1
|
Ippel H, Miller MC, Dings RPM, Ludwig AK, Gabius HJ, Mayo KH. Cysteine Oxidation in Human Galectin-1 Occurs Sequentially via a Folded Intermediate to a Fully Oxidized Unfolded Form. Int J Mol Sci 2024; 25:6956. [PMID: 39000066 PMCID: PMC11241627 DOI: 10.3390/ijms25136956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used 15N and 13C HSQC NMR spectroscopy to gain structural insight into the CuSO4-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.
Collapse
Affiliation(s)
- Hans Ippel
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
- Department of Biochemistry, Cardiovascular Research Instutute Maastricht (CARIM), University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Anna-Kristin Ludwig
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Hans-Joachim Gabius
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Gędaj A, Gregorczyk P, Żukowska D, Chorążewska A, Ciura K, Kalka M, Porębska N, Opaliński Ł. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev 2024; 77:39-55. [PMID: 38719671 DOI: 10.1016/j.cytogfr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
3
|
Vander Zanden CM, Majewski J, Weissbarth Y, Browne DF, Watkins EB, Gabius HJ. Structure of Galectin-3 bound to a model membrane containing ganglioside GM1. Biophys J 2023; 122:1926-1937. [PMID: 35986516 PMCID: PMC10257012 DOI: 10.1016/j.bpj.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactosidase-binding protein involved in various biological processes, including neuronal growth and adhesion. The pairing of Gal-3 with ganglioside GM1's pentasaccharide chain at the outer leaflet of the plasma membrane, which triggers downstream cell-signaling cascades, seems to be involved in these processes. A crucial feature of Gal-3 is its ability to form oligomers and supramolecular assemblies that connect various carbohydrate-decorated molecules. Although we know the atomistic structure of Gal-3 bound to small carbohydrate ligands, it remains unclear how Gal-3 binds GM1 in a membrane. Furthermore, the influence of this interaction on Gal-3's structure and oligomeric assembly has to be elucidated. In this study, we used X-ray reflectivity (XR) from a model membrane to determine the structure and surface coverage of Gal-3 bound to a membrane containing GM1. We observed that the carbohydrate recognition domain interacts with GM1's pentasaccharide, while the N-terminal domain is pointed away from the membrane, likely to facilitate protein-protein interactions. In a membrane containing 20 mol % GM1, Gal-3 covered ∼50% of the membrane surface with one Gal-3 molecule bound per 2130 Å2. We used molecular dynamics simulations and Voronoi tessellation algorithms to build an atomistic model of membrane-bound Gal-3, which is supported by the XR results. Overall, this work provides structural information describing how Gal-3 can bind GM1's pentasaccharide chain, a prerequisite for triggering regulatory processes in neuronal growth and adhesion.
Collapse
Affiliation(s)
- Crystal M Vander Zanden
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado.
| | - Jaroslaw Majewski
- Division of Molecular and Cellular Biology, National Science Foundation, Alexandria, Virginia; Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico; Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Yvonne Weissbarth
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado
| | - Danielle F Browne
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado
| | - Erik B Watkins
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Planegg, Germany
| |
Collapse
|
4
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
5
|
Bonhoure A, Henry L, Bich C, Blanc L, Bergeret B, Bousquet M, Coux O, Stoebner P, Vidal M. Extracellular
20S
proteasome secreted via microvesicles can degrade poorly folded proteins and inhibit Galectin‐3 agglutination activity. Traffic 2022; 23:287-304. [DOI: 10.1111/tra.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Bonhoure
- Laboratory of Pathogen Host Interactions Université Montpellier, CNRS Montpellier France
| | - Laurent Henry
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Claudia Bich
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Lionel Blanc
- The Feinstein Institutes for Medical Research Manhasset New York USA
| | - Blanche Bergeret
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Marie‐Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale Université Toulouse, CNRS, UPS Toulouse France
| | - Olivier Coux
- Centre de Recherche en Biologie cellulaire de Montpellier Univ. Montpellier, CNRS Montpellier France
| | - Pierre‐Emmanuel Stoebner
- Service de Dermatologie, CHU Nîmes Nîmes France
- Institut de Recherche en Cancérologie de Montpellier (IRCM) Université Montpellier Montpellier France
| | - Michel Vidal
- Laboratory of Pathogen Host Interactions Université Montpellier, CNRS Montpellier France
| |
Collapse
|
6
|
Celi AB, Goldstein J, Rosato-Siri MV, Pinto A. Role of Globotriaosylceramide in Physiology and Pathology. Front Mol Biosci 2022; 9:813637. [PMID: 35372499 PMCID: PMC8967256 DOI: 10.3389/fmolb.2022.813637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
At first glance, the biological function of globoside (Gb) clusters appears to be that of glycosphingolipid (GSL) receptors for bacterial toxins that mediate host-pathogen interaction. Indeed, certain bacterial toxin families have been evolutionarily arranged so that they can enter eukaryotic cells through GSL receptors. A closer look reveals this molecular arrangement allocated on a variety of eukaryotic cell membranes, with its role revolving around physiological regulation and pathological processes. What makes Gb such a ubiquitous functional arrangement? Perhaps its peculiarity is underpinned by the molecular structure itself, the nature of Gb-bound ligands, or the intracellular trafficking unleashed by those ligands. Moreover, Gb biological conspicuousness may not lie on intrinsic properties or on its enzymatic synthesis/degradation pathways. The present review traverses these biological aspects, focusing mainly on globotriaosylceramide (Gb3), a GSL molecule present in cell membranes of distinct cell types, and proposes a wrap-up discussion with a phylogenetic view and the physiological and pathological functional alternatives.
Collapse
Affiliation(s)
- Ana Beatriz Celi
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Rosato-Siri
- Departamento de Física Médica/Instituto de Nanociencia y Nanotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Alipio Pinto
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Alipio Pinto,
| |
Collapse
|
7
|
Structural Characterization of Rat Galectin-5, an N-Tailed Monomeric Proto-Type-like Galectin. Biomolecules 2021; 11:biom11121854. [PMID: 34944498 PMCID: PMC8699261 DOI: 10.3390/biom11121854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here the first crystallographic information on the N-terminal extension of the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5 is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures revealed the characteristically preformed structural organization around the central Trp77 of the CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in this region.
Collapse
|
8
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
9
|
Imitating evolution's tinkering by protein engineering reveals extension of human galectin-7 activity. Histochem Cell Biol 2021; 156:253-272. [PMID: 34152508 PMCID: PMC8460509 DOI: 10.1007/s00418-021-02004-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates. The homodimeric galectin-7 (Gal-7) is a multifunctional context-dependent modulator. Since the possibility of conversion from the homodimer to hybrids with other galectin domains, i.e. from Gal-1 and Gal-3, has recently been discovered, we designed Gal-7-based constructs, i.e. stable (covalently linked) homo- and heterodimers. They were produced and purified by affinity chromatography, and the sugar-binding activity of each lectin unit proven by calorimetry. Inspection of profiles of binding of labeled galectins to an array-like platform with various cell types, i.e. sections of murine epididymis and jejunum, and impact on neuroblastoma cell proliferation revealed no major difference between natural and artificial (stable) homodimers. When analyzing heterodimers, acquisition of altered properties was seen. Remarkably, binding properties and activity as effector can depend on the order of arrangement of lectin domains (from N- to C-termini) and on the linker length. After dissociation of the homodimer, the Gal-7 domain can build new functionally active hybrids with other partners. This study provides a clear direction for research on defining the full range of Gal-7 functionality and offers the perspective of testing applications for engineered heterodimers.
Collapse
|
10
|
Beckwith DM, FitzGerald FG, Rodriguez Benavente MC, Mercer ER, Ludwig AK, Michalak M, Kaltner H, Kopitz J, Gabius HJ, Cudic M. Calorimetric Analysis of the Interplay between Synthetic Tn Antigen-Presenting MUC1 Glycopeptides and Human Macrophage Galactose-Type Lectin. Biochemistry 2021; 60:547-558. [PMID: 33560106 PMCID: PMC8269692 DOI: 10.1021/acs.biochem.0c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Indexed: 12/25/2022]
Abstract
Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 μM for monoglycosylated peptides to 0.6 μM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.
