carbon metabolism is perturbed in these cells. The supplementation of serine, which is a key one-carbon metabolite, is able to restore mitochondrial protein expression and alleviate delayed respiratory growth. These results indicate that autophagy-derived serine feeds into mitochondrial one-carbon metabolism, supporting the initiation of mitochondrial protein synthesis and allowing rapid adaptation to respiratory growth. Autophagy is important during stress and development, but how the metabolites generated are used by the cell remains unclear. Here, the authors demonstrate that budding yeast require autophagy to provide serine for one-carbon metabolism during the switch from glycolytic to respiratory growth.
Collapse
|
9
|
You C, Xu N, Qiu S, Li Y, Xu L, Li X, Yang L. A novel composition of two heterozygous GFM1 mutations in a Chinese child with epilepsy and mental retardation. Brain Behav 2020; 10:e01791. [PMID: 32776492 PMCID: PMC7559602 DOI: 10.1002/brb3.1791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION G elongation factor mitochondrial 1 (GFM1) encodes one of the mitochondrial translation elongation factors. GFM1 variants were reported to be associated with neurological diseases and liver diseases in a few cases. Here, we present a novel composition of two heterozygous mutations of GFM1 in a boy with epilepsy, mental retardation, and other unusual phenotypes. METHODS The patient was found to be blind and experienced recurrent convulsive seizures such as nodding and hugging at the age of 3 months. After antiepileptic treatment with topiramate, he had no obvious seizures but still had mental retardation. The patient vomited frequently at 16 months old, sometimes accompanied by epileptic seizures. Hematuria metabolic screening, mutation screening of mitochondrial gene, and mitochondrial nuclear gene were negative. Then, he was analyzed by whole-exome sequencing (WES). RESULTS Whole-exome sequencing revealed a novel composition of two heterozygous mutations in GFM1, the maternal c.679G > A (has not been reported) and the paternal c.1765-1_1765-2del (previously reported). At present, there is no specific and effective treatment for the disease, and the prognosis is very poor. CONCLUSION The discovery of new phenotypes and new genotypes will further enrich the diagnosis information of the disease and provide more experiences for clinicians to quickly diagnose the disease and judge the prognosis.
Collapse
Affiliation(s)
- Cuiping You
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Na Xu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Shiyan Qiu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Yufen Li
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Liyun Xu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Xia Li
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Li Yang
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| |
Collapse
|
10
|
Laptev I, Dontsova O, Sergiev P. Epitranscriptomics of Mammalian Mitochondrial Ribosomal RNA. Cells 2020; 9:E2181. [PMID: 32992603 PMCID: PMC7600485 DOI: 10.3390/cells9102181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Modified nucleotides are present in all ribosomal RNA molecules. Mitochondrial ribosomes are unique to have a set of methylated residues that includes universally conserved ones, those that could be found either in bacterial or in archaeal/eukaryotic cytosolic ribosomes and those that are present exclusively in mitochondria. A single pseudouridine within the mt-rRNA is located in the peptidyltransferase center at a position similar to that in bacteria. After recent completion of the list of enzymes responsible for the modification of mammalian mitochondrial rRNA it became possible to summarize an evolutionary history, functional role of mt-rRNA modification enzymes and an interplay of the mt-rRNA modification and mitoribosome assembly process, which is a goal of this review.
Collapse
Affiliation(s)
- Ivan Laptev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
| | - Olga Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
11
|
Rudler DL, Hughes LA, Viola HM, Hool LC, Rackham O, Filipovska A. Fidelity and coordination of mitochondrial protein synthesis in health and disease. J Physiol 2020; 599:3449-3462. [PMID: 32710561 DOI: 10.1113/jp280359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.
Collapse
Affiliation(s)
- Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Helena M Viola
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia
| | - Livia C Hool
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
12
|
Latorraca LB, Feitosa WB, Mariano C, Moura MT, Fontes PK, Nogueira MFG, Paula-Lopes FF. Autophagy is a pro-survival adaptive response to heat shock in bovine cumulus-oocyte complexes. Sci Rep 2020; 10:13711. [PMID: 32792582 PMCID: PMC7426922 DOI: 10.1038/s41598-020-69939-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a physiological mechanism that can be activated under stress conditions. However, the role of autophagy during oocyte maturation has been poorly investigated. Therefore, this study characterized the role of autophagy on developmental competence and gene expression of bovine oocytes exposed to heat shock (HS). Cumulus-oocyte-complexes (COCs) were matured at Control (38.5 °C) and HS (41 °C) temperatures in the presence of 0 and 10 mM 3-methyladenine (3MA; autophagy inhibitor). Western blotting analysis revealed that HS increased autophagy marker LC3-II/LC3-I ratio in oocytes. However, there was no effect of temperature for oocytes matured with 3MA. On cumulus cells, 3MA reduced LC3-II/LC3-I ratio regardless of temperature. Inhibition of autophagy during IVM of heat-shocked oocytes (3MA-41 °C) reduced cleavage and blastocyst rates compared to standard in vitro matured heat-shocked oocytes (IVM-41 °C). Therefore, the magnitude of HS detrimental effects was greater in the presence of autophagy inhibitor. Oocyte maturation under 3MA-41 °C reduced mRNA abundance for genes related to energy metabolism (MTIF3), heat shock response (HSF1), and oocyte maturation (HAS2 and GREM1). In conclusion, autophagy is a stress response induced on heat shocked oocytes. Inhibition of autophagy modulated key functional processes rendering the oocyte more susceptible to the deleterious effects of heat shock.
