1
|
Saldivia N, Salazar K, Cifuentes M, Espinoza F, Harrison FE, Nualart F. Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages. Glia 2024; 72:708-727. [PMID: 38180226 DOI: 10.1002/glia.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-β through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.
Collapse
Affiliation(s)
- Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Francisca Espinoza
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Nogueira IPM, Costa GMJ, Lacerda SMDSN. Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals (Basel) 2024; 14:220. [PMID: 38254390 PMCID: PMC10812705 DOI: 10.3390/ani14020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) were first generated by Yamanaka in 2006, revolutionizing research by overcoming limitations imposed by the use of embryonic stem cells. In terms of the conservation of endangered species, iPSC technology presents itself as a viable alternative for the manipulation of target genetics without compromising specimens. Although iPSCs have been successfully generated for various species, their application in nonmammalian species, particularly avian species, requires further in-depth investigation to cover the diversity of wild species at risk and their different protocol requirements. This study aims to provide an overview of the workflow for iPSC induction, comparing well-established protocols in humans and mice with the limited information available for avian species. Here, we discuss the somatic cell sources to be reprogrammed, genetic factors, delivery methods, enhancers, a brief history of achievements in avian iPSC derivation, the main approaches for iPSC characterization, and the future perspectives and challenges for the field. By examining the current protocols and state-of-the-art techniques employed in iPSC generation, we seek to contribute to the development of efficient and species-specific iPSC methodologies for at-risk avian species. The advancement of iPSC technology holds great promise for achieving in vitro germline competency and, consequently, addressing reproductive challenges in endangered species, providing valuable tools for basic research, bird genetic preservation and rescue, and the establishment of cryobanks for future conservation efforts.
Collapse
Affiliation(s)
| | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (I.P.M.N.); (G.M.J.C.)
| |
Collapse
|
3
|
Salazar K, Jara N, Ramírez E, de Lima I, Smith-Ghigliotto J, Muñoz V, Ferrada L, Nualart F. Role of vitamin C and SVCT2 in neurogenesis. Front Neurosci 2023; 17:1155758. [PMID: 37424994 PMCID: PMC10324519 DOI: 10.3389/fnins.2023.1155758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Different studies have established the fundamental role of vitamin C in proliferation, differentiation, and neurogenesis in embryonic and adult brains, as well as in in vitro cell models. To fulfill these functions, the cells of the nervous system regulate the expression and sorting of sodium-dependent vitamin C transporter 2 (SVCT2), as well as the recycling of vitamin C between ascorbic acid (AA) and dehydroascorbic acid (DHA) via a bystander effect. SVCT2 is a transporter preferentially expressed in neurons and in neural precursor cells. In developmental stages, it is concentrated in the apical region of the radial glia, and in adult life, it is expressed preferentially in motor neurons of the cerebral cortex, starting on postnatal day 1. In neurogenic niches, SVCT2 is preferentially expressed in precursors with intermediate proliferation, where a scorbutic condition reduces neuronal differentiation. Vitamin C is a potent epigenetic regulator in stem cells; thus, it can induce the demethylation of DNA and histone H3K27m3 in the promoter region of genes involved in neurogenesis and differentiation, an effect mediated by Tet1 and Jmjd3 demethylases, respectively. In parallel, it has been shown that vitamin C induces the expression of stem cell-specific microRNA, including the Dlk1-Dio3 imprinting region and miR-143, which promotes stem cell self-renewal and suppresses de novo expression of the methyltransferase gene Dnmt3a. The epigenetic action of vitamin C has also been evaluated during gene reprogramming of human fibroblasts to induced pluripotent cells, where it has been shown that vitamin C substantially improves the efficiency and quality of reprogrammed cells. Thus, for a proper effect of vitamin C on neurogenesis and differentiation, its function as an enzymatic cofactor, modulator of gene expression and antioxidant is essential, as is proper recycling from DHA to AA by various supporting cells in the CNS.
Collapse
Affiliation(s)
- Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Isabelle de Lima
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Javiera Smith-Ghigliotto
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Valentina Muñoz
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
4
|
Gao Y, Yong F, Yan M, Wei Y, Wu X. miR-361 and miR-34a suppress foot-and-mouth disease virus proliferation by activating immune response signaling in PK-15 cells. Vet Microbiol 2023; 280:109725. [PMID: 36996618 DOI: 10.1016/j.vetmic.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Foot-and-mouth disease (FMD) severely impacts cloven-hoofed live-stock production, leading to serious economic losses and international restriction on the trade of animals and animal products worldwide. MiRNAs serve key roles in viral immunity and regulation. However, the knowledge about miRNAs regulation in FMDV infection is still limited. In this study, we found that FMDV infection caused rapid cytopathic in PK-15 cell. To investigate the miRNAs' function in FMDV infection, we performed knockdown of endogenous Dgcr8 using its specific siRNA and found that interference of Dgcr8 inhibited cellular miRNA expression and increased FMDV production, including viral capsid proteins expression, viral genome copies and virus titer, suggesting that miRNAs play an important role in FMDV infection. To obtain a full perspective on miRNA expression profiling after FMDV infection, we performed miRNA sequencing and found that FMDV infection caused inhibition of miRNA expression in PK-15 cells. Together with the target prediction result, miR-34a and miR-361 were screened for further study. Function study showed that no matter plasmid or mimics-mediated overexpression of miR-34a and miR-361 both suppressed FMDV replication, while inhibition of endogenous miR-34a and miR-361 expression using specific inhibitors significantly increased FMDV replication. Further study showed that miR-34a and miR-361 stimulated IFN-β promoter activity and activated interferon-stimulated response element (ISRE). In addition, ELISA test found that miR-361 and miR-34a increased secretion level of IFN-β and IFN-γ, which may contribute to repression of FMDV replication. This study preliminary revealed that miR-361 and miR-34a inhibited FMDV proliferation via stimulating immune response.
