1
|
Zheng H, Liu J, Yu J, McAlinden A. Expression profiling of mitochondria-associated microRNAs during osteogenic differentiation of human MSCs. Bone 2021; 151:116058. [PMID: 34144232 PMCID: PMC8944210 DOI: 10.1016/j.bone.2021.116058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
Small non-coding microRNAs (miRNAs) have the ability to target and bind to many mRNAs within the cytosol resulting in reduced protein expression and modulation of a number of cellular pathways and networks. In addition to the cytosol, miRNAs have been identified in other cellular compartments and organelles, including the mitochondria. While a few mitochondria-associated miRNAs (mitomiRs) are predicted to be derived from the mitochondrial genome, the majority appear to be transcribed from nuclear DNA and somehow transported into the mitochondria. These findings raise interesting questions about why miRNAs are located in the mitochondria and if they play a role in regulating processes within these organelles. Previously published work from our laboratory showed that miR-181a/b can regulate osteogenesis, in part, by enhancing mitochondrial metabolism. In other published studies, miR-181 paralogs and many other miRNAs have been identified in mitochondrial extracts derived from common cell lines and specific primary cells and tissues. Taken together, we were motivated to identify mitomiR expression profiles during in vitro osteogenesis. Specifically, we obtained RNA from purified mitochondrial extracts of human bone marrow-derived mesenchymal stem/stromal cells (MSCs) and from whole cell extracts of MSCs at day 0 or following osteogenic induction for 3, 7 and 14 days. Utilizing Affymetrix GeneChip™ miRNA 4.0 arrays, mitomiR expression signatures were determined at each time point. Based on the Affymetrix detection above background algorithm, the total number of miRNAs detected in MSC mitochondria extracts was 527 (non-induced MSCs), 627 (day 3 induced), 372 (day 7 induced) and 498 (day 14 induced). In addition, we identified significantly differentially-expressed mitomiRs at day 7 and day 14 of osteogenic induction when compared to day 0 (fold change ≥1.5; adjusted p value <0.05). In general, the most pronounced and highly significant changes in mitomiR expression during osteogenesis were observed at the day 7 time point. Interestingly, most miRNAs found to be differentially-expressed in mitochondria extracts did not show significantly altered expression in whole cell extracts at the same time points during osteoblast differentiation. This array study provides novel information on miRNAs associated with the mitochondria in MSCs during differentiation toward the osteoblast phenotype. These findings will guide future research to identify new miRNA candidates that may function in regulating mitochondrial function and/or bone formation, homeostasis or repair.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jinsheng Yu
- Genome Technology Access Center, Washington University School of Medicine, St Louis, MO, United States of America.
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
2
|
Leite GGF, Ferreira BL, Tashima AK, Nishiduka ES, Cunha-Neto E, Brunialti MKC, Assuncao M, Azevedo LCP, Freitas F, van der Poll T, Scicluna BP, Salomão R. Combined Transcriptome and Proteome Leukocyte's Profiling Reveals Up-Regulated Module of Genes/Proteins Related to Low Density Neutrophils and Impaired Transcription and Translation Processes in Clinical Sepsis. Front Immunol 2021; 12:744799. [PMID: 34594344 PMCID: PMC8477441 DOI: 10.3389/fimmu.2021.744799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a global health emergency, which is caused by various sources of infection that lead to changes in gene expression, protein-coding, and metabolism. Advancements in "omics" technologies have provided valuable tools to unravel the mechanisms involved in the pathogenesis of this disease. In this study, we performed shotgun mass spectrometry in peripheral blood mononuclear cells (PBMC) from septic patients (N=24) and healthy controls (N=9) and combined these results with two public microarray leukocytes datasets. Through combination of transcriptome and proteome profiling, we identified 170 co-differentially expressed genes/proteins. Among these, 122 genes/proteins displayed the same expression trend. Ingenuity Pathway Analysis revealed pathways related to lymphocyte functions with decreased status, and defense processes that were predicted to be strongly increased. Protein-protein interaction network analyses revealed two densely connected regions, which mainly included down-regulated genes/proteins that were related to the transcription of RNA, translation of proteins, and mitochondrial translation. Additionally, we identified one module comprising of up-regulated genes/proteins, which were mainly related to low-density neutrophils (LDNs). LDNs were reported in sepsis and in COVID-19. Changes in gene expression level were validated using quantitative real-time PCR in PBMCs from patients with sepsis. To further support that the source of the upregulated module of genes/proteins found in our results were derived from LDNs, we identified an increase of this population by flow cytometry in PBMC samples obtained from the same cohort of septic patients included in the proteomic analysis. This study provides new insights into a reprioritization of biological functions in response to sepsis that involved a transcriptional and translational shutdown of genes/proteins, with exception of a set of genes/proteins related to LDNs and host-defense system.