Collapse
Affiliation(s)
- Lais B Latorraca
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
| | - Weber B Feitosa
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Camila Mariano
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Marcelo T Moura
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Patrícia K Fontes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
| | - Marcelo F G Nogueira
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
- Department of Biological Sciences, School of Sciences and Languages, UNESP, Assis, São Paulo, Brazil
| | - Fabíola F Paula-Lopes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil.
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil.
| |
Collapse
|
13
|
Yeast Mitochondrial Translation Initiation Factor 3 Interacts with Pet111p to Promote COX2 mRNA Translation. Int J Mol Sci 2020; 21:ijms21103414. [PMID: 32408541 PMCID: PMC7279496 DOI: 10.3390/ijms21103414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial genomes code for several core components of respiratory chain complexes. Thus, mitochondrial translation is of great importance for the organelle as well as for the whole cell. In yeast, mitochondrial translation initiation factor 3, Aim23p, is not essential for the organellar protein synthesis; however, its absence leads to a significant quantitative imbalance of the mitochondrial translation products. This fact points to a possible specific action of Aim23p on the biosynthesis of some mitochondrial protein species. In this work, we examined such peculiar effects of Aim23p in relation to yeast mitochondrial COX2 mRNA translation. We show that Aim23p is indispensable to this process. According to our data, this is mediated by Aimp23p interaction with the known specific factor of the COX2 mRNA translation, Pet111p. If there is no Aim23p in the yeast cells, an increased amount of Pet111p ensures proper COX2 mRNA translation. Our results demonstrate the additional non-canonical function of initiation factor 3 in yeast mitochondrial translation.
Collapse
|
14
|
Initiation Factor 3 is Dispensable For Mitochondrial Translation in Cultured Human Cells. Sci Rep 2020; 10:7110. [PMID: 32346061 PMCID: PMC7188818 DOI: 10.1038/s41598-020-64139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date. In this work, we generated human HeLa cell lines deficient in the MTIF3 gene and analyzed their mitochondrial function. Despite the lack of IF3mt in these cells, they preserved functional mitochondria capable of oxygen consumption and protein synthesis; however, the translation of ATP6 mRNA was selectively decreased which compromised the assembly of ATP synthase. Together with the analogous results obtained earlier for baker's yeast mitochondrial IF3, our findings point to a functional divergence of mitochondrial initiation factors from their bacterial ancestors.
Collapse
|
15
|
Waltz F, Giegé P. Striking Diversity of Mitochondria-Specific Translation Processes across Eukaryotes. Trends Biochem Sci 2019; 45:149-162. [PMID: 31780199 DOI: 10.1016/j.tibs.2019.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are essential organelles that act as energy conversion powerhouses and metabolic hubs. Their gene expression machineries combine traits inherited from prokaryote ancestors and specific features acquired during eukaryote evolution. Mitochondrial research has wide implications ranging from human health to agronomy. We highlight recent advances in mitochondrial translation. Functional, biochemical, and structural data have revealed an unexpected diversity of mitochondrial translation systems, particularly of their key players, the mitochondrial ribosomes (mitoribosomes). Ribosome assembly and translation mechanisms, such as initiation, are discussed and put in perspective with the prevalence of eukaryote-specific families of mitochondrial translation factors such as pentatricopeptide repeat (PPR) proteins.
Collapse
Affiliation(s)
- Florent Waltz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Institut Européen de Chimie et de Biologie, l'Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
16
|
Chicherin IV, Baleva MV, Levitskii SA, Dashinimaev EB, Krasheninnikov IA. Mitochondrial Translation Initiation Factor 3: Structure, Functions, Interactions, and Implication in Human Health and Disease. BIOCHEMISTRY (MOSCOW) 2019; 84:1143-1150. [PMID: 31694510 DOI: 10.1134/s0006297919100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondria are essential organelles of eukaryotic cell that provide its respiratory function by means of the electron transfer chain. Expression of mitochondrial genes is organized in a bacterial-like manner; however multiple evolutionary differences are observed between the two systems, including translation initiation machinery. This review is dedicated to the mitochondrial translation initiation factor 3 (IF3mt), which plays a key role in the protein synthesis in mitochondria. Involvement of IF3mt in human health and disease is discussed.