Collapse
|
5
|
Fawzy El-Sayed KM, Bittner A, Schlicht K, Mekhemar M, Enthammer K, Höppner M, Es-Souni M, Schulz J, Laudes M, Graetz C, Dörfer CE, Schulte DM. Ascorbic Acid/Retinol and/or Inflammatory Stimuli's Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells. Cells 2021; 10:cells10123310. [PMID: 34943818 PMCID: PMC8699152 DOI: 10.3390/cells10123310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.
Collapse
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence:
| | - Amira Bittner
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Martha Es-Souni
- Department of Orthodontics, School of Dental Medicine, University Clinic Schleswig-Holstein (UKSH), Christian-Albrechts University of Kiel, 24105 Kiel, Germany;
| | - Juliane Schulz
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
6
|
SVCT2 Overexpression and Ascorbic Acid Uptake Increase Cortical Neuron Differentiation, Which Is Dependent on Vitamin C Recycling between Neurons and Astrocytes. Antioxidants (Basel) 2021; 10:antiox10091413. [PMID: 34573045 PMCID: PMC8465431 DOI: 10.3390/antiox10091413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
During brain development, sodium–vitamin C transporter (SVCT2) has been detected primarily in radial glial cells in situ, with low-to-absent expression in cerebral cortex neuroblasts. However, strong SVCT2 expression is observed during the first postnatal days, resulting in increased intracellular concentration of vitamin C. Hippocampal neurons isolated from SVCT2 knockout mice showed shorter neurites and low clustering of glutamate receptors. Other studies have shown that vitamin C-deprived guinea pigs have reduced spatial memory, suggesting that ascorbic acid (AA) and SVCT2 have important roles in postnatal neuronal differentiation and neurite formation. In this study, SVCT2 lentiviral overexpression induced branching and increased synaptic proteins expression in primary cultures of cortical neurons. Analysis in neuroblastoma 2a (Neuro2a) and human subventricular tumor C3 (HSVT-C3) cells showed similar branching results. SVCT2 was mainly observed in the cell membrane and endoplasmic reticulum; however, it was not detected in the mitochondria. Cellular branching in neuronal cells and in a previously standardized neurosphere assay is dependent on the recycling of vitamin C or reduction in dehydroascorbic acid (DHA, produced by neurons) by glial cells. The effect of WZB117, a selective glucose/DHA transporter 1 (GLUT1) inhibitor expressed in glial cells, was also studied. By inhibiting GLUT1 glial cells, a loss of branching is observed in vitro, which is reproduced in the cerebral cortex in situ. We concluded that vitamin C recycling between neurons and astrocyte-like cells is fundamental to maintain neuronal differentiation in vitro and in vivo. The recycling activity begins at the cerebral postnatal cortex when neurons increase SVCT2 expression and concomitantly, GLUT1 is expressed in glial cells.
Collapse
|
7
|
Abstract
Significance: Werner syndrome (WS) is a rare autosomal recessive malady typified by a pro-oxidant/proinflammatory status, genetic instability, and by the early onset of numerous age-associated illnesses. The protein malfunctioning in WS individuals (WRN) is a helicase/exonuclease implicated in transcription, DNA replication/repair, and telomere maintenance. Recent Advances: In the last two decades, a series of important biological systems were created to comprehend at the molecular level the effect of a defective WRN protein. Such biological tools include mouse and worm (Caenorhabditis elegans) with a mutation in the Wrn helicase ortholog as well as human WS-induced pluripotent stem cells that can ultimately be differentiated into most cell lineages. Such WS models have identified anomalies related to the hallmarks of aging. Most importantly, vitamin C counteracts these age-related cellular phenotypes in these systems. Critical Issues: Vitamin C is the only antioxidant agent capable of reversing the cellular aging-related phenotypes in those biological systems. Since vitamin C is a cofactor for many hydroxylases and mono- or dioxygenase, it adds another level of complexity in deciphering the exact molecular pathways affected by this vitamin. Moreover, it is still unclear whether a short- or long-term vitamin C supplementation in human WS patients who already display aging-related phenotypes will have a beneficial impact. Future Directions: The discovery of new molecular markers specific to the modified biological pathways in WS that can be used for novel imaging techniques or as blood markers will be necessary to assess the favorable effect of vitamin C supplementation in WS. Antioxid. Redox Signal. 34, 856-874.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
8
|
FOXC1 Downregulates Nanog Expression by Recruiting HDAC2 to Its Promoter in F9 Cells Treated by Retinoic Acid. Int J Mol Sci 2021; 22:ijms22052255. [PMID: 33668324 PMCID: PMC7956269 DOI: 10.3390/ijms22052255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
FOXC1, a transcription factor involved in cell differentiation and embryogenesis, is demonstrated to be a negative regulator of Nanog in this study. FOXC1 is up-regulated in retinoic acid-induced differentiation of F9 Embryonal Carcinoma (EC) cells; furthermore, FOXC1 specifically inhibits the core pluripotency factor Nanog by binding to the proximal promoter. Overexpression of FOXC1 in F9 or knockdown in 3T3 results in the down-regulation or up-regulation of Nanog mRNA and proteins, respectively. In order to explain the mechanism by which FOXC1 inhibits Nanog expression, we identified the co-repressor HDAC2 from the FOXC1 interactome. FOXC1 recruits HDAC2 to Nanog promoter to decrease H3K27ac enrichment, resulting in transcription inhibition of Nanog. To the best of our knowledge, this is the first report that FOXC1 is involved in the epigenetic regulation of gene expression.