Collapse
Affiliation(s)
- Donella M. Beckwith
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Forrest G. FitzGerald
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Maria C. Rodriguez Benavente
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Elizabeth R. Mercer
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| | - Anna-Kristin Ludwig
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Herbert Kaltner
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of
Pathology, Medical School of the Ruprecht-Karls-University
Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg,
Germany
| | - Hans-Joachim Gabius
- Ludwig-Maximilians-University
Munich, Institute of Physiological Chemistry, Faculty of Veterinary
Medicine, Veterinärstrasse 13, 80539 Munich, Germany
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E.
Schmidt College of Science, Florida Atlantic University, Boca
Raton, Florida 33431, United States
| |
Collapse
|
11
|
Gál P, Vasilenko T, Kováč I, Čoma M, Jakubčo J, Jakubčová M, Peržeľová V, Urban L, Kolář M, Sabol F, Luczy J, Novotný M, Majerník J, Gabius HJ, Smetana KJ. Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo. Mol Med Rep 2020; 23:99. [PMID: 33300056 PMCID: PMC7723164 DOI: 10.3892/mmr.2020.11738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular and cellular processes in skin wound healing can pave the way for devising innovative concepts by turning the identified natural effectors into therapeutic tools. Based on the concept of broad-scale engagement of members of the family of galactoside-binding lectins (galectins) in pathophysiological processes, such as cancer or tissue repair/regeneration, the present study investigated the potential of galectins-1 (Gal-1) and −3 (Gal-3) in wound healing. Human dermal fibroblasts, which are key cells involved in skin wound healing, responded to galectin exposure (Gal-1 at 300 or Gal-3 at 600 ng/ml) with selective changes in gene expression among a panel of 84 wound-healing-related genes, as well as remodeling of the extracellular matrix. In the case of Gal-3, positive expression of Ki67 and cell number increased when using a decellularized matrix produced by Gal-3-treated fibroblasts as substrate for culture of interfollicular keratinocytes. In vivo wounds were topically treated with 20 μg/ml Gal-1 or −3, and collagen score was found to be elevated in excisional wound repair in rats treated with Gal-3. The tensile strength measured in incisions was significantly increased from 79.5±17.5 g/mm2 in controls to 103.1±21.4 g/mm2 after 21 days of healing. These data warrant further testing mixtures of galectins and other types of compounds, for example a combination of galectins and TGF-β1.
Collapse
Affiliation(s)
- Peter Gál
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Tomáš Vasilenko
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Ivan Kováč
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Matúš Čoma
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Ján Jakubčo
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Martina Jakubčová
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Vlasta Peržeľová
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Lukáš Urban
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - František Sabol
- Department of Heart Surgery, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Ján Luczy
- Department of Heart Surgery, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Martin Novotný
- Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic
| | - Jaroslav Majerník
- Department of Medical Informatics, Faculty of Medicine, Pavol Jozef Šafárik University, 040 66 Košice, Slovak Republic
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilian‑University, D‑80539 Munich, Germany
| | - Karel Jr Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague
| |
Collapse
|
12
|
Diercks T, Medrano FJ, FitzGerald FG, Beckwith D, Pedersen MJ, Reihill M, Ludwig AK, Romero A, Oscarson S, Cudic M, Gabius HJ. Galectin-Glycan Interactions: Guidelines for Monitoring by 77 Se NMR Spectroscopy, and Solvent (H 2 O/D 2 O) Impact on Binding. Chemistry 2020; 27:316-325. [PMID: 32955737 PMCID: PMC7839768 DOI: 10.1002/chem.202003143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Functional pairing between cellular glycoconjugates and tissue lectins like galectins has wide (patho)physiological significance. Their study is facilitated by nonhydrolysable derivatives of the natural O‐glycans, such as S‐ and Se‐glycosides. The latter enable extensive analyses by specific 77Se NMR spectroscopy, but still remain underexplored. By using the example of selenodigalactoside (SeDG) and the human galectin‐1 and ‐3, we have evaluated diverse 77Se NMR detection methods and propose selective 1H,77Se heteronuclear Hartmann–Hahn transfer for efficient use in competitive NMR screening against a selenoglycoside spy ligand. By fluorescence anisotropy, circular dichroism, and isothermal titration calorimetry (ITC), we show that the affinity and thermodynamics of SeDG binding by galectins are similar to thiodigalactoside (TDG) and N‐acetyllactosamine (LacNAc), confirming that Se substitution has no major impact. ITC data in D2O versus H2O are similar for TDG and LacNAc binding by both galectins, but a solvent effect, indicating solvent rearrangement at the binding site, is hinted at for SeDG and clearly observed for LacNAc dimers with extended chain length.
Collapse
Affiliation(s)
- Tammo Diercks
- NMR Facility, CiC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 800, 48160, Derio, Spain
| | - Francisco J Medrano
- Structural and Chemical Biology, Centro de Investigaciones, Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Forrest G FitzGerald
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Donella Beckwith
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Martin Jaeger Pedersen
- Center for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Mark Reihill
- Center for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Anna-Kristin Ludwig
- Tierärztliche Fakultät, Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539, München, Germany
| | - Antonio Romero
- Structural and Chemical Biology, Centro de Investigaciones, Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Stefan Oscarson
- Center for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Hans-Joachim Gabius
- Tierärztliche Fakultät, Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539, München, Germany
| |
Collapse
|
13
|
Miller MC, Nesmelova IV, Daragan VA, Ippel H, Michalak M, Dregni A, Kaltner H, Kopitz J, Gabius HJ, Mayo KH. Pro4 prolyl peptide bond isomerization in human galectin-7 modulates the monomer-dimer equilibrum to affect function. Biochem J 2020; 477:3147-3165. [PMID: 32766716 PMCID: PMC7473712 DOI: 10.1042/bcj20200499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Human galectin-7 (Gal-7; also termed p53-induced gene 1 product) is a multifunctional effector by productive pairing with distinct glycoconjugates and protein counter-receptors in the cytoplasm and nucleus, as well as on the cell surface. Its structural analysis by NMR spectroscopy detected doubling of a set of particular resonances, an indicator of Gal-7 existing in two conformational states in slow exchange on the chemical shift time scale. Structural positioning of this set of amino acids around the P4 residue and loss of this phenomenon in the bioactive P4L mutant indicated cis-trans isomerization at this site. Respective resonance assignments confirmed our proposal of two Gal-7 conformers. Mapping hydrogen bonds and considering van der Waals interactions in molecular dynamics simulations revealed a structural difference for the N-terminal peptide, with the trans-state being more exposed to solvent and more mobile than the cis-state. Affinity for lactose or glycan-inhibitable neuroblastoma cell surface contact formation was not affected, because both conformers associated with an overall increase in order parameters (S2). At low µM concentrations, homodimer dissociation is more favored for the cis-state of the protein than its trans-state. These findings give direction to mapping binding sites for protein counter-receptors of Gal-7, such as Bcl-2, JNK1, p53 or Smad3, and to run functional assays at low concentration to test the hypothesis that this isomerization process provides a (patho)physiologically important molecular switch for Gal-7.