Collapse
Affiliation(s)
- I V Chicherin
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia. .,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - M V Baleva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S A Levitskii
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - E B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117977, Russia
| | - I A Krasheninnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|
17
|
Ayyub SA, Varshney U. Translation initiation in mammalian mitochondria- a prokaryotic perspective. RNA Biol 2019; 17:165-175. [PMID: 31696767 DOI: 10.1080/15476286.2019.1690099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
ATP is generated in mitochondria of eukaryotic cells by oxidative phosphorylation (OXPHOS). The OXPHOS complex, which is crucial for cellular metabolism, comprises of both nuclear and mitochondrially encoded subunits. Also, the occurrence of several pathologies because of mutations in the mitochondrial translation apparatus indicates the importance of mitochondrial translation and its regulation. The mitochondrial translation apparatus is similar to its prokaryotic counterpart due to a common origin of evolution. However, mitochondrial translation has diverged from prokaryotic translation in many ways by reductive evolution. In this review, we focus on mammalian mitochondrial translation initiation, a highly regulated step of translation, and present a comparison with prokaryotic translation.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
18
|
Luo Y, Su R, Wang Y, Xie W, Liu Z, Huang Y. Schizosaccharomyces pombe Mti2 and Mti3 act in conjunction during mitochondrial translation initiation. FEBS J 2019; 286:4542-4553. [PMID: 31350787 DOI: 10.1111/febs.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023]
Abstract
Mitochondrial DNA encodes key subunits of the oxidative phosphorylation complexes essential for ATP production. Translation initiation in mitochondria requires two general factors, mtIF2 and mtIF3, whose counterparts in bacteria are essential for protein synthesis. In this study, we report the characterization of the fission yeast Schizosaccharomyces pombe mtIF2 (Mti2) and mtIF3 (Mti3). Deletion of mti2 impairs cell growth on the respiratory medium. The growth defect of the mti2 deletion mutant can be suppressed by expressing IFM1, the Saccharomyces cerevisiae homolog of Mti2, demonstrating functional conservation between the two proteins. Deletion of mti2 also impairs mitochondrial protein synthesis. Unlike mti2, deletion of mti3 does not affect cell growth on respiratory media and mitochondrial translation. However, deletion of mti3 exacerbates the growth defect of the Δmti2 mutant, suggesting that the two proteins have distinct, but partially overlapping functions during the process of mitochondrial translation initiation in S. pombe. Both Mti2 and Mti3 are associated with the small subunit of the mitochondrial ribosome (mitoribosome). Disruption of mti2, but not mti3, causes dissociation of the mitoribosome and also abolishes Mti3 binding to the small subunit of the mitoribosome. Our results suggest that Mti2 and Mti3 bind in a sequential manner to the small subunit of the mitoribosome and that Mti3 facilitates the function of Mti2 in mitochondrial translation initiation. Our findings also support the view that the importance of the mitochondrial translation initiation factors varies among the organisms.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Wanqiu Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
19
|
Petrov AS, Wood EC, Bernier CR, Norris AM, Brown A, Amunts A. Structural Patching Fosters Divergence of Mitochondrial Ribosomes. Mol Biol Evol 2019; 36:207-219. [PMID: 30517740 PMCID: PMC6367999 DOI: 10.1093/molbev/msy221] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) are essential components of all mitochondria that synthesize proteins encoded by the mitochondrial genome. Unlike other ribosomes, mitoribosomes are highly variable across species. The basis for this diversity is not known. Here, we examine the composition and evolutionary history of mitoribosomes across the phylogenetic tree by combining three-dimensional structural information with a comparative analysis of the secondary structures of mitochondrial rRNAs (mt-rRNAs) and available proteomic data. We generate a map of the acquisition of structural variation and reconstruct the fundamental stages that shaped the evolution of the mitoribosomal large subunit and led to this diversity. Our analysis suggests a critical role for ablation and expansion of rapidly evolving mt-rRNA. These changes cause structural instabilities that are “patched” by the acquisition of pre-existing compensatory elements, thus providing opportunities for rapid evolution. This mechanism underlies the incorporation of mt-tRNA into the central protuberance of the mammalian mitoribosome, and the altered path of the polypeptide exit tunnel of the yeast mitoribosome. We propose that since the toolkits of elements utilized for structural patching differ between mitochondria of different species, it fosters the growing divergence of mitoribosomes.