Collapse
|
9
|
Induction of Stem Cell Like Cells from Mouse Embryonic Fibroblast by Short-Term Shear Stress and Vitamin C. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are a good medicine source because of their potential to differentiate into various tissues or cells. However, traditionally, iPSCs made by specific transgenes and virus vectors are not appropriate for clinical use because of safety concerns and risk of tumor development. The goal of this research was to develop an alternative method for reprogramming, using small molecules and external stimuli. Two groups were established: short-term shear stress (STSS) under suspension culture and a combination of short-term shear stress and vitamin C (SSVC) under suspension culture. For STSS, the pipetting was carried out for cells twice per day for 2 min for 14 days in the embryonic stem cell (ES) medium. In the case of SSVC, the procedure was the same as for STSS however, its ES medium included 10 µM of vitamin C. After 14 days, all spheroids were picked and checked for pluripotency by ALP (alkaline phosphatase) assay and immunocytochemistry. Both groups partially showed the characteristics of stem cells but data demonstrated that the spheroids under shear stress and vitamin C had improved stem cell-like properties. This research showed the possibility of external stimuli and small molecules to reprogram the somatic cells without the use of transgenes.
Collapse
|
10
|
Han Z, Zhang Z, Guan Y, Chen B, Yu M, Zhang L, Fang J, Gao Y, Guo Z. New insights into Vitamin C function: Vitamin C induces JAK2 activation through its receptor-like transporter SVCT2. Int J Biol Macromol 2021; 173:379-398. [PMID: 33484802 DOI: 10.1016/j.ijbiomac.2021.01.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Vitamin C (VitC) is a requisite nutrient for humans and other primates. Extensive research continuously illustrates the applications of VitC in promoting cell reprogramming, fine-tuning embryonic stem cell function, and fighting diseases. Given its chemical reduction property, VitC predominantly acts as an antioxidant to reduce reactive oxygen species (ROS) and as a cofactor for certain dioxygenases involved in epigenetic regulation. Here, we propose that VitC is also a bio-signaling molecule based on the finding that sodium-dependent VitC transporter (SVCT) 2 is a novel receptor-like transporter of VitC that possesses dual activities in mediating VitC uptake and Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 2 signaling pathway. Through interaction, SVCT2 induces JAK2 phosphorylation while transporting VitC into cells. Activated JAK2 phosphorylates the C-terminus of SVCT2, resulting in the recruitment and activation of STAT2. As a highlight, our results suggest that the activation of JAK2 synergistically promotes regulation of VitC in ROS scavenging and epigenetic modifications through phosphorylating pyruvate dehydrogenase kinase 1, ten-eleven translocation enzyme 3, and histone H3 Tyr41. Furthermore, VitC-activated JAK2 exhibits bidirectional effects in regulating cell pluripotency and differentiation. Our results thus reveal that the SVCT2-mediated JAK2 activation facilitates VitC functions in a previously unknown manner.
Collapse
Affiliation(s)
- Zhuo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yian Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Bingxue Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jingshuai Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, PR China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
11
|
Zhang M, Li Q, Yang T, Meng F, Lai X, Liang L, Li C, Sun H, Sun J, Zheng H. Positive feedback between retinoic acid and 2-phospho-L-ascorbic acid trisodium salt during somatic cell reprogramming. ACTA ACUST UNITED AC 2020; 9:17. [PMID: 33000315 PMCID: PMC7527398 DOI: 10.1186/s13619-020-00057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022]
Abstract
Retinoic acid (RA) and 2-phospho-L-ascorbic acid trisodium salt (AscPNa) promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. In the current studies, the lower abilities of RA and AscPNa to promote reprogramming in the presence of each other suggested that they may share downstream pathways at least partially. The hypothesis was further supported by the RNA-seq analysis which demonstrated a high-level overlap between RA-activated and AscPNa activated genes during reprogramming. In addition, RA upregulated Glut1/3, facilitated the membrane transportation of dehydroascorbic acid, the oxidized form of L-ascorbic acid, and subsequently maintained intracellular L-ascorbic acid at higher level and for longer time. On the other hand, AscPNa facilitated the mesenchymal-epithelial transition during reprogramming, downregulated key mesenchymal transcriptional factors like Zeb1 and Twist1, subsequently suppressed the expression of Cyp26a1/b1 which mediates the metabolism of RA, and sustained the intracellular level of RA. Furthermore, the different abilities of RA and AscPNa to induce mesenchymal-epithelial transition, pluripotency, and neuronal differentiation explain their complex contribution to reprogramming when used individually or in combination. Therefore, the current studies identified a positive feedback between RA and AscPNa, or possibility between vitamin A and C, and further explored their contributions to reprogramming.