Collapse
Affiliation(s)
- Michelle C. Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Irina V. Nesmelova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Vladimir A. Daragan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Hans Ippel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
- Department of Biochemistry, CARIM, University of Maastricht, Maastricht, The Netherlands
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Aurelio Dregni
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| |
Collapse
|
14
|
García Caballero G, Beckwith D, Shilova NV, Gabba A, Kutzner TJ, Ludwig AK, Manning JC, Kaltner H, Sinowatz F, Cudic M, Bovin NV, Murphy PV, Gabius HJ. Influence of protein (human galectin-3) design on aspects of lectin activity. Histochem Cell Biol 2020; 154:135-153. [PMID: 32335744 PMCID: PMC7429544 DOI: 10.1007/s00418-020-01859-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/25/2022]
Abstract
The concept of biomedical significance of the functional pairing between tissue lectins and their glycoconjugate counterreceptors has reached the mainstream of research on the flow of biological information. A major challenge now is to identify the principles of structure–activity relationships that underlie specificity of recognition and the ensuing post-binding processes. Toward this end, we focus on a distinct feature on the side of the lectin, i.e. its architecture to present the carbohydrate recognition domain (CRD). Working with a multifunctional human lectin, i.e. galectin-3, as model, its CRD is used in protein engineering to build variants with different modular assembly. Hereby, it becomes possible to compare activity features of the natural design, i.e. CRD attached to an N-terminal tail, with those of homo- and heterodimers and the tail-free protein. Thermodynamics of binding disaccharides proved full activity of all proteins at very similar affinity. The following glycan array testing revealed maintained preferential contact formation with N-acetyllactosamine oligomers and histo-blood group ABH epitopes irrespective of variant design. The study of carbohydrate-inhibitable binding of the test panel disclosed up to qualitative cell-type-dependent differences in sections of fixed murine epididymis and especially jejunum. By probing topological aspects of binding, the susceptibility to inhibition by a tetravalent glycocluster was markedly different for the wild-type vs the homodimeric variant proteins. The results teach the salient lesson that protein design matters: the type of CRD presentation can have a profound bearing on whether basically suited oligosaccharides, which for example tested positively in an array, will become binding partners in situ. When lectin-glycoconjugate aggregates (lattices) are formed, their structural organization will depend on this parameter. Further testing (ga)lectin variants will thus be instrumental (i) to define the full range of impact of altering protein assembly and (ii) to explain why certain types of design have been favored during the course of evolution, besides opening biomedical perspectives for potential applications of the novel galectin forms.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Donella Beckwith
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Laboratory of Carbohydrates, Moscow, Russia, 117997
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Adele Gabba
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Tanja J Kutzner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Anna-Kristin Ludwig
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Joachim C Manning
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Herbert Kaltner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Fred Sinowatz
- Institut für Anatomie, Histologie und Embryologie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Laboratory of Carbohydrates, Moscow, Russia, 117997.
- Centre for Kode Technology Innovation, School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand.
| | - Paul V Murphy
- School of Chemistry, National University of Ireland, Galway, Ireland.
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany.
| |
Collapse
|
15
|
de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci 2020; 77:1289-1317. [PMID: 31628495 PMCID: PMC7113233 DOI: 10.1007/s00018-019-03327-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system with unknown etiology. Currently approved disease-modifying treatment modalities are immunomodulatory or immunosuppressive. While the applied drugs reduce the frequency and severity of the attacks, their efficacy to regenerate myelin membranes and to halt disease progression is limited. To achieve such therapeutic aims, understanding biological mechanisms of remyelination and identifying factors that interfere with remyelination in MS can give respective directions. Such a perspective is given by the emerging functional profile of galectins. They form a family of tissue lectins, which are potent effectors in processes as diverse as adhesion, apoptosis, immune mediator release or migration. This review focuses on endogenous and exogenous roles of galectins in glial cells such as oligodendrocytes, astrocytes and microglia in the context of de- and (re)myelination and its dysregulation in MS. Evidence is arising for a cooperation among family members so that timed expression and/or secretion of galectins-1, -3 and -4 result in modifying developmental myelination, (neuro)inflammatory processes, de- and remyelination. Dissecting the mechanisms that underlie the distinct activities of galectins and identifying galectins as target or tool to modulate remyelination have the potential to contribute to the development of novel therapeutic strategies for MS.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
16
|
Eckardt V, Miller MC, Blanchet X, Duan R, Leberzammer J, Duchene J, Soehnlein O, Megens RT, Ludwig AK, Dregni A, Faussner A, Wichapong K, Ippel H, Dijkgraaf I, Kaltner H, Döring Y, Bidzhekov K, Hackeng TM, Weber C, Gabius HJ, von Hundelshausen P, Mayo KH. Chemokines and galectins form heterodimers to modulate inflammation. EMBO Rep 2020; 21:e47852. [PMID: 32080959 PMCID: PMC7132340 DOI: 10.15252/embr.201947852] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Chemokines and galectins are simultaneously upregulated and mediate leukocyte recruitment during inflammation. Until now, these effector molecules have been considered to function independently. Here, we tested the hypothesis that they form molecular hybrids. By systematically screening chemokines for their ability to bind galectin‐1 and galectin‐3, we identified several interacting pairs, such as CXCL12 and galectin‐3. Based on NMR and MD studies of the CXCL12/galectin‐3 heterodimer, we identified contact sites between CXCL12 β‐strand 1 and Gal‐3 F‐face residues. Mutagenesis of galectin‐3 residues involved in heterodimer formation resulted in reduced binding to CXCL12, enabling testing of functional activity comparatively. Galectin‐3, but not its mutants, inhibited CXCL12‐induced chemotaxis of leukocytes and their recruitment into the mouse peritoneum. Moreover, galectin‐3 attenuated CXCL12‐stimulated signaling via its receptor CXCR4 in a ternary complex with the chemokine and receptor, consistent with our structural model. This first report of heterodimerization between chemokines and galectins reveals a new type of interaction between inflammatory mediators that can underlie a novel immunoregulatory mechanism in inflammation. Thus, further exploration of the chemokine/galectin interactome is warranted.
Collapse
Affiliation(s)
- Veit Eckardt
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, USA
| | - Xavier Blanchet
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Rundan Duan
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Julian Leberzammer
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Johan Duchene
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Oliver Soehnlein
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Remco Ta Megens
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Anna-Kristin Ludwig
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Aurelio Dregni
- Department of Biochemistry, Molecular Biology & Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Faussner
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Herbert Kaltner
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Yvonne Döring
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Kiril Bidzhekov
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Tilman M Hackeng
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp von Hundelshausen
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
García Caballero G, Kaltner H, Kutzner TJ, Ludwig AK, Manning JC, Schmidt S, Sinowatz F, Gabius HJ. How galectins have become multifunctional proteins. Histol Histopathol 2020; 35:509-539. [PMID: 31922250 DOI: 10.14670/hh-18-199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having identified glycans of cellular glycoconjugates as versatile molecular messages, their recognition by sugar receptors (lectins) is a fundamental mechanism within the flow of biological information. This type of molecular interplay is increasingly revealed to be involved in a wide range of (patho)physiological processes. To do so, it is a vital prerequisite that a lectin (and its expression) can develop more than a single skill, that is the general ability to bind glycans. By studying the example of vertebrate galectins as a model, a total of five relevant characteristics is disclosed: i) access to intra- and extracellular sites, ii) fine-tuned gene regulation (with evidence for co-regulation of counterreceptors) including the existence of variants due to alternative splicing or single nucleotide polymorphisms, iii) specificity to distinct glycans from the glycome with different molecular meaning, iv) binding capacity also to peptide motifs at different sites on the protein and v) diversity of modular architecture. They combine to endow these lectins with the capacity to serve as multi-purpose tools. Underscoring the arising broad-scale significance of tissue lectins, their numbers in terms of known families and group members have steadily grown by respective research that therefore unveiled a well-stocked toolbox. The generation of a network of (ga)lectins by evolutionary diversification affords the opportunity for additive/synergistic or antagonistic interplay in situ, an emerging aspect of (ga)lectin functionality. It warrants close scrutiny. The realization of the enormous potential of combinatorial permutations using the five listed features gives further efforts to understand the rules of functional glycomics/lectinomics a clear direction.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Sinowatz
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
18
|
Romero A, Gabius HJ. Galectin-3: is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opin Ther Targets 2019; 23:819-828. [PMID: 31575307 DOI: 10.1080/14728222.2019.1675638] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The discoveries that sugars are a highly versatile platform to generate biochemical messages and that glycan-specific receptors (lectins) are a link between these signals and their bioactivity explain the interest in endogenous lectins such as galectins. Their analysis is a highly dynamic field. It is often referred to as being promising for innovative drug design. Area covered: We present a primer to the concept of the sugar code by glycan-(ga)lectin recognition, followed by a survey on galectin-3 (considering common and distinct features within this family of multifunctional proteins expressed at various cellular sites and cell types). Finally, we discuss strategies capable of blocking (ga)lectin activity, with an eye on current challenges and inherent obstacles. Expert opinion: The emerging broad profile of homeostatic and pathophysiological bioactivities stimulates further efforts to explore galectin (Gal-3) functionality, alone and then in mixtures. Like thoroughly assessing the pros and cons of blocking approaches for a multifunctional protein active at different sites, identifying a clinical situation, in which the galectin is essential in the disease process, will be critical.