Collapse
Affiliation(s)
- Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Elizabeth C Wood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Chad R Bernier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Ashlyn M Norris
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Franco LVR, Moda BS, Soares MAKM, Barros MH. Msc6p is required for mitochondrial translation initiation in the absence of formylated Met-tRNA fMet. FEBS J 2019; 286:1407-1419. [PMID: 30767393 DOI: 10.1111/febs.14785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/27/2018] [Accepted: 02/13/2019] [Indexed: 01/04/2023]
Abstract
Mitochondrial translation normally requires formylation of the initiator tRNA-met, a reaction catalyzed by the enzyme formyltransferase, Fmt1p and MTFMT in Saccharomyces cerevisiae and human mitochondria, respectively. Yeast fmt1 mutants devoid of Fmt1p, however, can synthesize all mitochondrial gene products by initiating translation with a non-formylated methionyl-tRNA. Yeast synthetic respiratory-deficient fmt1 mutants have uncovered several factors suggested to play a role in translation initiation with non-formylated methionyl-tRNA. Here, we present evidence that Msc6p, a member of the pentatricopeptide repeat (PPR) motif family, is another essential factor for mitochondrial translation in fmt1 mutants. The PPR motif is characteristic of RNA-binding proteins found in chloroplasts and plant and fungal mitochondria, and is generally involved in RNA stability and transport. Moreover, in the present study, we show that the respiratory deficiency of fmt1msc6 double mutants can be rescued by overexpression of the yeast mitochondrial initiation factor mIF-2, encoded by IFM1. The role of Msc6p in translational initiation is further supported by pull-down assays showing that it transiently interacts with mIF-2. Altogether, our data indicate that Msc6p is an important factor in mitochondrial translation with an auxiliary function related to the mIF-2-dependent formation of the initiation complex.
Collapse
Affiliation(s)
| | - Bruno S Moda
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Maria A K M Soares
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
21
|
Chicherin IV, Zinina VV, Levitskiy SA, Serebryakova MV, Kamenski PA. Aim23p Interacts with the Yeast Mitochondrial Ribosomal Small Subunit. BIOCHEMISTRY (MOSCOW) 2019; 84:40-46. [DOI: 10.1134/s000629791901005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Ogunbona OB, Claypool SM. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front Cell Dev Biol 2019; 7:3. [PMID: 30766870 PMCID: PMC6365663 DOI: 10.3389/fcell.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial carrier family (MCF) is a group of transport proteins that are mostly localized to the inner mitochondrial membrane where they facilitate the movement of various solutes across the membrane. Although these carriers represent potential targets for therapeutic application and are repeatedly associated with human disease, research on the MCF has not progressed commensurate to their physiologic and pathophysiologic importance. Many of the 53 MCF members in humans are orphans and lack known transport substrates. Even for the relatively well-studied members of this family, such as the ADP/ATP carrier and the uncoupling protein, there exist fundamental gaps in our understanding of their biological roles including a clear rationale for the existence of multiple isoforms. Here, we briefly review this important family of mitochondrial carriers, provide a few salient examples of their diverse metabolic roles and disease associations, and then focus on an emerging link between several distinct MCF members, including the ADP/ATP carrier, and cytochrome c oxidase biogenesis. As the ADP/ATP carrier is regarded as the paradigm of the entire MCF, its newly established role in regulating translation of the mitochondrial genome highlights that we still have a lot to learn about these metabolite transporters.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Steven M. Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
23
|
Derbikova K, Kuzmenko A, Levitskii S, Klimontova M, Chicherin I, Baleva MV, Krasheninnikov IA, Kamenski P. Biological and Evolutionary Significance of Terminal Extensions of Mitochondrial Translation Initiation Factor 3. Int J Mol Sci 2018; 19:ijms19123861. [PMID: 30518034 PMCID: PMC6321546 DOI: 10.3390/ijms19123861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 01/14/2023] Open
Abstract
Protein biosynthesis in mitochondria is organized in a bacterial manner. However, during evolution, mitochondrial translation mechanisms underwent many organelle-specific changes. In particular, almost all mitochondrial translation factors, being orthologous to bacterial proteins, are characterized by some unique elements of primary or secondary structure. In the case of the organellar initiation factor 3 (IF3), these elements are several dozen amino acids long N- and C-terminal extensions. This study focused on the terminal extensions of baker's yeast mitochondrial IF3, Aim23p. By in vivo deletion and complementation analysis, we show that at least one extension is necessary for Aim23p function. At the same time, human mitochondrial IF3 is fully functional in yeast mitochondria even without both terminal extensions. While Escherichia coli IF3 itself is poorly active in yeast mitochondria, adding Aim23p terminal extensions makes the resulting chimeric protein as functional as the cognate factor. Our results show that the terminal extensions of IF3 have evolved as the "adaptors" that accommodate the translation factor of bacterial origin to the evolutionary changed protein biosynthesis system in mitochondria.