Collapse
Affiliation(s)
- Mengdan Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Tingting Yang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Meng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Lai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lining Liang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China
| | - Changpeng Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China
| | - Hao Sun
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave., Science City, Guangzhou, 510530, Huangpu District, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Fu J, Wu Z, Liu J, Wu T. Vitamin C: A stem cell promoter in cancer metastasis and immunotherapy. Biomed Pharmacother 2020; 131:110588. [PMID: 32836076 DOI: 10.1016/j.biopha.2020.110588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin C is an electron donor and is involved in a variety of biochemical reactions in stem cell and cancer stem cell, as well as collagen synthesis and the regulation of hypoxia-inducible factor synthesis, which two affect extracellular matrix remodelling and hence cancer metastasis. Specific doses of vitamin C can stop cancer cell glycolysis and block nitroso synthesis, indicating the potential of vitamin C in cancer treatment. Recent studies preliminary revealed Vitamin C enhance the cancer's immune response to anti PD-L1 therapy through multiple indirect approaches. Herein we reviewed the recent function of vitamin C for further research in sequential aspects of cancer stem cell, extracellular matrix remodeling, cancer metastasis and cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Zhaoyi Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Jianfeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| | - Tianfu Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| |
Collapse
|
13
|
Ascorbic Acid, Inflammatory Cytokines (IL-1 β/TNF- α/IFN- γ), or Their Combination's Effect on Stemness, Proliferation, and Differentiation of Gingival Mesenchymal Stem/Progenitor Cells. Stem Cells Int 2020; 2020:8897138. [PMID: 32879629 PMCID: PMC7448213 DOI: 10.1155/2020/8897138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Ascorbic acid (AA) and controlled inflammatory stimuli are postulated to possess the ability to independently exert positive effects on a variety of proliferative, pluripotency, and differentiation attributes of gingival mesenchymal stem/progenitor cells (G-MSCs). The current study's objective was to explore and compare for the first time the impact of the major inflammatory cytokines (IL-1β/TNF-α/IFN-γ), AA, or their combination on multipotency/pluripotency, proliferative, and differentiation characteristics of G-MSCs. Design Human G-MSCs (n = 5) were isolated and cultured in basic medium (control group), in basic medium with major inflammatory cytokines; 1 ng/ml IL-1β, 10 ng/ml TNF-α, and 100 ng/ml IFN-γ (inflammatory group), in basic medium with 250 μmol/l AA (AA group) and in inflammatory medium supplemented by AA (inflammatory/AA group). All media were renewed three times per week. In stimulated G-MSCs intracellular β-catenin at 1 hour, pluripotency gene expression at 1, 3, and 5 days, as well as colony-forming units (CFUs) ability and cellular proliferation over 14 days were examined. Following a five-days stimulation in the designated groups, multilineage differentiation was assessed via qualitative and quantitative histochemistry as well as mRNA expression. Results β-Catenin significantly decreased intracellularly in all experimental groups (p = 0.002, Friedman). AA group exhibited significantly higher cellular counts on days 3, 6, 7, and 13 (p < 0.05) and the highest CFUs at 14 days [median-CFUs (Q25/Q75); 40 (15/50), p = 0.043]. Significantly higher Nanog expression was noted in AA group [median gene-copies/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0007), p < 0.01, Wilcoxon-signed-rank]. Significant multilineage differentiation abilities, especially into osteogenic and chondrogenic directions, were further evident in the AA group. Conclusions AA stimulation enhances G-MSCs' stemness, proliferation, and differentiation properties, effects which are associated with a Wnt/β-catenin signaling pathway activation. Apart from initially boosting cellular metabolism as well as Sox2 and Oct4A pluripotency marker expression, inflammation appeared to attenuate these AA-induced positive effects. Current results reveal that for AA to exert its beneficial effects on G-MSCs' cellular attributes, it requires to act in an inflammation-free microenvironment.
Collapse
|
14
|
Hou S, Ding C, Shen H, Qian C, Zou Q, Lu J, Huang B, Tan J, Li H. Vitamin C improves the therapeutic potential of human amniotic epithelial cells in premature ovarian insufficiency disease. Stem Cell Res Ther 2020; 11:159. [PMID: 32321569 PMCID: PMC7178972 DOI: 10.1186/s13287-020-01666-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human amniotic epithelial cell (hAEC) transplantation holds great promise in treating premature ovarian insufficiency (POI). However, some deficient biological characteristics of hAECs restrict their application. METHODS Vitamin C (VC) was added to the culture media of hAECs for 2 weeks. Then, the proliferative ability, migration ability, pluripotency, and self-renewal of VC-treated hAECs (VC-hAECs) were determined. Next, hAECs and VC-hAECs were transplanted into the ovaries of cyclophosphamide (CTX)-induced POI model mice. The ovarian function of POI mice was evaluated after transplantation by counting follicle numbers and measuring the blood levels of AMH, E2, and FSH. The rescue effects of VC-hAECs and hAECs were unveiled by coculturing with CTX-damaged human ovarian granulosa cells (hGCs) and analyzing relative marker expression. Additionally, ovarian marker expression and transplant survival were detected in POI mice after transplantation to verify the beneficial effect of VC-hAECs. The cytokine profiles of VC-hAECs and hAECs were revealed by performing a cytokine array and an ELISA to show their paracrine function. RESULTS Our results indicated that VC promoted the proliferation, migration, pluripotency, and self-renewal of hAECs in vitro. The most effective concentration of VC was 50 μg/ml. After transplantation into the POI mouse model, VC-hAECs reversed ovarian function more powerfully than hAECs. Human granulosa cell marker expression in CTX-damaged hGCs was increased after coculture with VC-hAECs compared with hAECs. In the ovaries of the POI mice, ovarian marker expression was greater after VC-hAEC transplantation than after hAEC transplantation. VC-hAECs showed higher transplant survival than hAECs. Furthermore, VC-hAECs secreted more growth factors than hAECs. CONCLUSION Treatment with VC promoted the proliferation, migration, self-renewal, and paracrine functions of hAECs. Additionally, VC elevated the therapeutic potential of hAECs in treating POI.
