1
|
Berrissou C, Cognat V, Koechler S, Bergdoll M, Duchêne AM, Drouard L. Extensive import of nucleus-encoded tRNAs into chloroplasts of the photosynthetic lycophyte, Selaginella kraussiana. Proc Natl Acad Sci U S A 2024; 121:e2412221121. [PMID: 39503889 PMCID: PMC11573648 DOI: 10.1073/pnas.2412221121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Over the course of evolution, land plant mitochondrial genomes have lost many transfer RNA (tRNA) genes and the import of nucleus-encoded tRNAs is essential for mitochondrial protein synthesis. By contrast, plastidial genomes of photosynthetic land plants generally possess a complete set of tRNA genes and the existence of plastidial tRNA import remains a long-standing question. The early vascular plants of the Selaginella genus show an extensive loss of plastidial tRNA genes while retaining photosynthetic capacity, and represent an ideal model for answering this question. Using purification, northern blot hybridization, and high-throughput tRNA sequencing, a global analysis of total and plastidial tRNA populations was undertaken in Selaginella kraussiana. We confirmed the expression of all plastidial tRNA genes and, conversely, observed that nucleus-encoded tRNAs corresponding to these plastidial tRNAs were generally excluded from the chloroplasts. We then demonstrated a selective and differential plastidial import of around forty nucleus-encoded tRNA species, likely compensating for the insufficient coding capacity of plastidial-encoded tRNAs. In-depth analysis revealed differential import of tRNA isodecoders, leading to the identification of specific situations. This includes the expression and import of nucleus-encoded tRNAs expressed from plastidial or bacterial-like genes inserted into the nuclear genome. Overall, our results confirm the existence of molecular processes that enable tRNAs to be selectively imported not only into mitochondria, as previously described, but also into chloroplasts, when necessary.
Collapse
Affiliation(s)
- Christina Berrissou
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Marc Bergdoll
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| |
Collapse
|
2
|
Zhou S, Wang X, Wang L, Gao X, Lyu T, Xia T, Shi L, Dong Y, Mei X, Zhang Z, Zhang H. Different Evolutionary Trends of Galloanseres: Mitogenomics Analysis. Animals (Basel) 2024; 14:1437. [PMID: 38791655 PMCID: PMC11117303 DOI: 10.3390/ani14101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The two existing clades of Galloanseres, orders Galliformes (landfowl) and Anseriformes (waterfowl), exhibit dramatically different evolutionary trends. Mitochondria serve as primary sites for energy production in organisms, and numerous studies have revealed their role in biological evolution and ecological adaptation. We assembled the complete mitogenome sequences of two species of the genus Aythya within Anseriformes: Aythya baeri and Aythya marila. A phylogenetic tree was constructed for 142 species within Galloanseres, and their divergence times were inferred. The divergence between Galliformes and Anseriformes occurred ~79.62 million years ago (Mya), followed by rapid evolution and diversification after the Middle Miocene (~13.82 Mya). The analysis of selective pressure indicated that the mitochondrial protein-coding genes (PCGs) of Galloanseres species have predominantly undergone purifying selection. The free-ratio model revealed that the evolutionary rates of COX1 and COX3 were lower than those of the other PCGs, whereas ND2 and ND6 had faster evolutionary rates. The CmC model also indicated that most PCGs in Anseriformes exhibited stronger selective constraints. Our study suggests that the distinct evolutionary trends and energy requirements of Galliformes and Anseriformes drive different evolutionary patterns in the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Jingxuan West Street No. 57, Qufu 273165, China; (S.Z.); (X.W.); (L.W.); (X.G.); (T.L.); (T.X.); (L.S.); (Y.D.); (X.M.); (Z.Z.)