Collapse
Affiliation(s)
- Giuseppe Gianini Figueirêdo Leite
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Bianca Lima Ferreira
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Erika Sayuri Nishiduka
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Murillo Assuncao
- Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Flávio Freitas
- Intensive Care Unit, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P. Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Applied Biomedical Sciences, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta
| | - Reinaldo Salomão
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
4
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
5
|
Koripella RK, Sharma MR, Bhargava K, Datta PP, Kaushal PS, Keshavan P, Spremulli LL, Banavali NK, Agrawal RK. Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation. Nat Commun 2020; 11:3830. [PMID: 32737313 PMCID: PMC7395135 DOI: 10.1038/s41467-020-17715-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Cryoelectron Microscopy
- HEK293 Cells
- Humans
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Mitochondrial Membranes/metabolism
- Mitochondrial Membranes/ultrastructure
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Mitochondrial/chemistry
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Kalpana Bhargava
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
- High Energy Material Research Lab, Defense Research and Development Organization, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India
| | - Partha P Datta
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Prem S Kaushal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box # 3, Faridabad, Haryana, 121001, India
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Linda L Spremulli
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
| | - Nilesh K Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12201-0509, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA.
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12201-0509, USA.
| |
Collapse
|
6
|
Koripella RK, Sharma MR, Risteff P, Keshavan P, Agrawal RK. Structural insights into unique features of the human mitochondrial ribosome recycling. Proc Natl Acad Sci U S A 2019; 116:8283-8288. [PMID: 30962385 PMCID: PMC6486771 DOI: 10.1073/pnas.1815675116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing proteins that are essential for oxidative phosphorylation (ATP generation). Despite their common ancestry with bacteria, the composition and structure of the human mitoribosome and its translational factors are significantly different from those of their bacterial counterparts. The mammalian mitoribosome recycling factor (RRFmt) carries a mito-specific N terminus extension (NTE), which is necessary for the function of RRFmt Here we present a 3.9-Å resolution cryo-electron microscopic (cryo-EM) structure of the human 55S mitoribosome-RRFmt complex, which reveals α-helix and loop structures for the NTE that makes multiple mito-specific interactions with functionally critical regions of the mitoribosome. These include ribosomal RNA segments that constitute the peptidyl transferase center (PTC) and those that connect PTC with the GTPase-associated center and with mitoribosomal proteins L16 and L27. Our structure reveals the presence of a tRNA in the pe/E position and a rotation of the small mitoribosomal subunit on RRFmt binding. In addition, we observe an interaction between the pe/E tRNA and a mito-specific protein, mL64. These findings help understand the unique features of mitoribosome recycling.
Collapse
Affiliation(s)
- Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Paul Risteff
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509;
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY
| |
Collapse
|
7
|
Ryzhkova AI, Sazonova MA, Sinyov VV, Galitsyna EV, Chicheva MM, Melnichenko AA, Grechko AV, Postnov AY, Orekhov AN, Shkurat TP. Mitochondrial diseases caused by mtDNA mutations: a mini-review. Ther Clin Risk Manag 2018; 14:1933-1942. [PMID: 30349272 PMCID: PMC6186303 DOI: 10.2147/tcrm.s154863] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are several types of mitochondrial cytopathies, which cause a set of disorders, arise as a result of mitochondria’s failure. Mitochondria’s functional disruption leads to development of physical, growing and cognitive disabilities and includes multiple organ pathologies, essentially disturbing the nervous and muscular systems. The origins of mitochondrial cytopathies are mutations in genes of nuclear DNA encoding mitochondrial proteins or in mitochondrial DNA. Nowadays, numerous mtDNA mutations significant to the appearance and progress of pathologies in humans are detected. In this mini-review, we accent on the mitochondrial cytopathies related to mutations of mtDNA. As well known, there are definite set of symptoms of mitochondrial cytopathies distinguishing or similar for different syndromes. The present article contains data about mutations linked with cytopathies that facilitate diagnosis of different syndromes by using genetic analysis methods. In addition, for every individual, more effective therapeutic approach could be developed after wide-range mutant background analysis of mitochondrial genome.