Collapse
Affiliation(s)
- Shunyu Hou
- Department of Obstetrics and Gynecology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Chenyue Ding
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Han Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Chunfeng Qian
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Qinyan Zou
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Jiafeng Lu
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Boxian Huang
- Department of Obstetrics and Gynecology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Jichun Tan
- Reproductive Medical Center of Gynecology and Obstetrics Department, Shengjing Hospital of China Medical University, Shenyang, 110000, China. .,Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, 110000, China.
| | - Hong Li
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Evrova O, Kellenberger D, Calcagni M, Vogel V, Buschmann J. Supporting Cell-Based Tendon Therapy: Effect of PDGF-BB and Ascorbic Acid on Rabbit Achilles Tenocytes in Vitro. Int J Mol Sci 2020; 21:ijms21020458. [PMID: 31936891 PMCID: PMC7014238 DOI: 10.3390/ijms21020458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-based tendon therapies with tenocytes as a cell source need effective tenocyte in vitro expansion before application for tendinopathies and tendon injuries. Supplementation of tenocyte culture with biomolecules that can boost proliferation and matrix synthesis is one viable option for supporting cell expansion. In this in vitro study, the impacts of ascorbic acid or PDGF-BB supplementation on rabbit Achilles tenocyte culture were studied. Namely, cell proliferation, changes in gene expression of several ECM and tendon markers (collagen I, collagen III, fibronectin, aggrecan, biglycan, decorin, ki67, tenascin-C, tenomodulin, Mohawk, α-SMA, MMP-2, MMP-9, TIMP1, and TIMP2) and ECM deposition (collagen I and fibronectin) were assessed. Ascorbic acid and PDGF-BB enhanced tenocyte proliferation, while ascorbic acid significantly accelerated the deposition of collagen I. Both biomolecules led to different changes in the gene expression profile of the cultured tenocytes, where upregulation of collagen I, Mohawk, decorin, MMP-2, and TIMP-2 was observed with ascorbic acid, while these markers were downregulated by PDGF-BB supplementation. Vice versa, there was an upregulation of fibronectin, biglycan and tenascin-C by PDGF-BB supplementation, while ascorbic acid led to a downregulation of these markers. However, both biomolecules are promising candidates for improving and accelerating the in vitro expansion of tenocytes, which is vital for various tendon tissue engineering approaches or cell-based tendon therapy.
Collapse
Affiliation(s)
- Olivera Evrova
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Damian Kellenberger
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Correspondence: ; Tel.: +41-44-255-9895
| |
Collapse
|
16
|
Metabolic-Epigenetic Axis in Pluripotent State Transitions. EPIGENOMES 2019; 3:epigenomes3030013. [PMID: 34968225 PMCID: PMC8594706 DOI: 10.3390/epigenomes3030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
Cell state transition (CST) occurs during embryo development and in adult life in response to different stimuli and is associated with extensive epigenetic remodeling. Beyond growth factors and signaling pathways, increasing evidence point to a crucial role of metabolic signals in this process. Indeed, since several epigenetic enzymes are sensitive to availability of specific metabolites, fluctuations in their levels may induce the epigenetic changes associated with CST. Here we analyze how fluctuations in metabolites availability influence DNA/chromatin modifications associated with pluripotent stem cell (PSC) transitions. We discuss current studies and focus on the effects of metabolites in the context of naïve to primed transition, PSC differentiation and reprogramming of somatic cells to induced pluripotent stem cells (iPSCs), analyzing their mechanism of action and the causal correlation between metabolites availability and epigenetic alteration.
Collapse
|
17
|
Spitzhorn LS, Megges M, Wruck W, Rahman MS, Otte J, Degistirici Ö, Meisel R, Sorg RV, Oreffo ROC, Adjaye J. Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther 2019; 10:100. [PMID: 30885246 PMCID: PMC6423778 DOI: 10.1186/s13287-019-1209-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Primary mesenchymal stem cells (MSCs) are fraught with aging-related shortfalls. Human-induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) have been shown to be a useful clinically relevant source of MSCs that circumvent these aging-associated drawbacks. To date, the extent of the retention of aging-hallmarks in iMSCs differentiated from iPSCs derived from elderly donors remains unclear. METHODS Fetal femur-derived MSCs (fMSCs) and adult bone marrow MSCs (aMSCs) were isolated, corresponding iPSCs were generated, and iMSCs were differentiated from fMSC-iPSCs, from aMSC-iPSCs, and from human embryonic stem cells (ESCs) H1. In addition, typical MSC characterization such as cell surface marker expression, differentiation capacity, secretome profile, and trancriptome analysis were conducted for the three distinct iMSC preparations-fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs. To verify these results, previously published data sets were used, and also, additional aMSCs and iMSCs were analyzed. RESULTS fMSCs and aMSCs both express the typical MSC cell surface markers and can be differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. However, the transcriptome analysis revealed overlapping and distinct gene expression patterns and showed that fMSCs express more genes in common with ESCs than with aMSCs. fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs met the criteria set out for MSCs. Dendrogram analyses confirmed that the transcriptomes of all iMSCs clustered together with the parental MSCs and separated from the MSC-iPSCs and ESCs. iMSCs irrespective of donor age and cell type acquired a rejuvenation-associated gene signature, specifically, the expression of INHBE, DNMT3B, POU5F1P1, CDKN1C, and GCNT2 which are also expressed in pluripotent stem cells (iPSCs and ESC) but not in the parental aMSCs. iMSCs expressed more genes in common with fMSCs than with aMSCs. Independent real-time PCR comparing aMSCs, fMSCs, and iMSCs confirmed the differential expression of the rejuvenation (COX7A, EZA2, and TMEM119) and aging (CXADR and IGSF3) signatures. Importantly, in terms of regenerative medicine, iMSCs acquired a secretome (e.g., angiogenin, DKK-1, IL-8, PDGF-AA, osteopontin, SERPINE1, and VEGF) similar to that of fMSCs and aMSCs, thus highlighting their ability to act via paracrine signaling. CONCLUSIONS iMSCs irrespective of donor age and cell source acquire a rejuvenation gene signature. The iMSC concept could allow circumventing the drawbacks associated with the use of adult MSCs und thus provide a promising tool for use in various clinical settings in the future.