Collapse
Affiliation(s)
- Ksenia Derbikova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | - Anton Kuzmenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
- Institute of Molecular Genetics, Russian Academy of Science, 119991 Moskva, Russia.
| | - Sergey Levitskii
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | - Maria Klimontova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany.
| | - Ivan Chicherin
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | - Maria V Baleva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| | | | - Piotr Kamenski
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moskva, Russia.
| |
Collapse
|
24
|
Levitskii S, Derbikova K, Baleva MV, Kuzmenko A, Golovin AV, Chicherin I, Krasheninnikov IA, Kamenski P. 60S dynamic state of bacterial ribosome is fixed by yeast mitochondrial initiation factor 3. PeerJ 2018; 6:e5620. [PMID: 30245939 PMCID: PMC6147165 DOI: 10.7717/peerj.5620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
The processes of association and dissociation of ribosomal subunits are of great importance for the protein biosynthesis. The mechanistic details of these processes, however, are not well known. In bacteria, upon translation termination, the ribosome dissociates into subunits which is necessary for its further involvement into new initiation step. The dissociated state of the ribosome is maintained by initiation factor 3 (IF3) which binds to free small subunits and prevents their premature association with large subunits. In this work, we have exchanged IF3 in Escherichia coli cells by its ortholog from Saccharomyces cerevisiae mitochondria (Aim23p) and showed that yeast protein cannot functionally substitute the bacterial one and is even slightly toxic for bacterial cells. Our in vitro experiments have demonstrated that Aim23p does not split E. coli ribosomes into subunits. Instead, it fixes a state of ribosomes characterized by sedimentation coefficient about 60S which is not a stable structure but rather reflects a shift of dynamic equilibrium between associated and dissociated states of the ribosome. Mitochondria-specific terminal extensions of Aim23p are necessary for “60S state” formation, and molecular modeling results point out that these extensions might stabilize the position of the protein on the bacterial ribosome.
Collapse
Affiliation(s)
| | | | - Maria V Baleva
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Anton Kuzmenko
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Andrey V Golovin
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| | - Ivan Chicherin
- Faculty of Biology, Moscow State University, Moscow, Russia
| | | | - Piotr Kamenski
- Faculty of Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
25
|
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 2018; 560:263-267. [PMID: 30089917 DOI: 10.1038/s41586-018-0373-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022]
Abstract
Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.
Collapse
|
26
|
Arguello T, Köhrer C, RajBhandary UL, Moraes CT. Mitochondrial methionyl N-formylation affects steady-state levels of oxidative phosphorylation complexes and their organization into supercomplexes. J Biol Chem 2018; 293:15021-15032. [PMID: 30087118 DOI: 10.1074/jbc.ra118.003838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
N-Formylation of the Met-tRNAMet by the nuclearly encoded mitochondrial methionyl-tRNA formyltransferase (MTFMT) has been found to be a key determinant of protein synthesis initiation in mitochondria. In humans, mutations in the MTFMT gene result in Leigh syndrome, a progressive and severe neurometabolic disorder. However, the absolute requirement of formylation of Met-tRNAMet for protein synthesis in mammalian mitochondria is still debated. Here, we generated a Mtfmt-KO mouse fibroblast cell line and demonstrated that N-formylation of the first methionine via fMet-tRNAMet by MTFMT is not an absolute requirement for initiation of protein synthesis. However, it differentially affected the efficiency of synthesis of mtDNA-coded polypeptides. Lack of methionine N-formylation did not compromise the stability of these individual subunits but had a marked effect on the assembly and stability of the OXPHOS complexes I and IV and on their supercomplexes. In summary, N-formylation is not essential for mitochondrial protein synthesis but is critical for efficient synthesis of several mitochondrially encoded peptides and for OXPHOS complex stability and assembly into supercomplexes.
Collapse
Affiliation(s)
- Tania Arguello
- From the Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136 and
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Carlos T Moraes
- From the Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136 and
| |
Collapse
|
27
|
Beaudoin JD, Novoa EM, Vejnar CE, Yartseva V, Takacs CM, Kellis M, Giraldez AJ. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat Struct Mol Biol 2018; 25:677-686. [PMID: 30061596 PMCID: PMC6690192 DOI: 10.1038/s41594-018-0091-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/20/2018] [Indexed: 01/22/2023]
Abstract
RNA folding plays a crucial role in RNA function. However, knowledge of the global structure of the transcriptome is limited to cellular systems at steady state, thus hindering the understanding of RNA structure dynamics during biological transitions and how it influences gene function. Here, we characterized mRNA structure dynamics during zebrafish development. We observed that on a global level, translation guides structure rather than structure guiding translation. We detected a decrease in structure in translated regions and identified the ribosome as a major remodeler of RNA structure in vivo. In contrast, we found that 3' untranslated regions (UTRs) form highly folded structures in vivo, which can affect gene expression by modulating microRNA activity. Furthermore, dynamic 3'-UTR structures contain RNA-decay elements, such as the regulatory elements in nanog and ccna1, two genes encoding key maternal factors orchestrating the maternal-to-zygotic transition. These results reveal a central role of RNA structure dynamics in gene regulatory programs.