| |
Collapse
|
3
|
Salinas-Giegé T, Ubrig E, Drouard L. Cyanophora paradoxa mitochondrial tRNAs play a double game. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1105-1115. [PMID: 33666295 DOI: 10.1111/tpj.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Present-day mitochondria derive from a single endosymbiosis of an α-proteobacterium into a proto-eukaryotic cell. Since this monophyletic event, mitochondria have evolved considerably, and unique traits have been independently acquired in the different eukaryotic kingdoms. Mitochondrial genome expression and RNA metabolism have diverged greatly. Here, Cyanophora paradoxa, a freshwater alga considered as a living fossil among photosynthetic organisms, represents an exciting model for studying the evolution of mitochondrial gene expression. As expected, fully mature tRNAs are released from primary transcripts to function in mitochondrial translation. We also show that these tRNAs take part in an mRNA processing punctuation mechanism in a non-conventional manner, leading to mRNA-tRNA hybrids with a CCA triplet at their 3'-extremities. In this case, tRNAs are probably used as stabilizing structures impeding the degradation of mRNA by exonucleases. From our data we propose that the present-day tRNA-like elements (t-elements) found at the 3'-terminals of mitochondrial mRNAs in land plants originate from true tRNAs like those observed in the mitochondria of this basal photosynthetic glaucophyte.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Garin S, Levi O, Cohen B, Golani-Armon A, Arava YS. Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel) 2020; 11:genes11101185. [PMID: 33053729 PMCID: PMC7600831 DOI: 10.3390/genes11101185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria. Here, we review import mechanisms of these enzymes with emphasis on those that are localized to both mitochondria and cytosol. Furthermore, we describe RNA recognition features of these enzymes and their interaction with tRNA and non-tRNA molecules. The dual localization of mitochondria-destined aaRSs and their association with various RNA types impose diverse impacts on cellular physiology. Yet, the breadth and significance of these functions are not fully resolved. We highlight here possibilities for future explorations.
Collapse
|
5
|
Thangaraj S, Sun J. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ Microbiol 2020; 23:980-995. [PMID: 32975013 DOI: 10.1111/1462-2920.15248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
Under ocean warming and acidification, diatoms use a unique acclimation and adaptation strategy by saving energy and utilizing it for other cellular processes. However, the molecular mechanisms that underlie this reprogramming of energy utilization are currently unknown. Here, we investigate the metabolic reprogramming of the ecologically important diatom Skeletonema dohrnii grown under two different temperature (21°C and 25°C) and pCO2 (400 and 1000 ppm) levels, utilizing global transcriptomic analysis. We find that evolutionary changes in the baseline gene expression, which we termed transcriptional up- and downregulation, is the primary mechanism used by diatoms to acclimate to the combined conditions of ocean warming and acidification. This transcriptional regulation shows that under higher temperature and pCO2 conditions, photosynthesis, electron transport and carboxylation were modified with increasing abundances of genes encoding ATP, NADPH and carbon gaining for the carbon-dioxide-concentrating mechanisms (CCMs). Our results also indicate that changes in the transcriptional regulation of CCMs led to a decrease in the metabolic cost to save energy by promoting amino acid synthesis and nitrogen assimilation for the active protein processing machinery to adapt to warming and ocean acidification. This study generated unique metabolic insights into diatoms and suggests that future climate change conditions will cause evolutionary changes in oceanic diatoms that will facilitate their acclimation strategy.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| |
Collapse
|
6
|
Nishimura A, Nasuno R, Yoshikawa Y, Jung M, Ida T, Matsunaga T, Morita M, Takagi H, Motohashi H, Akaike T. Mitochondrial cysteinyl-tRNA synthetase is expressed via alternative transcriptional initiation regulated by energy metabolism in yeast cells. J Biol Chem 2019; 294:13781-13788. [PMID: 31350340 DOI: 10.1074/jbc.ra119.009203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/23/2019] [Indexed: 11/06/2022] Open
Abstract
Eukaryotes typically utilize two distinct aminoacyl-tRNA synthetase isoforms, one for cytosolic and one for mitochondrial protein synthesis. However, the genome of budding yeast (Saccharomyces cerevisiae) contains only one cysteinyl-tRNA synthetase gene (YNL247W, also known as CRS1). In this study, we report that CRS1 encodes both cytosolic and mitochondrial isoforms. The 5' complementary DNA end method and GFP reporter gene analyses indicated that yeast CRS1 expression yields two classes of mRNAs through alternative transcription starts: a long mRNA containing a mitochondrial targeting sequence and a short mRNA lacking this targeting sequence. We found that the mitochondrial Crs1 is the product of translation from the first initiation AUG codon on the long mRNA, whereas the cytosolic Crs1 is produced from the second in-frame AUG codon on the short mRNA. Genetic analysis and a ChIP assay revealed that the transcription factor heme activator protein (Hap) complex, which is involved in mitochondrial biogenesis, determines the transcription start sites of the CRS1 gene. We also noted that Hap complex-dependent initiation is regulated according to the needs of mitochondrial energy production. The results of our study indicate energy-dependent initiation of alternative transcription of CRS1 that results in production of two Crs1 isoforms, a finding that suggests Crs1's potential involvement in mitochondrial energy metabolism in yeast.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ryo Nasuno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yuki Yoshikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Cela M, Paulus C, Santos MAS, Moura GR, Frugier M, Rudinger-Thirion J. Plasmodium apicoplast tyrosyl-tRNA synthetase recognizes an unusual, simplified identity set in cognate tRNATyr. PLoS One 2018; 13:e0209805. [PMID: 30592748 PMCID: PMC6310243 DOI: 10.1371/journal.pone.0209805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