Collapse
Affiliation(s)
- Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias Megges
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jörg Otte
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Özer Degistirici
- Division of Paediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Roland Meisel
- Division of Paediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rüdiger Volker Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstr, 5, 40225, Düsseldorf, Germany
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
18
|
Zhi X, Lv J, Wei Y, Du P, Chang Y, Zhang Y, Gao Y, Wu R, Guo H. Foot-and-mouth disease virus infection stimulates innate immune signaling in the mouse macrophage RAW 264.7 cells. Can J Microbiol 2017; 64:155-166. [PMID: 29253356 DOI: 10.1139/cjm-2017-0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune system acts as the first line of defense against invasion by bacterial and viral pathogens. The role of macrophages in innate immune responses to foot-and-mouth disease virus (FMDV) is poorly understood. To determine the mechanism underlying activation of innate immunity after FMDV infection in macrophages, we performed FMDV infection in mouse macrophage RAW 264.7 cells and found that FMDV serotype O infection induced a cytopathic effect. We then evaluated the gene expression profile in macrophage RAW 264.7 cells after FMDV infection using systematic microarray analysis. Gene ontology annotation and enrichment analysis revealed that FMDV promoted expression in a group of genes that are enriched in innate immune response and inflammatory response processes. Further research demonstrated that FMDV serotype O infection enhanced NF-κB, Toll-like, and RIG-I-like receptor signaling pathways and proteins expression and increased transcription and expression of a series of cytokines and interferons, as proved by qRT-PCR, Western blot, ELISA, and dual-luciferase reporter assay. Our study concluded that FMDV infection triggers the innate immune response in macrophages after activation of multiple innate immune pathway receptors and proteins by FMDV serotype O, resulting in activation and secretion of a series of cytokines and interferons.
Collapse
Affiliation(s)
- Xiaoying Zhi
- a College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China.,b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Jianliang Lv
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yanquan Wei
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Ping Du
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yanyan Chang
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yun Zhang
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yuan Gao
- a College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China.,b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China.,c College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China
| | - Run Wu
- a College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China
| | | |
Collapse
|
19
|
Perino MG, Yamanaka S, Riordon DR, Tarasova Y, Boheler KR. Ascorbic acid promotes cardiomyogenesis through SMAD1 signaling in differentiating mouse embryonic stem cells. PLoS One 2017; 12:e0188569. [PMID: 29232368 PMCID: PMC5726630 DOI: 10.1371/journal.pone.0188569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/09/2017] [Indexed: 12/03/2022] Open
Abstract
Numerous groups have documented that Ascorbic Acid (AA) promotes cardiomyocyte differentiation from both mouse and human ESCs and iPSCs. AA is now considered indispensable for the routine production of hPSC-cardiomyocytes (CMs) using defined media; however, the mechanisms involved with the inductive process are poorly understood. Using a genetically modified mouse embryonic stem cell (mESC) line containing a dsRED transgene driven by the cardiac-restricted portion of the ncx1 promoter, we show that AA promoted differentiation of mESCs to CMs in a dose- and time-dependent manner. Treatment of mPSCs with AA did not modulate total SMAD content; however, the phosphorylated/active forms of SMAD2 and SMAD1/5/8 were significantly elevated. Co-administration of the SMAD2/3 activator Activin A with AA had no significant effect, but the addition of the nodal co-receptor TDGF1 (Cripto) antagonized AA’s cardiomyogenic-promoting ability. AA could also reverse some of the inhibitory effects on cardiomyogenesis of ALK/SMAD2 inhibition by SB431542, a TGFβ pathway inhibitor. Treatment with BMP2 and AA strongly amplified the positive cardiomyogenic effects of SMAD1/5/8 in a dose-dependent manner. AA could not, however, rescue dorsomorphin-mediated inhibition of ALK/SMAD1 activity. Using an inducible model system, we found that SMAD1, but not SMAD2, was essential for AA to promote the formation of TNNT2+-CMs. These data firmly demonstrate that BMP receptor-activated SMADs, preferential to TGFβ receptor-activated SMADs, are necessary to promote AA stimulated cardiomyogenesis. AA-enhanced cardiomyogenesis thus relies on the ability of AA to modulate the ratio of SMAD signaling among the TGFβ-superfamily receptor signaling pathways.
Collapse
Affiliation(s)
- Maria Grazia Perino
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Satoshi Yamanaka
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yelena Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, SAR China
- Division of Cardiology, Johns Hopkins Medical Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics. Stem Cells Int 2017; 2017:8936156. [PMID: 28512473 PMCID: PMC5415867 DOI: 10.1155/2017/8936156] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Transcription factors and signaling molecules are well-known regulators of stem cell identity and behavior; however, increasing evidence indicates that environmental cues contribute to this complex network of stimuli, acting as crucial determinants of stem cell fate. l-Ascorbic acid (vitamin C (VitC)) has gained growing interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. Here, we review the main functions of VitC and its effects on stem cells, focusing on its activity as cofactor of Fe+2/αKG dioxygenases, which regulate the epigenetic signatures, the redox status, and the extracellular matrix (ECM) composition, depending on the enzymes' subcellular localization. Acting as cofactor of collagen prolyl hydroxylases in the endoplasmic reticulum, VitC regulates ECM/collagen homeostasis and plays a key role in the differentiation of mesenchymal stem cells towards osteoblasts, chondrocytes, and tendons. In the nucleus, VitC enhances the activity of DNA and histone demethylases, improving somatic cell reprogramming and pushing embryonic stem cell towards the naive pluripotent state. The broad spectrum of actions of VitC highlights its relevance for stem cell biology in both physiology and disease.