Collapse
Affiliation(s)
- Jean-Denis Beaudoin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Eva Maria Novoa
- Computer Science and Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neuroscience, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carter M Takacs
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- College of Arts and Sciences, University of New Haven, West Haven, CT, USA
| | - Manolis Kellis
- Computer Science and Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Morena F, Argentati C, Bazzucchi M, Emiliani C, Martino S. Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes (Basel) 2018; 9:E329. [PMID: 29958477 PMCID: PMC6070936 DOI: 10.3390/genes9070329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Sequence databases and transcriptome-wide mapping have revealed different reversible and dynamic chemical modifications of the nitrogen bases of RNA molecules. Modifications occur in coding RNAs and noncoding-RNAs post-transcriptionally and they can influence the RNA structure, metabolism, and function. The result is the expansion of the variety of the transcriptome. In fact, depending on the type of modification, RNA molecules enter into a specific program exerting the role of the player or/and the target in biological and pathological processes. Many research groups are exploring the role of RNA modifications (alias epitranscriptome) in cell proliferation, survival, and in more specialized activities. More recently, the role of RNA modifications has been also explored in stem cell biology. Our understanding in this context is still in its infancy. Available evidence addresses the role of RNA modifications in self-renewal, commitment, and differentiation processes of stem cells. In this review, we will focus on five epitranscriptomic marks: N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, Pseudouridine (Ψ) and Adenosine-to-Inosine editing. We will provide insights into the function and the distribution of these chemical modifications in coding RNAs and noncoding-RNAs. Mainly, we will emphasize the role of epitranscriptomic mechanisms in the biology of naïve, primed, embryonic, adult, and cancer stem cells.
Collapse
Affiliation(s)
- Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
29
|
Ogunbona OB, Baile MG, Claypool SM. Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity. Mol Biol Cell 2018; 29:1449-1464. [PMID: 29688796 PMCID: PMC6014099 DOI: 10.1091/mbc.e17-12-0700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023] Open
Abstract
How the absence of the major mitochondrial ADP/ATP carrier in yeast, Aac2p, results in a specific defect in cytochrome c oxidase (COX; complex IV) activity is a long-standing mystery. Aac2p physically associates with respiratory supercomplexes, which include complex IV, raising the possibility that its activity is dependent on its association with Aac2p. Here, we have leveraged a transport-dead pathogenic AAC2 point mutant to determine the basis for the reduced COX activity in the absence of Aac2p. The steady-state levels of complex IV subunits encoded by the mitochondrial genome are significantly reduced in the absence of Aac2p function, whether its association with respiratory supercomplexes is preserved or not. This diminution in COX amounts is not caused by a reduction in the mitochondrial genome copy number or the steady-state level of its transcripts, and does not reflect a defect in complex IV assembly. Instead, the absence of Aac2p activity, genetically or pharmacologically, results in an aberrant pattern of mitochondrial translation. Interestingly, compared with the complete absence of Aac2p, the complex IV-related defects are greater in mitochondria expressing the transport-inactive Aac2p mutant. Our results highlight a critical role for Aac2p transport in mitochondrial translation whose disturbance uniquely impacts cytochrome c oxidase.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
30
|
Derbikova KS, Levitsky SA, Chicherin IV, Vinogradova EN, Kamenski PA. Activation of Yeast Mitochondrial Translation: Who Is in Charge? BIOCHEMISTRY (MOSCOW) 2018; 83:87-97. [DOI: 10.1134/s0006297918020013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Liu J, Li Y, Chen J, Wang Y, Zou M, Su R, Huang Y. The fission yeast Schizosaccharomyces pombe Mtf2 is required for mitochondrial cox1 gene expression. MICROBIOLOGY-SGM 2018; 164:400-409. [PMID: 29458562 DOI: 10.1099/mic.0.000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial gene expression is essential for adenosine triphosphate synthesis via oxidative phosphorylation, which is the universal energy currency of cells. Here, we report the identification and characterization of a homologue of Saccharomyces cerevisiae Mtf2 (also called Nam1) in Schizosaccharomyces pombe. The Δmtf2 mutant with the intron-containing mitochondrial DNA (mtDNA) exhibited impaired growth on a rich medium containing the non-fermentable carbon source glycerol, suggesting that mtf2 is involved in mitochondrial function. mtf2 deletion in a mitochondrial intron-containing background resulted in a barely detectable level of the cox1 mRNA and a reduction in the level of the cob1 mRNA, and severely impaired cox1 translation. In contrast, mtf2 deletion in a mitochondrial intron-less background did not affect the levels of cox1 and cob1 mRNAs. However, Cox1 synthesis could not be restored to the control level in the Δmtf2 mutant with intron-less mtDNA. Our results suggest that unlike its counterpart in S. cerevisiae which plays a general role in synthesis of mtDNA-encoded proteins, S. pombe Mtf2 primarily functions in cox1 translation and the effect of mtf2 deletion on splicing of introns in mtDNA is likely due to a deficiency in the synthesis of intron-encoded maturases.
Collapse
Affiliation(s)
- Jinyu Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Jie Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
32
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Abstract
Many viral infections cause host shutoff, a state in which host protein synthesis is globally inhibited. Emerging evidence from vaccinia and influenza A virus infections indicates that subsets of cellular proteins are resistant to host shutoff and continue to be synthesized. Remarkably, the proteins of oxidative phosphorylation, the cellular-energy-generating machinery, are selectively synthesized in both cases. Identifying mechanisms that drive selective protein synthesis should facilitate understanding both viral replication and fundamental cell biology.
