1
|
Hosseini SA, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. Epigenetic disruption of histone deacetylase-2 accelerated apoptotic signaling and retarded malignancy in gastric cells. Epigenomics 2024; 16:277-292. [PMID: 38356395 DOI: 10.2217/epi-2023-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background: The objective of this research was to determine whether HDAC2 function is associated with gastric cancer progression. Methods: HDAC2 was knocked out in EPG85.257 cells using CRISPR/Cas9 and tumorigenesis pathways were evaluated. Results: Cell proliferation, colony formation, wound healing and transwell invasion were inhibited in ΔHDAC2:EPG85.257 cells. Quantitative analyses revealed a significant downregulation of MMP1, p53, Bax, MAPK1, MAPK3, pro-Caspase3, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, p-NF-κB (p65), Twist, Snail and p-FAK transcripts/proteins, while SIRT1, PTEN, p21 and Caspase3 were upregulated in ΔHDAC2:EPG85.257 cells. Conclusion: These results indicated that HDAC2 enhanced migration, colony formation and transmigration ability. HDAC2 inhibition may improve gastric cancer chemotherapy pathways.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Baranyi M, Rittler D, Molnár E, Shirasawa S, Jalsovszky I, Varga IK, Hegedűs L, Németh A, Dank M, Aigner C, Tóvári J, Tímár J, Hegedűs B, Garay T. Next Generation Lipophilic Bisphosphonate Shows Antitumor Effect in Colorectal Cancer In Vitro and In Vivo. Pathol Oncol Res 2020; 26:1957-1969. [PMID: 31902117 DOI: 10.1007/s12253-019-00789-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Bisphosphonates, despite proven antitumor effect in vitro in many tumor types, are currently used only for treatment of osteoporosis and bone metastasis. Colorectal cancer is the third most commonly diagnosed type of cancer and lacks targeted therapy for RAS or RAF mutation carrying cases. A new lipophilic bisphosphonate showed promising results in lung cancer models, but their effect on colorectal cancer cells was not investigated excessively. Antitumor effects and impact on RAS-related signalization of zoledronic acid (ZA) and a lipophilic bisphosphonate (BPH1222) were investigated on 7 human colorectal cancer cell lines in vitro and in vivo. Furthermore, mutant KRAS dependent effect of prenylation inhibition was investigated using isogeneic cell lines. Both bisphosphonates reduced cell viability in vitro in a dose-dependent manner. Both compounds changed cell cycle distribution similarly by increasing the proportion of cells either in the S or in the subG1 phase or both. However, BPH1222 exerted higher inhibitory effect on spheroid growth than ZA. Interestingly, we found profound alterations in phosphorylation level of Erk and S6 proteins upon ZA or BPH1222 treatment. Furthermore, investigation of a mutant KRAS isogeneic model system suggests that the drugs interfere also with the mutant KRAS proteins. In vivo experiments with KRAS mutant xenograft model also revealed growth inhibitory potential of bisphosphonate treatment. Our results show that lipophilic bisphosphonates might extend the therapeutic spectrum of bisphosphonate drugs and could be considered as additional treatment approaches in colorectal cancer.
Collapse
Affiliation(s)
- Marcell Baranyi
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Dominika Rittler
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Eszter Molnár
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - István Jalsovszky
- Faculty of Science, Institute of Chemistry, Department of Organic Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Imre Károly Varga
- Faculty of Science, Institute of Chemistry, Department of Organic Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany
| | - Afrodíté Németh
- Oncology Center, Semmelweis University, Budapest, H-1091, Hungary
| | - Magdolna Dank
- Oncology Center, Semmelweis University, Budapest, H-1091, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, H-1122, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Balázs Hegedűs
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary. .,Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany.
| | - Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, H-1122, Hungary.,Pázmány Péter Catholic University Faculty of Information Technology and Bionics, Budapest, H-1083, Hungary.,HAS Postdoctoral Fellowship Program Hungarian Academy of Sciences, Budapest, H-1051, Hungary
| |
Collapse
|
3
|
Park YE, Bava U, Lin JM, Cornish J, Naot D, Reid IR. Bone-Bound Bisphosphonates Inhibit Proliferation of Breast Cancer Cells. Calcif Tissue Int 2019; 105:497-505. [PMID: 31324954 DOI: 10.1007/s00223-019-00590-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
Abstract
Bisphosphonates are used in treating patients with breast cancer. In vitro studies have shown that bisphosphonates act directly on tumour cells, inhibiting cell proliferation and inducing apoptosis. In most such studies, drugs were added to culture media exposing cells to high bisphosphonate concentrations in solution. However, since bisphosphonates bind to bone hydroxyapatite with high affinity and remain bound for very long periods of time, these experimental systems are not an optimal model for the action of the drugs in vivo. The aim of this study was to determine whether bone-bound zoledronate has direct effects on adjacent breast cancer cells. Bone slices were pre-incubated with bisphosphonate solutions, washed, and seeded with cells of the breast cancer cell lines, MCF7 or MDA-MB-231. Proliferation was assessed by cell counts and thymidine incorporation for up to 72 h. Inhibition of the mevalonate pathway was tested by measuring the levels of unprenylated Rap1A, and apoptosis was examined by the presence of cleaved caspase-8 on western blots. The proliferation rate of breast cancer cells on zoledronate-treated bone was significantly lower compared to cells on control bone. Other bisphosphonates showed a similar inhibitory effect, with an order of potency similar to their clinical potencies. Unprenylated Rap1A accumulated in MCF7 cells on zoledronate-treated bone, suggesting zoledronate acted through the inhibition of the mevalonate pathway. Accumulation of cleaved caspase-8 in MDA-MB-231 cells on bisphosphonate-treated bone indicated increased apoptosis in the cells. In conclusion, bone-bound zoledronate inhibits breast cancer cell proliferation, an activity that may contribute to its clinical anti-tumour effects.
Collapse
Affiliation(s)
- Young-Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Usha Bava
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jian-Ming Lin
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Dorit Naot
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ian R Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
4
|
Nasulewicz-Goldeman A, Goldeman W, Mrówczyńska E, Wietrzyk J. Biological effects of aromatic bis[aminomethylidenebis(phosphonic)] acids in osteoclast precursors in vitro. Chem Biol Drug Des 2019; 94:1835-1848. [PMID: 31356729 DOI: 10.1111/cbdd.13597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Nitrogen-containing bisphosphonates (N-BPs) inhibit bone resorption by preventing osteoclast activity. Most clinically used BPs are hydroxybisphosphonates with the exception of incadronate, which belongs to the class of aminomethylidenebisphosphonic acids. The aim of this study was to evaluate the antiproliferative activity of two previously reported aminobisphosphonates (WG8185B2 and WG9001B) in combination with doxorubicin and cisplatin toward J774E cells (a model of osteoclast precursors in vitro). WG8185B2 and WG9001B BPs enhanced the cytotoxic activity of doxorubicin and cisplatin, especially when applied 24 hr prior to cytostatics. The antiproliferative effect of studied BPs was related to the changes in cell cycle progression. WG8185B2 leads to significant accumulation of J774E cells in S phase, whereas WG9001B causes transient arrest in G2 /M phase, followed by an increase in the percentage of cells in S phase. Moreover, WG8185B2 and WG9001B BPs showed enhanced proapoptotic activity in osteoclast precursors, which was manifested by an increase in caspase-3 activity and percentage of apoptotic cells. In addition, both compounds influenced the motility of J774E cells. The exact molecular mechanism of action of examined BPs remains to be determined; however, results show an interesting biological activity of these compounds, which may be of interest in the context of antiresorptive therapy.