Collapse
Affiliation(s)
- Antonio Romero
- Structural and Chemistry Department, Centro de Investigaciones Biológicas (CIB), CSIC , Madrid , Spain
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich , Munich , Germany
| |
Collapse
|
19
|
Fettis MM, Farhadi SA, Hudalla GA. A chimeric, multivalent assembly of galectin-1 and galectin-3 with enhanced extracellular activity. Biomater Sci 2019; 7:1852-1862. [PMID: 30899922 DOI: 10.1039/c8bm01631c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Galectins are attractive therapeutic candidates to control aberrant immune system activation because they can alter the phenotype and function of various innate and adaptive immune cells. However, use of exogenous galectin-1 ("G1") and galectin-3 ("G3") as immunomodulators is challenged by their high dosing requirements and dynamic quaternary structures. Here we report a chimeric assembly of G1 and G3 with enhanced extracellular activity ("G1/G3 Zipper"), which was created by recombinant fusion of G1 and G3 via a peptide linker that forms a two-stranded α-helical coiled-coil. G1/G3 Zipper had higher apparent binding affinity for immobilized lactose and a lower concentration threshold for inducing soluble glycoprotein crosslinking than G1, a recombinant fusion of G1 and G3 with a flexible peptide linker ("G1/G3"), or a recently reported stable G1 dimer crosslinked by poly(ethylene glycol) diacrylate ("G1-PEG-G1"). As a result, G1/G3 Zipper was more effective at inducing Jurkat T cell apoptosis in media containing serum, and was the only variant that could induce apoptosis at low concentrations under serum-free conditions. The monomeric G1/G3 fusion protein lacked extracellular activity under all conditions tested, suggesting that the enhanced activity of G1/G3 Zipper was due to its quaternary structure and increased carbohydrate-recognition domain valency. Thus, combining G1 and G3 into a non-native chimeric assembly provides a new candidate therapeutic with greater immunomodulatory potency than the wild-type proteins and previously reported engineered variants.
Collapse
Affiliation(s)
- Margaret M Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA 32611.
| | | | | |
Collapse
|
20
|
Lectinology 4.0: Altering modular (ga)lectin display for functional analysis and biomedical applications. Biochim Biophys Acta Gen Subj 2019; 1863:935-940. [PMID: 30851406 DOI: 10.1016/j.bbagen.2019.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recognition of glycans by lectins is emerging as (patho)physiologically broadly used mode of cellular information transfer. Whereas the direct ligand-receptor contact is often already thoroughly characterized, the functional relevance of aspects of architecture such as modular design and valence of lectins is less well defined. SCOPE OF REVIEW Following an introduction to modular lectin design, three levels of methodology are then reviewed that delineate lectin structure-activity relationships beyond glycan binding, with emphasis on domain shuffling. MAJOR CONCLUSIONS Engineering of variants by modular transplantation facilitates versatile Nature-inspired design switches and access to new combinations with translational potential, as exemplified for human adhesion/growth-regulatory galectins. GENERAL SIGNIFICANCE To gain an understanding of the functional significance of natural variations in quaternary structure and modular design within a protein family is a current challenge. Strategic application of methods of the described phases is a means to respond to this challenge.
Collapse
|
21
|
Ludwig AK, Michalak M, Xiao Q, Gilles U, Medrano FJ, Ma H, FitzGerald FG, Hasley WD, Melendez-Davila A, Liu M, Rahimi K, Kostina NY, Rodriguez-Emmenegger C, Möller M, Lindner I, Kaltner H, Cudic M, Reusch D, Kopitz J, Romero A, Oscarson S, Klein ML, Gabius HJ, Percec V. Design-functionality relationships for adhesion/growth-regulatory galectins. Proc Natl Acad Sci U S A 2019; 116:2837-2842. [PMID: 30718416 PMCID: PMC6386680 DOI: 10.1073/pnas.1813515116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.
Collapse
Affiliation(s)
- Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Malwina Michalak
- Institute of Pathology, Department of Applied Tumor Pathology, Faculty of Medicine, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Ulrich Gilles
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Francisco J Medrano
- Structural and Chemical Biology, Centro Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Hanyue Ma
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Forrest G FitzGerald
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431
| | - William D Hasley
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Adriel Melendez-Davila
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Khosrow Rahimi
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Nina Yu Kostina
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Cesar Rodriguez-Emmenegger
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Martin Möller
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Ingo Lindner
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Jürgen Kopitz
- Institute of Pathology, Department of Applied Tumor Pathology, Faculty of Medicine, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Antonio Romero
- Structural and Chemical Biology, Centro Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany;
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323;
| |
Collapse
|
22
|
Locally anchoring enzymes to tissues via extracellular glycan recognition. Nat Commun 2018; 9:4943. [PMID: 30467349 PMCID: PMC6250738 DOI: 10.1038/s41467-018-07129-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/12/2018] [Indexed: 01/06/2023] Open
Abstract
Success of enzymes as drugs requires that they persist within target tissues over therapeutically effective time frames. Here we report a general strategy to anchor enzymes at injection sites via fusion to galectin-3 (G3), a carbohydrate-binding protein. Fusing G3 to luciferase extended bioluminescence in subcutaneous tissue to ~7 days, whereas unmodified luciferase was undetectable within hours. Engineering G3-luciferase fusions to self-assemble into a trimeric architecture extended bioluminescence in subcutaneous tissue to 14 days, and intramuscularly to 3 days. The longer local half-life of the trimeric assembly was likely due to its higher carbohydrate-binding affinity compared to the monomeric fusion. G3 fusions and trimeric assemblies lacked extracellular signaling activity of wild-type G3 and did not accumulate in blood after subcutaneous injection, suggesting low potential for deleterious off-site effects. G3-mediated anchoring to common tissue glycans is expected to be broadly applicable for improving local pharmacokinetics of various existing and emerging enzyme drugs. The use of enzymes as drugs requires that they persist within target tissues over therapeutically relevant time frames. Here the authors use a galectin-3 fusion to anchor enzymes at injection sites for up to 14 days.
Collapse
|
23
|
Bai Y, Niu D, Bai Y, Li Y, Lan T, Peng M, Dong Z, Li J. Identification of a novel galectin in Sinonovacula constricta and its role in recognition of Gram-negative bacteria. FISH & SHELLFISH IMMUNOLOGY 2018; 80:1-9. [PMID: 29807120 DOI: 10.1016/j.fsi.2018.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Galectins are soluble lectins that perform a pattern recognition function in invertebrate immunity and specifically recognise β-galactoside residues via conserved carbohydrate recognition domains. However, their function in bivalve molluscs has received little attention. Herein, a galectin (ScGal2) in razor clam (Sinonovacula constricta) consisting of a 507 bp open reading frame encoding a protein of 168 amino acids was identified and characterised. The protein includes a carbohydrate recognition domain (CRD), and several residues involved in dimerisation were found. ScGal2 mRNAs were mainly detected in hemolymph and liver, and expression was upregulated significantly following challenge with Vibrio anguillarum. Recombinant rScGal2 protein displayed strong agglutination activity toward Gram-negative bacteria, and flow cytometry revealed that ScGal2 strongly promoted phagocytosis in hemocytes. These results suggest that ScGal2 plays an indispensable role in innate immunity in razor clam, and likely participates in immune recognition and clearance processes.