The life cycle of Plasmodium falciparum, the agent responsible for malaria, depends on both cytosolic and apicoplast translation fidelity. Apicoplast aminoacyl-tRNA synthetases (aaRS) are bacterial-like enzymes devoted to organellar tRNA aminoacylation. They are all encoded by the nuclear genome and are translocated into the apicoplast only after cytosolic biosynthesis. Apicoplast aaRSs contain numerous idiosyncratic sequence insertions: An understanding of the roles of these insertions has remained elusive and they hinder efforts to heterologously overexpress these proteins. Moreover, the A/T rich content of the Plasmodium genome leads to A/U rich apicoplast tRNA substrates that display structural plasticity. Here, we focus on the P. falciparum apicoplast tyrosyl-tRNA synthetase (Pf-apiTyrRS) and its cognate tRNATyr substrate (Pf-apitRNATyr). Cloning and expression strategies used to obtain an active and functional recombinant Pf-apiTyrRS are reported. Functional analyses established that only three weak identity elements in the apitRNATyr promote specific recognition by the cognate Pf-apiTyrRS and that positive identity elements usually found in the tRNATyr acceptor stem are excluded from this set. This finding brings to light an unusual behavior for a tRNATyr aminoacylation system and suggests that Pf-apiTyrRS uses primarily negative recognition elements to direct tyrosylation specificity.
Collapse
Affiliation(s)
- Marta Cela
- UPR 9002 Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg Cedex, France
| | - Caroline Paulus
- UPR 9002 Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg Cedex, France
| | - Manuel A. S. Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Magali Frugier
- UPR 9002 Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg Cedex, France
- * E-mail:
| | - Joëlle Rudinger-Thirion
- UPR 9002 Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg Cedex, France
| |
Collapse
|
8
|
Zhang D, Li WX, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT. Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly of the order Dactylogyridea and extensive tRNA gene rearrangements. Parasit Vectors 2018; 11:601. [PMID: 30458858 PMCID: PMC6245931 DOI: 10.1186/s13071-018-3144-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent mitochondrial phylogenomics studies have reported a sister-group relationship of the orders Capsalidea and Dactylogyridea, which is inconsistent with previous morphology- and molecular-based phylogenies. As Dactylogyridea mitochondrial genomes (mitogenomes) are currently represented by only one family, to improve the phylogenetic resolution, we sequenced and characterized two dactylogyridean parasites, Lamellodiscus spari and Lepidotrema longipenis, belonging to a non-represented family Diplectanidae. RESULTS The L. longipenis mitogenome (15,433 bp) contains the standard 36 flatworm mitochondrial genes (atp8 is absent), whereas we failed to detect trnS1, trnC and trnG in L. spari (14,614 bp). Both mitogenomes exhibit unique gene orders (among the Monogenea), with a number of tRNA rearrangements. Both long non-coding regions contain a number of different (partially overlapping) repeat sequences. Intriguingly, these include putative tRNA pseudogenes in a tandem array (17 trnV pseudogenes in L. longipenis, 13 trnY pseudogenes in L. spari). Combined nucleotide diversity, non-synonymous/synonymous substitutions ratio and average sequence identity analyses consistently showed that nad2, nad5 and nad4 were the most variable PCGs, whereas cox1, cox2 and cytb were the most conserved. Phylogenomic analysis showed that the newly sequenced species of the family Diplectanidae formed a sister-group with the Dactylogyridae + Capsalidae clade. Thus Dactylogyridea (represented by the Diplectanidae and Dactylogyridae) was rendered paraphyletic (with high statistical support) by the nested Capsalidea (represented by the Capsalidae) clade. CONCLUSIONS Our results show that nad2, nad5 and nad4 (fast-evolving) would be better candidates than cox1 (slow-evolving) for species identification and population genetics studies in the Diplectanidae. The unique gene order pattern further suggests discontinuous evolution of mitogenomic gene order arrangement in the Class Monogenea. This first report of paraphyly of the Dactylogyridea highlights the need to generate more molecular data for monogenean parasites, in order to be able to clarify their relationships using large datasets, as single-gene markers appear to provide a phylogenetic resolution which is too low for the task.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
9
|
The mitochondrial genome of the oribatid mite Paraleius leontonychus: new insights into tRNA evolution and phylogenetic relationships in acariform mites. Sci Rep 2018; 8:7558. [PMID: 29765106 PMCID: PMC5954100 DOI: 10.1038/s41598-018-25981-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Bilaterian mitochondrial (mt) genomes are circular molecules that typically contain 37 genes. To date, only a single complete mitogenome sequence is available for the species-rich sarcoptiform mite order Oribatida. We sequenced the mitogenome of Paraleius leontonychus, another species of this suborder. It is 14,186 bp long and contains 35 genes, including only 20 tRNAs, lacking tRNAGly and tRNATyr. Re-annotation of the mitogenome of Steganacarus magnus increased the number of mt tRNAs for this species to 12. As typical for acariform mites, many tRNAs are highly truncated in both oribatid species. The total number of tRNAs and the number of tRNAs with a complete cloverleaf-like structure in P. leontonychus, however, clearly exceeds the numbers previously reported for Sarcoptiformes. This indicates, contrary to what has been previously assumed, that reduction of tRNAs is not a general characteristic for sarcoptiform mites. Compared to other Sarcoptiformes, the two oribatid species have the least rearranged mt genome with respect to the pattern observed in Limulus polyphemus, a basal arachnid species. Phylogenetic analysis of the newly sequenced mt genome and previously published data on other acariform mites confirms paraphyly of the Oribatida and an origin of the Astigmata within the Oribatida.