Collapse
|
21
|
Ryall JG, Cliff T, Dalton S, Sartorelli V. Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell 2017; 17:651-662. [PMID: 26637942 DOI: 10.1016/j.stem.2015.11.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For many years, stem cell metabolism was viewed as a byproduct of cell fate status rather than an active regulatory mechanism; however, there is now a growing appreciation that metabolic pathways influence epigenetic changes associated with lineage commitment, specification, and self-renewal. Here we review how metabolites generated during glycolytic and oxidative processes are utilized in enzymatic reactions leading to epigenetic modifications and transcriptional regulation. We discuss how "metabolic reprogramming" contributes to global epigenetic changes in the context of naive and primed pluripotent states, somatic reprogramming, and hematopoietic and skeletal muscle tissue stem cells, and we discuss the implications for regenerative medicine.
Collapse
Affiliation(s)
- James G Ryall
- Stem Cell Metabolism and Regenerative Medicine Group, Basic & Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Tim Cliff
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, GA 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, GA 30602, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA.
| |
Collapse
|
22
|
Zainal Ariffin SH, Mohamed Rozali NA, Megat Abdul Wahab R, Senafi S, Zainol Abidin IZ, Zainal Ariffin Z. Analyses of basal media and serum for in vitro expansion of suspension peripheral blood mononucleated stem cell. Cytotechnology 2016; 68:675-86. [PMID: 26231833 PMCID: PMC4960118 DOI: 10.1007/s10616-014-9819-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/11/2014] [Indexed: 11/05/2022] Open
Abstract
Transplantation of stem cells requires a huge amount of cells, deeming the expansion of the cells in vitro necessary. The aim of this study is to define the optimal combination of basal medium and serum for the expansion of suspension peripheral blood mononucleated stem cells (PBMNSCs) without resulting in loss in the differentiation potential. Mononucleated cells were isolated from both mice and human peripheral blood samples through gradient centrifugation and expanded in α-MEM, RPMI, MEM or DMEM supplemented with either NBCS or FBS. The suspension cells were then differentiated to osteoblast. Our data suggested that α-MEM supplemented with 10 % (v/v) NBCS gives the highest fold increase after 14 days of culture for both mice and human PBMNSCs, which were ~1.51 and ~2.01 times, respectively. The suspension PBMNSCs in the respective medium were also able to maintain osteoblast differentiation potential as supported by the significant increase in ALP specific activity. The cells are also viable during the differentiated states when using this media. All these data strongly suggested that α-MEM supplemented with 10 % NBCS is the best media for the expansion of both mouse and human suspension PBMNSCs.
Collapse
Affiliation(s)
- Shahrul Hisham Zainal Ariffin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nur Akmal Mohamed Rozali
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Orthodontic, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Sahidan Senafi
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Intan Zarina Zainol Abidin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zaidah Zainal Ariffin
- Department of Microbiology, Faculty of Applied Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
23
|
Van Pham P, Tran NY, Phan NLC, Vu NB, Phan NK. Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers. In Vitro Cell Dev Biol Anim 2015; 52:218-27. [DOI: 10.1007/s11626-015-9963-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
|
24
|
Chen W, Huang J, Yu X, Lin X, Dai Y. Generation of induced pluripotent stem cells from renal tubular cells of a patient with Alport syndrome. Int J Nephrol Renovasc Dis 2015; 8:101-9. [PMID: 26345127 PMCID: PMC4551301 DOI: 10.2147/ijnrd.s85733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alport syndrome (AS) is a hereditary disease that leads to kidney failure and is caused by mutations in the COL4A3, COL4A4, and COL4A5 genes that lead to the absence of collagen α3α4α5 (IV) networks in the mature kidney glomerular basement membrane. Approximately 80% of AS is X-linked because of mutations in COL4A5, the gene encoding the alpha 5 chain of type IV collagen. To investigate the pathogenesis of AS at the genetic level, we generated induced pluripotent stem cells (iPSCs) from renal tubular cells of a patient with AS. The successful iPSC generation laid the foundation to master the repair of the COL4A5 gene and to evaluate the differentiation of iPSC into Sertoli cells and the accompanying epigenetic changes at each stage. The generation of iPSCs from AS patients not only confirms that iPSCs could be generated from renal tubular cells, but also provides a novel type of genetic therapy for AS patients. In this study, we generated iPSCs from renal tubular cells via ectopic expression of four transcription factors (Oct4, Sox2, c-myc, and Klf4). According to the human embryonic stem cell (hESC) charter, iPSC formation was confirmed by comparatively analyzing hESC markers via colony morphology, immunohistochemistry, qRT-PCR, flow cytometry, gene expression profiling of the three germ layers, and karyotyping. Our results demonstrated that iPSCs were similar to hESCs with regard to morphology, proliferation, hESC-specific surface marker expression, and differentiation into the cell types of the three germ layers. The efficient generation of iPSCs from the renal tubular cells of an AS patient would provide a novel model to investigate the mechanisms underlying AS and to develop new treatments for AS.