Collapse
Affiliation(s)
- Yuqi Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Yulin Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyi Lan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
24
|
Flores-Ibarra A, Vértesy S, Medrano FJ, Gabius HJ, Romero A. Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci Rep 2018; 8:9835. [PMID: 29959397 PMCID: PMC6026190 DOI: 10.1038/s41598-018-28235-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among members of the family of adhesion/growth-regulatory galectins, galectin-3 (Gal-3) bears a unique modular architecture. A N-terminal tail (NT) consisting of the N-terminal segment (NTS) and nine collagen-like repeats is linked to the canonical lectin domain. In contrast to bivalent proto- and tandem-repeat-type galectins, Gal-3 is monomeric in solution, capable to self-associate in the presence of bi- to multivalent ligands, and the NTS is involved in cellular compartmentalization. Since no crystallographic information on Gal-3 beyond the lectin domain is available, we used a shortened variant with NTS and repeats VII-IX. This protein crystallized as tetramers with contacts between the lectin domains. The region from Tyr101 (in repeat IX) to Leu114 (in the CRD) formed a hairpin. The NTS extends the canonical β-sheet of F1-F5 strands with two new β-strands on the F face. Together, crystallographic and SAXS data reveal a mode of intramolecular structure building involving the highly flexible Gal-3’s NT.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sabine Vértesy
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrabe 13, 80539, Munich, Germany
| | - Francisco J Medrano
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrabe 13, 80539, Munich, Germany.
| | - Antonio Romero
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Kaltner H, García Caballero G, Ludwig AK, Manning JC, Gabius HJ. From glycophenotyping by (plant) lectin histochemistry to defining functionality of glycans by pairing with endogenous lectins. Histochem Cell Biol 2018; 149:547-568. [DOI: 10.1007/s00418-018-1676-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
|
26
|
Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:289-324. [PMID: 29747818 DOI: 10.1016/bs.pmbts.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor. Among the resulting glycosphingolipids, gangliosides are special due to the presence of at least one sialic acid in the glycan chains. Their spatial accessibility and the dynamic regulation of their profile are factors that argue in favor of a role of glycans of gangliosides as ligands (counterreceptors) for carbohydrate-binding proteins (lectins). Indeed, as discovered first for a bacterial toxin, tissue lectins bind gangliosides and mediate contact formation (trans) and signaling (cis). While siglecs have a preference for higher sialylated glycans, certain galectins also target the monosialylated pentasaccharide of ganglioside GM1. Enzymatic interconversion of ganglioside glycans by sialidase action, relevant for neuroblastoma cell differentiation and growth control in vitro, for axonogenesis and axon regeneration, as well as for proper communication between effector and regulatory T cells, changes lectin-binding affinity profoundly. The GD1a-to-GM1 "editing" is recognized by such lectins, for example, myelin-associated glycoprotein (siglec-4) losing affinity and galectin-1 gaining reactivity, and then translated into postbinding signaling. Orchestrations of loss/gain of affinity, of ganglioside/lectin expression, and of lectin presence in a network offer ample opportunities for fine-tuning. Thus glycans of gangliosides such as GD1a and GM1 are functional counterreceptors by a pairing with tissue lectins, an emerging aspect of ganglioside and lectin functionality.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Jürgen Kopitz
- Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
27
|
Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers. Biochem J 2018; 475:1003-1018. [PMID: 29321242 DOI: 10.1042/bcj20170658] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
The delineation of the physiological significance of protein (lectin)-glycan recognition and the structural analysis of individual lectins have directed our attention to studying them in combination. In this report, we tested the hypothesis of hybrid formation by using binary mixtures of homodimeric galectin-1 and -7 as well as a proteolytically truncated version of chimera-type galectin-3. Initial supportive evidence is provided by affinity chromatography using resin-presented galectin-7. Intriguingly, the extent of cell binding by cross-linking of surface counter-receptor increased significantly for monomeric galectin-3 form by the presence of galectin-1 or -7. Pulsed-field gradient NMR (nuclear magnetic resonance) diffusion measurements on these galectin mixtures indicated formation of heterodimers as opposed to larger oligomers. 15N-1H heteronuclear single quantum coherence NMR spectroscopy and molecular dynamics simulations allowed us to delineate how different galectins interact in the heterodimer. The possibility of domain exchange between galectins introduces a new concept for understanding the spectrum of their functionality, particularly when these effector molecules are spatially and temporally co-expressed as found in vivo.
Collapse
|
28
|
Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 2018; 115:E2509-E2518. [PMID: 29382751 PMCID: PMC5856548 DOI: 10.1073/pnas.1720055115] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells are decorated with charged and uncharged carbohydrate ligands known as glycans, which are responsible for several key functions, including their interactions with proteins known as lectins. Here, a platform consisting of synthetic nanoscale vesicles, known as glycodendrimersomes, which can be programmed with cell surface-like structural and topological complexity, is employed to dissect design aspects of glycan presentation, with specificity for lectin-mediated bridging. Aggregation assays reveal the extent of cross-linking of these biomimetic nanoscale vesicles—presenting both anionic and neutral ligands in a bioactive manner—with disease-related human and other galectins, thus offering the possibility of unraveling the nature of these fundamental interactions. Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.
Collapse
|
29
|
Studying the Structural Significance of Galectin Design by Playing a Modular Puzzle: Homodimer Generation from Human Tandem-Repeat-Type (Heterodimeric) Galectin-8 by Domain Shuffling. Molecules 2017; 22:molecules22091572. [PMID: 28925965 PMCID: PMC6151538 DOI: 10.3390/molecules22091572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/17/2017] [Indexed: 01/10/2023] Open
Abstract
Tissue lectins are emerging (patho)physiological effectors with broad significance. The capacity of adhesion/growth-regulatory galectins to form functional complexes with distinct cellular glycoconjugates is based on molecular selection of matching partners. Engineering of variants by changing the topological display of carbohydrate recognition domains (CRDs) provides tools to understand the inherent specificity of the functional pairing. We here illustrate its practical implementation in the case of human tandem-repeat-type galectin-8 (Gal-8). It is termed Gal-8 (NC) due to presence of two different CRDs at the N- and C-terminal positions. Gal-8N exhibits exceptionally high affinity for 3'-sialylated/sulfated β-galactosides. This protein is turned into a new homodimer, i.e., Gal-8 (NN), by engineering. The product maintained activity for lactose-inhibitable binding of glycans and glycoproteins. Preferential association with 3'-sialylated/sulfated (and 6-sulfated) β-galactosides was seen by glycan-array analysis when compared to the wild-type protein, which also strongly bound to ABH-type epitopes. Agglutination of erythrocytes documented functional bivalency. This result substantiates the potential for comparative functional studies between the variant and natural Gal-8 (NC)/Gal-8N.