Collapse
Affiliation(s)
- Anna Nasulewicz-Goldeman
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Waldemar Goldeman
- Department of Organic Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Ewa Mrówczyńska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| |
Collapse
|
5
|
Mirzaei SA, Safari Kavishahi M, Keshavarz Z, Elahian F. Unlike Butylcycloheptylprodigiosin, Isolated Undecylprodigiosin from Streptomyces parvulus Is Not a MDR1 and BCRP Substrate in Multidrug-Resistant Cancers. DNA Cell Biol 2018; 37:535-542. [PMID: 29672160 DOI: 10.1089/dna.2018.4161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The search for new chemotherapeutics unaffected by efflux pumps would significantly increase life expectancy in patients with malignant cancers. In this study, butylcycloheptylprodigiosin and undecylprodigiosin were HPLC-purified and verified, using nuclear magnetic resonance spectroscopy. Cell cytotoxicity and transportation kinetics on multiple-drug resistance (MDR) cells were evaluated. Daunorubicin and butylcycloheptylprodigiosin were less toxic in the MDR1 overexpressing line, but undecylprodigiosin revealed potent toxicity toward MDR1 and BCRP expressing malignant cells. There was no noticeable change in MDR1 and BCRP transcripts during 3 days of treatment with prodiginines. While daunorubicin and mitoxantrone uptake from the cell environment significantly decreased with increasing multidrug resistance up to 46% and 62%, respectively, the accumulation of undecylprodigiosin and to a lesser extent butylcycloheptylprodigiosin in the resistance cells occurred cell- and dose-dependently via a passive diffusion process and were almost equally sensitive to the parent lines. The efflux of xenobiotics commenced immediately with different kinetics in various cells. A greater amount of daunorubicin and mitoxantrone were rapidly thrown out of their corresponding MDR cells in the absence of the specific inhibitor (3.01 and 1.81 dF/min, respectively) and represented functional efflux pumps. MDR pumps did not apparently influence undecylprodigiosin efflux patterns; but butylcycloheptylprodigiosin was partially removed from EPG85.257RDB cells at the rate of 2.66 and 1.41 dF/min in the absence and presence of verapamil, respectively.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran .,2 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Mansureh Safari Kavishahi
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Zhila Keshavarz
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Fatemeh Elahian
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran .,2 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| |
Collapse
|
6
|
Mirzaei SA, Gholamian Dehkordi N, Ghamghami M, Amiri AH, Dalir Abdolahinia E, Elahian F. ABC-transporter blockage mediated by xanthotoxin and bergapten is the major pathway for chemosensitization of multidrug-resistant cancer cells. Toxicol Appl Pharmacol 2017; 337:22-29. [PMID: 29079042 DOI: 10.1016/j.taap.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023]
Abstract
Furanocoumarins derived from herbal and citrus extracts can act as antibacterial, antioxidant, immunomodulator, apoptotic, and selective anticancer agents, prompting a biological investigation to determine and predict their clinical therapeutic significance. Here, the cell cytotoxic effects of bergapten and xanthotoxin were analyzed alone and in combination with standard chemotherapeutics on three multidrug resistant cells and their nonresistant parental counterparts. The furanocoumarins modulatory effects on MDR1, BCRP, and MRP pump expression and function were investigated. Although quantitative real time PCR demonstrated that the MDR transcript level changes in a time dependent manner, flow cytometric analyses using fluorescent-labeled antibodies have indicated that bergapten and xanthotoxin had no significant effect on the protein levels. FACS analyses indicated that these prominent anticancer agents significantly blocked MDR1, BCRP, and MRP transporter function. Maximum furanocoumarin-mediated pump activity blockage in the MDR-resistant cells was quantified as 87% of normal and consequently, chemotherapeutic accumulation increased up to 2.7-fold and cytotoxicity tension increased 104-fold. MDR1 efflux kinetics also revealed that the maximum velocity and the pump affinity to daunorubicin were uncompetitively decreased. We conclude that bergapten and xanthotoxin are cytotoxic agents capable of preventing daunorubicin, mitoxantrone, and cisplatin binding to ABC-transporters and subsequently inhibiting their efflux out of cells and they may be a potential combination therapy for malignant cancers.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mahsa Ghamghami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran
| | - Amir Hossein Amiri
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Elahian F, Reiisi S, Shahidi A, Mirzaei SA. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:853-861. [PMID: 27789260 DOI: 10.1016/j.nano.2016.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/16/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
A genetically modified Pichia pastoris strain overexpressing a metal-resistant variant of cytochrome b5 reductase enzyme was developed for silver and selenium biosorption and for nanoparticle production. The maximum recombinant enzyme expression level was approximately 31 IU/ml in the intercellular fluid after 24 h of incubation, and the capacity of the recombinant biomass for the biosorption of silver and selenium in aqueous batch models were measured as 163.90 and 63.71 mg/g, respectively. The ions were reduced in the presence of enzyme, leading to the formation of stable 70-180 nm metal nanoparticles. Various instrumental analyses confirmed the well-dispersed and crystalline nature of the spherical nanometals. The purified silver and selenium nanoparticles exhibited at least 10-fold less cytotoxicity toward HDF, EPG85-257, and T47D cells than silver nitrate and selenium dioxide. These results revealed that the engineered Pichia strain is an eco-friendly, rapid, high-throughput, and versatile reduction system for nanometal production.