Collapse
|
10
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
11
|
Cognat V, Morelle G, Megel C, Lalande S, Molinier J, Vincent T, Small I, Duchêne AM, Maréchal-Drouard L. The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 2017; 45:3460-3472. [PMID: 27899576 PMCID: PMC5389709 DOI: 10.1093/nar/gkw1122] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/27/2016] [Indexed: 11/16/2022] Open
Abstract
In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19–26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.
Collapse
Affiliation(s)
- Valérie Cognat
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Geoffrey Morelle
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France.,Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA6009, Australia
| | - Cyrille Megel
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Stéphanie Lalande
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Timothée Vincent
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA6009, Australia
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Laurence Maréchal-Drouard
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| |
Collapse
|
12
|
Yurina NP, Odintsova MS. Mitochondrial Genome Structure of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 81:101-13. [PMID: 27260390 DOI: 10.1134/s0006297916020048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current ideas of plant mitochondrial genome organization are presented. Data on the size and structural organization of mtDNA, gene content, and peculiarities are summarized. Special emphasis is given to characteristic features of the mitochondrial genomes of land plants and photosynthetic algae that distinguish them from the mitochondrial genomes of other eukaryotes. The data published before the end of 2014 are reviewed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | |
Collapse
|
13
|
Debard S, Bader G, De Craene JO, Enkler L, Bär S, Laporte D, Hammann P, Myslinski E, Senger B, Friant S, Becker HD. Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells. Methods 2017; 113:91-104. [DOI: 10.1016/j.ymeth.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
14
|
Smirnova EV, Chicherin IV, Baleva MV, Entelis NS, Tarassov IA, Kamenski PA. Procedure for Purification of Recombinant preMsk1p from E. coli Determines Its Properties as a Factor of tRNA Import into Yeast Mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 81:1081-1088. [PMID: 27908233 DOI: 10.1134/s0006297916100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial genomes of many eukaryotic organisms do not code for the full tRNA set necessary for organellar translation. Missing tRNA species are imported from the cytosol. In particular, one out of two cytosolic lysine tRNAs of the yeast Saccharomyces cerevisiae is partially internalized by mitochondria. The key protein factor of this process is the precursor of mitochondrial lysyl-tRNA synthetase, preMsk1p. In this work, we show that recombinant preMsk1p purified from E. coli in native conditions, when used in an in vitro tRNA import system, demonstrates some properties different from those shown by the renatured protein purified from E. coli in the denatured state. We also discuss the possible mechanistic reasons for this phenomenon.
Collapse
Affiliation(s)
- E V Smirnova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Doublet V, Ubrig E, Alioua A, Bouchon D, Marcadé I, Maréchal-Drouard L. Large gene overlaps and tRNA processing in the compact mitochondrial genome of the crustacean Armadillidium vulgare. RNA Biol 2015; 12:1159-68. [PMID: 26361137 DOI: 10.1080/15476286.2015.1090078] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome.
Collapse
Affiliation(s)
- Vincent Doublet
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Elodie Ubrig
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Abdelmalek Alioua
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Didier Bouchon
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Isabelle Marcadé
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Laurence Maréchal-Drouard
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| |
Collapse
|
16
|
Atluri S, Rampersad SN, Bonen L. Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years. Mol Genet Genomics 2015; 290:2325-33. [DOI: 10.1007/s00438-015-1087-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
|
17
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|