Collapse
|
30
|
Arcolia V, Journe F, Renaud F, Leteurtre E, Gabius HJ, Remmelink M, Saussez S. Combination of galectin-3, CK19 and HBME-1 immunostaining improves the diagnosis of thyroid cancer. Oncol Lett 2017; 14:4183-4189. [PMID: 28943926 PMCID: PMC5592881 DOI: 10.3892/ol.2017.6719] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
Currently, fine-needle aspiration is the most frequently used pre-operative technique for diagnosis of malignant thyroid tumors, however, pathologists are unable to reach efficient and accurate differential diagnoses between benign and malignant thyroid nodules. To aid in resolving this issue, immunohistochemistry for galectins (gal)-1, −3, −7, −8, cytokeratin 19 (CK19), Hector Battifora Mesothelial Epitope-1 (HBME-1) and thyroid peroxidase (TPO) was performed on two tissue microarrays composed of 66 follicular adenomas (FA) and 66 papillary carcinomas (PC). The identification of optimal cut-off levels and the diagnostic value of single immunomarkers or combinations were evaluated using the receiver operating characteristic curve analysis. Signal intensities for gal-1, gal-3, CK19 and HBME-1 were significantly greater in PC compared with FA (P<0.001). Conversely, expression levels of TPO were significantly increased in FA compared with PC (P<0.001). Gal-3 and CK19 appeared to be the most sensitive markers (97 and 98%, respectively), whereas galectin-1 was the most specific (97%). The combination of gal-3, CK19 and HBME-1 acted as the most efficient and informative marker panel reaching the greatest specificity (97%) and sensitivity (95%) for the diagnosis of PCs. The findings suggest that this combination of markers may improve the reliability of diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Vanessa Arcolia
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, B-7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, B-7000 Mons, Belgium.,Laboratory of Oncology and Experimental Surgery, Jules Bordet Institute, Free University of Brussels, B-1000 Brussels, Belgium
| | - Florence Renaud
- Lille University, UMR-S 1172, JPARC, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Emmanuelle Leteurtre
- Lille University, UMR-S 1172, JPARC, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, D-80539 Munich, Germany
| | - Myriam Remmelink
- Department of Pathology, Erasme Hospital, Free University of Brussels, B-1070 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, B-7000 Mons, Belgium.,Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Free University of Brussels, B-1000 Brussels, Belgium
| |
Collapse
|
31
|
Arcolia V, Journe F, Wattier A, Leteurtre E, Renaud F, Gabius HJ, Remmelink M, Decaestecker C, Rodriguez A, Boutry S, Laurent S, Saussez S. Galectin-1 is a diagnostic marker involved in thyroid cancer progression. Int J Oncol 2017; 51:760-770. [PMID: 28677745 PMCID: PMC5564411 DOI: 10.3892/ijo.2017.4065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
Fine-needle aspiration (FNA) is the most commonly used pre-operative technique for diagnosis of malignant thyroid tumor. However, many benign lesions, with indeterminate diagnosis following FNA, are referred to surgery. Based on multifunctionality of the endogenous galectin-1, we aimed to assess its status for early diagnosis of thyroid cancer. Immunohistochemistry for galectin-1 and -3 was performed on a clinical series of 69 cases of thyroid lesions. Galectin-1 expression was further examined in two additional tissue microarrays (TMA) composed of 66 follicular adenomas and 66 papillary carcinomas in comparison to galectin-3 and cytokeratin-19 (CK19). In addition, a knockdown of galectin-1 in papillary (TPC-1) and anaplastic (8505C) thyroid cancer cell lines was achieved by lentiviral transduction for in vitro experiments. A murine orthotopic thyroid cancer model was used to investigate tumor growth and metastatic ability. Immunohistochemical analyses of galectin-1 and -3 in the series of 69 cases of thyroid lesions revealed that galectin-1 was completely absent in the epithelial compartment of all benign thyroid lesions. Levels of both galectins significantly increased in the cytoplasmic compartment of malignant thyroid cells. Galectin-1 expression in the TMA yielded an excellent specificity (97%), while galectin-3 and CK19 presented a higher sensitivity (>97%) in discriminating benign from malignant thyroid lesions. In vitro experiments revealed that migration was negatively affected in TPC-1 galectin-1 knockdown (KD) cells, and that proliferation and invasion capacity of 8505C cells decreased after galectin-1 KD. Moreover, an orthotopic mouse model displayed a lower rate of tumor development with galectin-1 KD thyroid anaplastic cancer cells than in the control. Our findings support the introduction of galectin-1 as a reliable diagnostic marker for thyroid carcinomas. Its involvement in cell proliferation, migration, invasion and tumor growth also intimate functional involvement of galectin-1 in the progression of thyroid carcinoma, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Vanessa Arcolia
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Aurore Wattier
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Emmanuelle Leteurtre
- Université Lille, Inserm, CHU Lille, UMR-S 1172 - JPARC - Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Florence Renaud
- Université Lille, Inserm, CHU Lille, UMR-S 1172 - JPARC - Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilians University, D-80539 Munich, Germany
| | - Myriam Remmelink
- Department of Pathology, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Decaestecker
- Laboratory of Image, Signal Processing and Acoustics (LISA), Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Rodriguez
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Sophie Laurent
- Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
32
|
Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 2016; 147:285-301. [PMID: 28013366 DOI: 10.1007/s00418-016-1525-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
A hallmark of endogenous lectins is their ability to select a few distinct glycoconjugates as counterreceptors for functional pairing from the natural abundance of cellular glycoproteins and glycolipids. As a consequence, assays to assess inhibition of lectin binding should necessarily come as close as possible to the physiological situation, to characterize an impact of a synthetic compound on biorelevant binding with pharmaceutical perspective. We here introduce in a proof-of-principle manner work with sections of paraffin-embedded tissue (jejunum, epididymis) and labeled adhesion/growth-regulatory galectins, harboring one (galectin-1 and galectin-3) or two (galectin-8) types of lectin domain. Six pairs of synthetic lactosides from tailoring of the headgroup (3'-O-sulfation) and the aglycone (β-methyl to aromatic S- and O-linked extensions) as well as three bi- to tetravalent glycoclusters were used as test compounds. Varying extents of reduction in staining intensity by synthetic compounds relative to unsubstituted/free lactose proved the applicability and sensitivity of the method. Flanking cytofluorimetric assays on lectin binding to native cells gave similar grading, excluding a major impact of tissue fixation. The experiments revealed cell/tissue binding of galectin-8 preferentially via one domain, depending on the cell type so that the effect of an inhibitor in a certain context cannot be extrapolated to other cells/tissues. Moreover, the work with the other galectins attests that this assay enables comprehensive analysis of the galectin network in serial tissue sections to determine overlaps and regional differences in inhibitory profiles.
Collapse
|
33
|
Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2016; 147:175-198. [DOI: 10.1007/s00418-016-1518-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
34
|
Galectin-3 Induces a Pro-degradative/inflammatory Gene Signature in Human Chondrocytes, Teaming Up with Galectin-1 in Osteoarthritis Pathogenesis. Sci Rep 2016; 6:39112. [PMID: 27982117 PMCID: PMC5159921 DOI: 10.1038/srep39112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammatory chemo- and cytokines and matrix-degrading proteases underlie the progression of osteoarthritis (OA). Aiming to define upstream regulators for these disease markers, we pursued initial evidence for an upregulation of members of the adhesion/growth-regulatory galectin family. Immunohistochemical localization of galectin-3 (Gal-3) in sections of human cartilage with increasing levels of degeneration revealed a linear correlation reaching a chondrocyte positivity of 60%. Presence in situ was cytoplasmic, the lectin was secreted from OA chondrocytes in culture and binding of Gal-3 yielded lactose-inhibitable surface staining. Exposure of cells to the lectin led to enhanced gene expression and secretion of functional disease markers. Genome-wide transcriptomic analysis broadened this result to reveal a pro-degradative/inflammatory gene signature under the control of NF-κB. Fittingly, targeting this route of activation by inhibitors impaired the unfavourable response to Gal-3 binding, as also seen by shortening the lectin’s collagen-like repeat region. Gal-3’s activation profile overlaps with that of homodimeric galectin-1 (Gal-1) and also has distinctive (supplementing) features. Tested at subsaturating concentrations in a mixture, we found cooperation between the two galectins, apparently able to team up to promote OA pathogenesis. In summary, our results suggest that a network of endogenous lectins is relevant for initiating this process cascade.