Collapse
|
34
|
Ma J, Du C, Zhou C, Sheng Y, Fan Z, Yue B, Zhang X. Complete mitochondrial genomes of two blattid cockroaches, Periplaneta australasiae and Neostylopyga rhombifolia, and phylogenetic relationships within the Blattaria. PLoS One 2017; 12:e0177162. [PMID: 28486518 PMCID: PMC5423650 DOI: 10.1371/journal.pone.0177162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
Complete mitochondrial genomes (mitogenomes) of two cockroach species, Periplaneta australasiae and Neostylopyga rhombifolia, 15,605 bp and 15,711 bp in length, respectively, were determined. As reported for other cockroach mitogenomes, the two mitogenomes possessed typical ancestral insect mitogenome gene composition and arrangement. Only several small intergenic spacers were found: one, which was common in all sequenced cockroach mitogenomes except for the genus Cryptocercus, was between tRNA-Ser (UCN) and ND1 and contained a 7bp highly conserved motif (WACTTAA). Three different types of short tandem repeats in the N. rhombifolia control region (CR) were observed. The homologous alignments of these tandem repeats with other six cockroach mitogenome CRs revealed a low similarity. Three conserved sequence blocks (CSB) were detected in both cockroach mitochondrial CRs. CSB1 was specific for blattinine mitogenomes and was highly conserved with 95% similarity, speculating that this block was a possible molecular synapomorphy for this subfamily. CSB3 located nearby downstream of CSB1 and has more variations within blattinine mitogenomes compared with CSB1. The CSB3 was capable of forming stable stem-loop structure with a small T-stretch in the loop portion. We assessed the influence of four datasets and two inference methods on topology within Orthopteroidea. All genes excluding the third codon positions of PCGs could generate more stable topology, and higher posterior probabilities than bootstrap values were presented at some branch nodes. The phylogenetic analysis with different datasets and analytical methods supported the monophyly of Dictyoptera and supported strongly the proposal that Isoptera should be classified as a family (Termitidae) of the Blattaria. Specifically, Shelfordella lateralis was inserted in the clade Periplaneta. Considering the K2P genetic distance, morphological characters, and the phylogenetic trees, we suggested that S. lateralis should be placed in the genus Periplaneta.
Collapse
Affiliation(s)
- Jinnan Ma
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chao Du
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuang Zhou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongmei Sheng
- Sichuan Key Laboratory of Medicinal American Cockroach, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
35
|
Evans TG, Pespeni MH, Hofmann GE, Palumbi SR, Sanford E. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Mol Ecol 2017; 26:2257-2275. [PMID: 28141889 DOI: 10.1111/mec.14038] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023]
Abstract
Increasing awareness of spatial and temporal variation in ocean pH suggests some marine populations may be adapted to local pH regimes and will therefore respond differently to present-day pH variation and to long-term ocean acidification. In the Northeast Pacific Ocean, differences in the strength of coastal upwelling cause latitudinal variation in prevailing pH regimes that are hypothesized to promote local adaptation and unequal pH tolerance among resident populations. In this study, responses to experimental seawater acidification were compared among embryos and larvae from six populations of purple sea urchins (Strongylocentrotus purpuratus) inhabiting areas that differ in their frequency of low pH exposure and that prior research suggests are locally adapted to seawater pH. Transcriptomic analyses demonstrate urchin populations most frequently exposed to low pH seawater responded to experimental acidification by expressing genes within major ATP-producing pathways at greater levels than populations encountering low pH less often. Multiple genes within the tricarboxylic acid cycle, electron transport chain and fatty acid beta oxidation pathways were upregulated in urchin populations experiencing low pH conditions most frequently. These same metabolic pathways were significantly over-represented among genes both expressed in a population-specific manner and putatively under selection to enhance low pH tolerance. Collectively, these data suggest natural selection is acting on metabolic gene networks to redirect ATP toward maintaining acid-base homeostasis and enhance tolerance of seawater acidification. As a trade-off, marine populations more tolerant of low pH may have less energy to put towards other aspects of fitness and to respond to additional ocean change.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, 93950, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, USA
| |
Collapse
|
36
|
Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübner B, Seikowski J, Dennerlein S, Rehling P, Rodnina MV, Höbartner C, Bohnsack MT. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J 2016; 35:2104-2119. [PMID: 27497299 PMCID: PMC5048346 DOI: 10.15252/embj.201694885] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial gene expression uses a non‐universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt‐)tRNAMet mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt‐tRNAMet to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m5C34 of mt‐tRNAMet to generate an f5C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m5C34 mt‐tRNAMet in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt‐tRNAMet function. Together, our data reveal how modifications in mt‐tRNAMet are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNAMet to recognise the different codons encoding methionine.