Collapse
Affiliation(s)
- Anastasia I Ryzhkova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation, .,Department of Virology, K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology-MVA, Moscow, Russian Federation,
| | - Margarita A Sazonova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation, .,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vasily V Sinyov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation,
| | - Elena V Galitsyna
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Mariya M Chicheva
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| | | | - Andrey V Grechko
- Federal Research and Clinical Center of Reanimatology and Rehabilitology, Moscow, Russian Federation
| | - Anton Yu Postnov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation,
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Institute for Atherosclerosis Research, Skolkovo Innovative Centre, Moscow Region, Russian Federation
| | - Tatiana P Shkurat
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|
8
|
Zhang L, Wang W, Zhu B, Wang X. Regulatory Roles of Mitochondrial Ribosome in Lung Diseases and Single Cell Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:183-200. [PMID: 29178077 DOI: 10.1007/978-981-10-6674-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mitochondria have the most vital processes in eukaryotic cells to produce ATP composed of polypeptides that are produced via ribosomes, as oxidative phosphorylation. Initially, studies regarding human mitochondrial ribosomes were performed in the model system, bovine mitochondrial ribosome, to investigate how ribosomes are biosynthesized and evolved as well as what their structure and function are. Advances in X-ray crystallography have led to dramatic progresses in structural studies of the ribosome. In recent years, there has been a growing interest in the properties of the mitochondrial ribosome. Although one of its main functions is the production of ATP, it was also linked to multiple diseases. A key area that remains unexplored and requires investigation and exploration is how mitochondrial ribosomal RNA (mt-rRNA) variations can affect the mitochondrial ribosomes in developing disease. This review summarizes the structure, elements, functions, and regulatory roles in associated diseases. With the continuous development of technology, studies on the mechanism of mitochondrial ribosome related diseases are crucial, in order to identify methods of prevention and treatment of these disorders.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
9
|
Box JM, Kaur J, Stuart RA. MrpL35, a mitospecific component of mitoribosomes, plays a key role in cytochrome c oxidase assembly. Mol Biol Cell 2017; 28:3489-3499. [PMID: 28931599 PMCID: PMC5683760 DOI: 10.1091/mbc.e17-04-0239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Mitoribosomes perform the synthesis of the core components of the oxidative phosphorylation (OXPHOS) system encoded by the mitochondrial genome. We provide evidence that MrpL35 (mL38), a mitospecific component of the yeast mitoribosomal central protuberance, assembles into a subcomplex with MrpL7 (uL5), Mrp7 (bL27), and MrpL36 (bL31) and mitospecific proteins MrpL17 (mL46) and MrpL28 (mL40). We isolated respiratory defective mrpL35 mutant yeast strains, which do not display an overall inhibition in mitochondrial protein synthesis but rather have a problem in cytochrome c oxidase complex (COX) assembly. Our findings indicate that MrpL35, with its partner Mrp7, play a key role in coordinating the synthesis of the Cox1 subunit with its assembly into the COX enzyme and in a manner that involves the Cox14 and Coa3 proteins. We propose that MrpL35 and Mrp7 are regulatory subunits of the mitoribosome acting to coordinate protein synthesis and OXPHOS assembly events and thus the bioenergetic capacity of the mitochondria.
Collapse
Affiliation(s)
- Jodie M Box
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Jasvinder Kaur
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
10
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
11
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|