Collapse
|
35
|
Artigas G, Hinou H, Garcia-Martin F, Gabius HJ, Nishimura SI. Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays. Chem Asian J 2016; 12:159-167. [DOI: 10.1002/asia.201601420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; Ludwig-Maximilians-University Munich; Veterinärstr. 13 80539 München Germany
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| |
Collapse
|
36
|
Michalak M, Warnken U, André S, Schnölzer M, Gabius HJ, Kopitz J. Detection of Proteome Changes in Human Colon Cancer Induced by Cell Surface Binding of Growth-Inhibitory Human Galectin-4 Using Quantitative SILAC-Based Proteomics. J Proteome Res 2016; 15:4412-4422. [DOI: 10.1021/acs.jproteome.6b00473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Malwina Michalak
- Department
of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, 69120 Heidelberg, Germany
- Cancer
Early Detection, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Uwe Warnken
- Functional
Proteome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sabine André
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstraße 13, 80539 Munich, Germany
| | - Martina Schnölzer
- Functional
Proteome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstraße 13, 80539 Munich, Germany
| | - Juergen Kopitz
- Department
of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, 69120 Heidelberg, Germany
- Cancer
Early Detection, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
37
|
García Caballero G, Flores-Ibarra A, Michalak M, Khasbiullina N, Bovin NV, André S, Manning JC, Vértesy S, Ruiz FM, Kaltner H, Kopitz J, Romero A, Gabius HJ. Galectin-related protein: An integral member of the network of chicken galectins 1. From strong sequence conservation of the gene confined to vertebrates to biochemical characteristics of the chicken protein and its crystal structure. Biochim Biophys Acta Gen Subj 2016; 1860:2285-97. [PMID: 27268118 PMCID: PMC7127388 DOI: 10.1016/j.bbagen.2016.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022]
Affiliation(s)
- Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Andrea Flores-Ibarra
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Nailya Khasbiullina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, Russia
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sabine Vértesy
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Federico M Ruiz
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
38
|
Majewski J, André S, Jones E, Chi E, Gabius HJ. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface. BIOCHEMISTRY (MOSCOW) 2016; 80:943-56. [PMID: 26542007 DOI: 10.1134/s0006297915070135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The specific interaction of ganglioside GM1 with the homodimeric (prototype) endogenous lectin galectin-1 triggers growth regulation in tumor and activated effector T cells. This proven biorelevance directed interest to studying association of the lectin to a model surface, i.e. a 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine/ganglioside GM1 (80 : 20 mol%) monolayer, at a bioeffective concentration. Surface expansion by the lectin insertion was detected at a surface pressure of 20 mN/m. On combining the methods of grazing incidence X-ray diffraction and X-ray reflectivity, a transient decrease in lipid-ordered phase of the monolayer was observed. The measured electron density distribution indicated that galectin-1 is oriented with its long axis in the surface plane, ideal for cis-crosslinking. The data reveal a conspicuous difference to the way the pentameric lectin part of the cholera toxin, another GM1-specific lectin, is bound to the monolayer. They also encourage further efforts to monitor effects of structurally different members of the galectin family such as the functionally antagonistic chimera-type galectin-3.
Collapse
Affiliation(s)
- J Majewski
- Manuel Lujan Jr. Neutron Scattering Center, Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | |
Collapse
|
39
|
García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig AK, Manning JC, Schmidt S, Schnölzer M, Bovin NV, Reusch D, Kopitz J, Gabius HJ. Chicken GRIFIN: A homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 2016; 128-129:34-47. [PMID: 27296808 DOI: 10.1016/j.biochi.2016.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022]
Abstract
Occurrence of the adhesion/growth-regulatory galectins as family sets the challenge to achieve a complete network analysis. Along this route taken for a well-suited model organism (chicken), we fill the remaining gap to characterize its seventh member known from rat as galectin-related inter-fiber protein (GRIFIN) in the lens. Its single-copy gene is common to vertebrates, with one or more deviations from the so-called signature sequence for ligand (lactose) contact. The chicken protein is a homodimeric agglutinin with capacity to bind β-galactosides, especially the histo-blood group B tetrasaccharide, shown by solid-phase/cell assays and a glycan microarray. Mass spectrometric identification of two lactose-binding peptides after tryptic on-bead fragmentation suggests an interaction at the canonical region despite a sequence change from Arg to Val at the site, which impairs reactivity of human galectin-1. RT-PCR and Western blot analyses of specimen from adult chicken organs reveal restriction of expression to the lens, here immunohistochemically throughout its main body. This report sets the stage for detailed structure-activity studies to define factors relevant for affinity beyond the signature sequence and to perform the first complete network analysis of the galectin family in developing and adult organs of a vertebrate.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Nadezhda Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, Moscow, Russia
| | - Michelle Yegres
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Martina Schnölzer
- Genomics and Proteomics Core Facility, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nicolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, Moscow, Russia
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
40
|
Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules 2016; 21:molecules21050629. [PMID: 27187342 PMCID: PMC6274006 DOI: 10.3390/molecules21050629] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
Glycan recognition by sugar receptors (lectins) is intimately involved in many aspects of cell physiology. However, the factors explaining the exquisite selectivity of their functional pairing are not yet fully understood. Studies toward this aim will also help appraise the potential for lectin-directed drug design. With the network of adhesion/growth-regulatory galectins as therapeutic targets, the strategy to recruit synthetic chemistry to systematically elucidate structure-activity relationships is outlined, from monovalent compounds to glyco-clusters and glycodendrimers to biomimetic surfaces. The versatility of the synthetic procedures enables to take examining structural and spatial parameters, alone and in combination, to its limits, for example with the aim to produce inhibitors for distinct galectin(s) that exhibit minimal reactivity to other members of this group. Shaping spatial architectures similar to glycoconjugate aggregates, microdomains or vesicles provides attractive tools to disclose the often still hidden significance of nanometric aspects of the different modes of lectin design (sequence divergence at the lectin site, differences of spatial type of lectin-site presentation). Of note, testing the effectors alone or in combination simulating (patho)physiological conditions, is sure to bring about new insights into the cooperation between lectins and the regulation of their activity.
Collapse
|
41
|
Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73:1989-2016. [PMID: 26956894 PMCID: PMC11108359 DOI: 10.1007/s00018-016-2163-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited.
Collapse
Affiliation(s)
- H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany.
| | - J C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - J Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - S André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - H Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| |
Collapse
|
42
|
Ippel H, Miller MC, Vértesy S, Zheng Y, Cañada FJ, Suylen D, Umemoto K, Romanò C, Hackeng T, Tai G, Leffler H, Kopitz J, André S, Kübler D, Jiménez-Barbero J, Oscarson S, Gabius HJ, Mayo KH. Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology 2016; 26:888-903. [PMID: 26911284 DOI: 10.1093/glycob/cww021] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/14/2016] [Indexed: 12/19/2022] Open
Abstract
Galectin-3 is an adhesion/growth-regulatory protein with a modular design comprising an N-terminal tail (NT, residues 1-111) and the conserved carbohydrate recognition domain (CRD, residues 112-250). The chimera-type galectin interacts with both glycan and peptide motifs. Complete (13)C/(15)N-assignment of the human protein makes NMR-based analysis of its structure beyond the CRD possible. Using two synthetic NT polypeptides covering residues 1-50 and 51-107, evidence for transient secondary structure was found with helical conformation from residues 5 to 15 as well as proline-mediated, multi-turn structure from residues 18 to 32 and around PGAYP repeats. Intramolecular interactions occur between the CRD F-face (the 5-stranded β-sheet behind the canonical carbohydrate-binding 6-stranded β-sheet of the S-face) and NT in full-length galectin-3, with the sequence P(23)GAW(26)…P(37)GASYPGAY(45) defining the primary binding epitope within the NT. Work with designed peptides indicates that the PGAX motif is crucial for self-interactions between NT/CRD. Phosphorylation at position Ser6 (and Ser12) (a physiological modification) and the influence of ligand binding have minimal effect on this interaction. Finally, galectin-3 molecules can interact weakly with each other via the F-faces of their CRDs, an interaction that appears to be assisted by their NTs. Overall, our results add insight to defining binding sites on galectin-3 beyond the canonical contact area for β-galactosides.