Collapse
Affiliation(s)
- Sara Haag
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ahmed S Warda
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jens Kretschmer
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Charlotte Blessing
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Benedikt Hübner
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jan Seikowski
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Peter Rehling
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
37
|
Abstract
Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical ‘translation factors’. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.
Collapse
Affiliation(s)
- Steven J Marygold
- a FlyBase, Department of Physiology , Development and Neuroscience, University of Cambridge , Cambridge , UK
| | - Helen Attrill
- a FlyBase, Department of Physiology , Development and Neuroscience, University of Cambridge , Cambridge , UK
| | - Paul Lasko
- b Department of Biology , McGill University , Bellini Life Sciences Complex, Montreal, Quebec , Canada
| |
Collapse
|
38
|
Ostojić J, Panozzo C, Bourand-Plantefol A, Herbert CJ, Dujardin G, Bonnefoy N. Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria. Nucleic Acids Res 2016; 44:5785-97. [PMID: 27257059 PMCID: PMC4937339 DOI: 10.1093/nar/gkw490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023] Open
Abstract
Mitochondria have their own translation machinery that produces key subunits of the OXPHOS complexes. This machinery relies on the coordinated action of nuclear-encoded factors of bacterial origin that are well conserved between humans and yeast. In humans, mutations in these factors can cause diseases; in yeast, mutations abolishing mitochondrial translation destabilize the mitochondrial DNA. We show that when the mitochondrial genome contains no introns, the loss of the yeast factors Mif3 and Rrf1 involved in ribosome recycling neither blocks translation nor destabilizes mitochondrial DNA. Rather, the absence of these factors increases the synthesis of the mitochondrially-encoded subunits Cox1, Cytb and Atp9, while strongly impairing the assembly of OXPHOS complexes IV and V. We further show that in the absence of Rrf1, the COX1 specific translation activator Mss51 accumulates in low molecular weight forms, thought to be the source of the translationally-active form, explaining the increased synthesis of Cox1. We propose that Rrf1 takes part in the coordination between translation and OXPHOS assembly in yeast mitochondria. These interactions between general and specific translation factors might reveal an evolutionary adaptation of the bacterial translation machinery to the set of integral membrane proteins that are translated within mitochondria.
Collapse
Affiliation(s)
- Jelena Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Alexa Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
39
|
Nag JK, Chahar D, Shrivastava N, Gupta CL, Bajpai P, Chandra D, Misra-Bhattacharya S. Functional attributes of evolutionary conserved Arg45 of Wolbachia (Brugia malayi) translation initiation factor-1. Future Microbiol 2016; 11:195-214. [PMID: 26855259 DOI: 10.2217/fmb.15.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Wolbachia is a promising antifilarial chemotherapeutic target. Translation initiation factor-1 (Tl IF-1) is an essential factor in prokaryotes. Functional characterization of Wolbachia's novel proteins/enzymes is necessary for the development of adulticidal drugs. MATERIALS & METHODS Mutant, Wol Tl IF-1 R45D was constructed by site directed mutagenesis. Fluorimetry and size exclusion chromatography were used to determine the biophysical characteristics. Mobility shift assay and fluorescence resonance energy transfer were used to investigate the functional aspect of Wol Tl IF-1 with its mutant. RESULTS Both wild and mutant were in monomeric native conformations. Wild exhibits nonspecific binding with ssRNA/ssDNA fragments under electrostatic conditions and showed annealing and displacement of RNA strands in comparison to mutant. CONCLUSION Point mutation impaired RNA chaperone activity of the mutant and its interaction with nucleotides.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Department of Biochemistry, Lucknow University, Lucknow (UP) 226007, India
| | - Dhanvantri Chahar
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Academy of Scientific & Innovative Research, Coordination Office, Mathura Road, CRRI, Jasola, New Delhi 110020, India
| | - Nidhi Shrivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow (UP) 226026, India
| | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow (UP) 226026, India
| | - Deepak Chandra
- Department of Biochemistry, Lucknow University, Lucknow (UP) 226007, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Academy of Scientific & Innovative Research, Coordination Office, Mathura Road, CRRI, Jasola, New Delhi 110020, India
| |
Collapse
|
40
|
Kuzmenko A, Derbikova K, Salvatori R, Tankov S, Atkinson GC, Tenson T, Ott M, Kamenski P, Hauryliuk V. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Sci Rep 2016; 6:18749. [PMID: 26728900 PMCID: PMC4700529 DOI: 10.1038/srep18749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system’s components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Ksenia Derbikova
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Stoyan Tankov
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin Ott
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| |
Collapse
|
41
|
Two novel mitogenomes of Dipodidae species and phylogeny of Rodentia inferred from the complete mitogenomes. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 2014; 48:77-84. [PMID: 24412566 PMCID: PMC3988845 DOI: 10.1016/j.biocel.2013.12.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/13/2013] [Accepted: 12/26/2013] [Indexed: 10/28/2022]
Abstract
Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical presentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particularly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing novel therapies.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|