Collapse
Affiliation(s)
- Wenbiao Chen
- The Clinical Medical Research Center, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jianrong Huang
- Department of Hemodialysis, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, People's Republic of China
| | - Xiangqi Yu
- The Clinical Medical Research Center, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, People's Republic of China
| | - Yong Dai
- The Clinical Medical Research Center, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Stress signaling in mammalian oocytes and embryos: a basis for intervention and improvement of outcomes. Cell Tissue Res 2015; 363:159-167. [PMID: 25743689 DOI: 10.1007/s00441-015-2124-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/30/2014] [Indexed: 10/23/2022]
Abstract
Oocytes and early stage embryos are highly sensitive to variation in diverse exogenous factors such as temperature, osmolarity, oxygen, nutrient restriction, pH, shear stress, toxins, amino acid availability, and lipids. It is becoming increasingly apparent that many such factors negatively affect the endoplasmic reticulum, protein synthesis and protein processing, initiating ER stress and unfolded protein responses. As a result, ER stress signaling serves as a common mediator of cellular responses to diverse stressors. In oocytes and embryos, this leads to developmental arrest and epigenetic changes. Recent studies have revealed that preventing ER stress or inhibiting ER stress signaling can preserve or even enhance oocyte and embryo developmental potential. This review examines ER stress signaling, how it arises, how it affects oocytes and embryos, and how its occurrence can be managed or prevented.
Collapse
|
26
|
Gao Y, Han Z, Li Q, Wu Y, Shi X, Ai Z, Du J, Li W, Guo Z, Zhang Y. Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression. FEBS J 2015; 282:685-99. [DOI: 10.1111/febs.13173] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/23/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Gao
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Zhuo Han
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Qian Li
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| | - Yongyan Wu
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| | - Xiaoyan Shi
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Zhiying Ai
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Juan Du
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Wenzhong Li
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Zekun Guo
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| | - Yong Zhang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| |
Collapse
|
27
|
Pahang H, Nikravesh MR, Jalali M, Ebrahimzadeh Bideskan A, Zargari P, Sadr Nabavi A. Fibronectin regulation by vitamin C treatment in kidneys of nicotinic mice offspring. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e17056. [PMID: 25237577 PMCID: PMC4166096 DOI: 10.5812/ircmj.17056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/12/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
Background: Maternal cigarette smoking causes health risks and developmental defects in the offspring. So far, many studies have been conducted to suppress the effects of nicotine. However, the effects of coadministration of vitamin C and nicotine on extracellular matrix have not gained enough attention. Objectives: This study decided to investigate the effects of vitamin C on fibronectin expression in kidneys of mice offspring, treated with nicotine. Materials and Methods: Eighteen female pregnant BALB/c mice were selected; six mice in the experimental group 1 (exp 1) received nicotine (3 mg/kg/day), six mice in the experimental group 2 (exp 2) received 3 mg/kg/day nicotine and 9 mg/kg/day vitamin C simultaneously, and six were used as the control group and received 3 mL/kg/day normal saline via intraperitoneal (IP) injection parallel to other groups, since the 6th day of gestation to the end of prenatal period. In the first days of delivery, fibronectin content of neonatal kidneys was studied by immunohistochemistry (IHC) assay and gene expression was studied by the real-time PCR. Results: IHC results showed that fibronectin reaction significantly increased in proximal convoluted tubules of exp 1 compared with the control offspring; on the other hand, fibronectin reaction decreased in the mice offspring of exp 2. Gene expression results showed that fibronectin expression in the exp 1 offspring significantly increased compared with the control ones and fibronectin expression decreased in the mice offspring of exp 2. Conclusions: This study revealed that vitamin C could reduce the fibronectin accumulation effects of nicotine on kidney.
Collapse
Affiliation(s)
- Hasan Pahang
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Corresponding Author: Mohammad Reza Nikravesh, Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel: +98-5118002490, Fax: +98-5118002484, E-mail:
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Peyman Zargari
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Ariane Sadr Nabavi
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| |
Collapse
|
28
|
Li Q, Wang YS, Wang LJ, Zhang H, Li RZ, Cui CC, Li WZ, Zhang Y, Jin YP. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos. Cell Reprogram 2014; 16:290-7. [PMID: 24960527 DOI: 10.1089/cell.2013.0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, p<0.05), compact morulae formation (60.83 vs. 51.30%, p<0.05), and the blastomere apoptosis index (3.70 ± 1.41 vs. 4.43% ± 1.65, p<0.05) of bovine SCNT embryos. However, vitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, p<0.05) on day 7 and the hatching blastocysts formation rate on day 9 (26.51 vs. 50.65%, p<0.05) compared with that of the untreated group. Vitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.
Collapse
Affiliation(s)
- Qian Li
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shan ZY, Wu YS, Li X, Shen XH, Wang ZD, Liu ZH, Shen JL, Lei L. Continuous passages accelerate the reprogramming of mouse induced pluripotent stem cells. Cell Reprogram 2014; 16:77-83. [PMID: 24387163 DOI: 10.1089/cell.2013.0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are usually generated by reprogramming somatic cells through transduction with a transcription factor cocktail. However, the low efficiency of this procedure has kept iPSCs away from the study of the clinical application of stem cell biology. Our research shows that continuous passage increases the efficiency of reprogramming. Compared with conventional method of establishment of iPSCs, more embryonic stem cell (ESC)-like clones are generated by continuous passage during early reprogramming. These inchoate clones, indistinguishable from genuine ESC clones, are closer to fully reprogrammed cells compared with those derived from classical iPSC induction, which increased the expression of pluripotent gene markers and the levels of demethylation of Oct4 and Nanog. These results suggested that full reprogramming is a gradual process that does not merely end at the point of the activation of endogenous pluripotency-associated genes. Continuous passage could increase the pluripotency of induced cells and accelerate the process of reprogramming by epigenetic modification. In brief, we have provided an advanced strategy to accelerate the reprogramming and generate more nearly fully reprogrammed iPSCs efficiently and rapidly.
Collapse
Affiliation(s)
- Zhi-yan Shan
- 1 Department of Histology and Embryology, Harbin Medical University , China
| | | | | | | | | | | | | | | |
Collapse
|