Collapse
Affiliation(s)
- Hans Ippel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Biochemistry and CARIM, Maastricht University, Maastricht, The Netherlands
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabine Vértesy
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Yi Zheng
- School of Life Science, Northeast Normal University, 130024 Changchun, People's Republic of China
| | - F Javier Cañada
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Dennis Suylen
- Department of Biochemistry and CARIM, Maastricht University, Maastricht, The Netherlands
| | - Kimiko Umemoto
- Department of Chemistry, International Christian University, Tokyo, Japan
| | - Cecilia Romanò
- Center for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tilman Hackeng
- Department of Biochemistry and CARIM, Maastricht University, Maastricht, The Netherlands
| | - Guihua Tai
- School of Life Science, Northeast Normal University, 130024 Changchun, People's Republic of China
| | - Hakon Leffler
- Department of Laboratory Medicine, Microbiology, Immunology, Glycobiology Section, 22362 Lund, Sweden
| | - Jürgen Kopitz
- Institute of Pathology, Applied Tumor Biology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Dieter Kübler
- Mechanismen Biomolekularer Interaktionen, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technological Park, 48160 Derio, Spain.,Ikerbasque, Basque Science Foundation, 28009 Bilbao, Spain
| | - Stefan Oscarson
- Center for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
43
|
Rodriguez MC, Yegorova S, Pitteloud JP, Chavaroche AE, André S, Ardá A, Minond D, Jiménez-Barbero J, Gabius HJ, Cudic M. Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides. Biochemistry 2015; 54:4462-74. [PMID: 26129647 PMCID: PMC4520625 DOI: 10.1021/acs.biochem.5b00555] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A shift
to short-chain glycans is an observed change in mucin-type
O-glycosylation in premalignant and malignant epithelia. Given the
evidence that human galectin-3 can interact with mucins and also weakly
with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176),
the study of its interaction with MUC1 (glyco)peptides is of biomedical
relevance. Glycosylated MUC1 fragments that carry the TF antigen attached
through either Thr or Ser side chains were synthesized using standard
Fmoc-based automated solid-phase peptide chemistry. The dissociation
constants (Kd) for interaction of galectin-3
and the glycosylated MUC1 fragments measured by isothermal titration
calorimetry decreased up to 10 times in comparison to that of the
free TF disaccharide. No binding was observed for the nonglycosylated
control version of the MUC1 peptide. The most notable feature of the
binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable
enthalpy to an entropy-driven binding process. The comparatively diminished
enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. 1H–15N heteronuclear single-quantum coherence
spectroscopy nuclear magnetic resonance data reveal contact at the
canonical site mainly by the glycan moiety of the MUC1 glycopeptide.
Ligand-dependent differences in binding affinities were also confirmed
by a novel assay for screening of low-affinity glycan–lectin
interactions based on AlphaScreen technology. Another key finding
is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent
manner in cell-based assays revealing selectivity among human galectins.
Thus, the presentation of this tumor-associated carbohydrate ligand
by the natural peptide scaffold enhances its affinity, highlighting
the significance of model studies of human lectins with synthetic
glycopeptides.
Collapse
Affiliation(s)
- Maria C Rodriguez
- †Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Svetlana Yegorova
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jean-Philippe Pitteloud
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Anais E Chavaroche
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Sabine André
- §Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Ana Ardá
- ∥CIC bioGUNE, Bizkaia Technological Park, Building 801 A, 48160 Derio, Spain
| | - Dimitriy Minond
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jesús Jiménez-Barbero
- ∥CIC bioGUNE, Bizkaia Technological Park, Building 801 A, 48160 Derio, Spain.,⊥Ikerbasque, Basque Foundation for Science, Maria Lopez de Haro 3, 48013 Bilbao, Spain
| | - Hans-Joachim Gabius
- §Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Mare Cudic
- †Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
44
|
Vértesy S, Michalak M, Miller MC, Schnölzer M, André S, Kopitz J, Mayo KH, Gabius HJ. Structural significance of galectin design: impairment of homodimer stability by linker insertion and partial reversion by ligand presence. Protein Eng Des Sel 2015; 28:199-210. [PMID: 25796447 DOI: 10.1093/protein/gzv014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/11/2015] [Indexed: 11/13/2022] Open
Abstract
Lectins translate information encoded in glycan chains of cellular glycoconjugates into bioeffects. The topological presentation of contact sites for cognate sugar binding is a crucial factor toward this end. To dissect the significance of such phylogenetically conserved properties, the design and engineering of non-natural variants are attractive approaches. Here, a homodimeric human lectin, i.e. adhesion/growth-regulatory galectin-1, is converted into a tandem-repeat display by introducing the 33-amino-acid linker of another family member (i.e. galectin-8). The yield of variant was reduced by about a third. This protein had ∼10-fold higher activity in hemagglutination. Nearly complete sequence determination by mass-spectrometric in-source decay and fingerprinting excluded the presence of any modifications. When (1)H-(15)N heteronuclear single-quantum coherence data on the (15)N-labeled variant and wild-type protein were compared, changes in chemical shifts, signal intensities and resonance multiplicities revealed reduction of stability of interfacial contacts between the lectin domains and an increase in inter-domain flexibility. When both binding sites in the variant were loaded with ligand, association of the two carbohydrate recognition domains was enhanced, corroborated by gel filtration. Dynamic changes in the spatial presentation of the two lectin domains in the context of a tandem-repeat display can alter counterreceptor targeting relative to the fixed positions found in the proto-type galectin homodimer.
Collapse
Affiliation(s)
- Sabine Vértesy
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| | - Malwina Michalak
- Abteilung für Angewandte Tumorbiologie, Pathologisches Institut, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Str., Minneapolis, MN 55455, USA
| | - Martina Schnölzer
- Funktionelle Proteomanalyse, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| | - Jürgen Kopitz
- Abteilung für Angewandte Tumorbiologie, Pathologisches Institut, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Str., Minneapolis, MN 55455, USA
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| |
Collapse
|
45
|
Flores-Ibarra A, Ruiz FM, Vértesy S, André S, Gabius HJ, Romero A. Preliminary X-ray crystallographic analysis of an engineered variant of human chimera-type galectin-3 with a shortened N-terminal domain. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:184-8. [PMID: 25664793 DOI: 10.1107/s2053230x15000023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/01/2015] [Indexed: 11/10/2022]
Abstract
How lectins translate sugar-encoded information into cellular effects not only depends on glycan recognition. Other domains of the protein can contribute to the functional profile of a lectin. Human galectin-3 (Gal-3), an adhesion/growth-regulatory galectin, is composed of three different domains and is thus called a chimera-type protein. In addition to the carbohydrate-recognition domain, this lectin encompasses an N-terminal domain consisting of a peptide harbouring two phosphorylation sites and nine non-triple-helical collagen-like repeats. This region plays an as yet structurally undefined role in Gal-3 aggregation and ligand recognition. To date, crystallization of full-length Gal-3 has not been achieved. With the aim of providing structural insights into this modular organization, a Gal-3 variant was crystallized maintaining the terminal peptide and three of the nine collagen-like repeats. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 94.04, b = 97.96, c = 236.20 Å, and diffracted to a resolution of 3.3 Å.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Federico M Ruiz
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sabine Vértesy
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 München, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 München, Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 München, Germany
| | - Antonio Romero
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
46
|
Abbassi L, Chabre YM, Kottari N, Arnold AA, André S, Josserand J, Gabius HJ, Roy R. Multifaceted glycodendrimers with programmable bioactivity through convergent, divergent, and accelerated approaches using polyfunctional cyclotriphosphazenes. Polym Chem 2015. [DOI: 10.1039/c5py01283j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cyclotriphosphazene-based platform facilitates versatile synthesis of glycodendrimers active as inhibitors of two biomedically relevant lectins.
Collapse
Affiliation(s)
- Leïla Abbassi
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Yoann M. Chabre
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Naresh Kottari
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Alexandre A. Arnold
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Sabine André
- Institute of Physiological Chemistry
- Faculty of Veterinary Medicine
- Ludwig-Maximilians-University
- 80539 Munich
- Germany
| | - Johan Josserand
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry
- Faculty of Veterinary Medicine
- Ludwig-Maximilians-University
- 80539 Munich
- Germany
| | - René Roy
- Pharmaqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|