Collapse
Affiliation(s)
- Fatemeh Elahian
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, University of Shahrekord, Shahrekord, Iran
| | - Arman Shahidi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Iran
| | - Seyed Abbas Mirzaei
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Afshari V, Elahian F, Ayari Y, Yazdinezhad A, Mirzaei SA. Diversity and ecotypic variation in the antioxidant and antigenotoxic effects ofThymus kotschyanusBoiss & Hohen. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vahid Afshari
- Department of Pharmaceutical Biotechnology, School of Pharmacy; Zanjan University of Medical Sciences; Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center; Shahrekord University of Medical Sciences; Shahrekord Iran
| | - Yasaman Ayari
- Department of Pharmaceutical Biotechnology, School of Pharmacy; Zanjan University of Medical Sciences; Iran
| | - Alireza Yazdinezhad
- Department of Pharmaceutical Biotechnology, School of Pharmacy; Zanjan University of Medical Sciences; Iran
| | - Seyed Abbas Mirzaei
- Clinical Biochemistry Research Center; Shahrekord University of Medical Sciences; Shahrekord Iran
| |
Collapse
|
9
|
Govindarajah V, Leung YK, Ying J, Gear R, Bornschein RL, Medvedovic M, Ho SM. In utero exposure of rats to high-fat diets perturbs gene expression profiles and cancer susceptibility of prepubertal mammary glands. J Nutr Biochem 2015; 29:73-82. [PMID: 26895667 DOI: 10.1016/j.jnutbio.2015.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Human studies suggest that high-fat diets (HFDs) increase the risk of breast cancer. The 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis rat model is commonly used to evaluate the effects of lifestyle factors such as HFD on mammary tumor risk. Past studies focused primarily on the effects of continuous maternal exposure on the risk of offspring at the end of puberty (PND50). We assessed the effects of prenatal HFD exposure on cancer susceptibility in prepubertal mammary glands and identified key gene networks associated with such disruption. During pregnancy, dams were fed AIN-93G-based diets with isocaloric high olive oil, butterfat or safflower oil. The control group received AIN-93G. Female offspring were treated with DMBA on PND21. However, a significant increase in tumor volume and a trend of shortened tumor latency were observed in rats with HFD exposure against the controls (P=.048 and P=.067, respectively). Large-volume tumors harbored carcinoma in situ. Transcriptome profiling identified 43 differentially expressed genes in the mammary glands of the HFBUTTER group as compared with control. Rapid hormone signaling was the most dysregulated pathway. The diet also induced aberrant expression of Dnmt3a, Mbd1 and Mbd3, consistent with potential epigenetic disruption. Collectively, these findings provide the first evidence supporting susceptibility of prepubertal mammary glands to DMBA-induced tumorigenesis that can be modulated by dietary fat that involves aberrant gene expression and likely epigenetic dysregulation.
Collapse
Affiliation(s)
- Vinothini Govindarajah
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio.,Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio.,Department of Pharmacology and Cell Biophysics Pharmacology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Jun Ying
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Robin Gear
- Department of Pharmacology and Cell Biophysics Pharmacology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Robert L Bornschein
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio.,Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio.,Cincinnati Cancer Center, Cincinnati, Ohio.,Cincinnati Veteran Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
10
|
Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicol In Vitro 2015; 29:893-900. [PMID: 25819016 DOI: 10.1016/j.tiv.2015.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 01/04/2023]
Abstract
Solamargine is a steroidal alkaloid glycoside isolated from Solanum nigrum. The aim of this study was to investigate the effects of solamargine on tumor migration and invasion in aggressive human hepatocellular carcinoma cells. The MTT assay was used to assess the effects of solamargine on the viability of HepG2 cells. Migration and invasion ability of HepG2 cells under solamargine treatment were examined by a wound healing migration assay and Boyden chamber assay, respectively. Western blotting assays were used to detect the expression of MMP-2 and MMP-9 proteins and MMP-2 and MMP-9 activity were analyzed by gelatin zymography assay. Solamargine reduced HepG2 cell viability in a concentration-dependent manner. At 7.5μM solamargine decreased cell viability by less than 20% in HepG2 cells. A wound healing migration assay and Boyden chamber invasion assay showed that solamargine significantly inhibited in vitro migration and invasion of HepG2 cells. At the highest dose, solamargine decreased cell migration and invasion by more than 70% and 72% in HepG2 cells, respectively. Western blotting and gelatin zymography results showed that solamargine reduced expression and function of MMP-2 and MMP-9 proteins. In conclusion, the results showed that solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity.
Collapse
|