1
|
Paratore TA, Schmidt GE, Ross AH, Gericke A. Thermal stability of bivalent cation/phosphoinositide domains in model membranes. Chem Phys Lipids 2024; 264:105424. [PMID: 39098579 DOI: 10.1016/j.chemphyslip.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2 and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg2+ ions. While PI(4)P shows in the presence of Ca2+ no clustering, PI(4,5)P2 forms with Ca2+ strong clusters that exhibit stablity up to at least 80°C. The extent of cluster formation for the interaction of PI(3,4,5)P3 with Ca2+ is less than what was observed for PI(4,5)P2, yet we still observe some clustering up to 80°C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg2+ or Ca2+ with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca2+ with PI(4,5)P2. Also, in the presence of cholesterol, the interaction of Mg2+ with PI(4,5)P2 remains weak. PI(3,4,5)P3 does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca2+ and Mg2+ was not influenced by the presence of cholesterol.
Collapse
Affiliation(s)
- Trevor A Paratore
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA
| | - Greta E Schmidt
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA
| | - Alonzo H Ross
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA.
| |
Collapse
|
2
|
Mansat M, Kpotor AO, Chicanne G, Picot M, Mazars A, Flores-Flores R, Payrastre B, Hnia K, Viaud J. MTM1-mediated production of phosphatidylinositol 5-phosphate fuels the formation of podosome-like protrusions regulating myoblast fusion. Proc Natl Acad Sci U S A 2024; 121:e2217971121. [PMID: 38805272 PMCID: PMC11161799 DOI: 10.1073/pnas.2217971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.
Collapse
Affiliation(s)
- Mélanie Mansat
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Afi Oportune Kpotor
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Mélanie Picot
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Anne Mazars
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Rémy Flores-Flores
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Bernard Payrastre
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
- Hematology Laboratory, University Hospital of Toulouse31059, Toulouse Cedex 03, France
| | - Karim Hnia
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| | - Julien Viaud
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC)31432, Toulouse Cedex 04, France
| |
Collapse
|
3
|
Zhai D, Li L, Chen C, Wang X, Liu R, Shan Y. INPP5E Regulates the Distribution of Phospholipids on Cilia in RPE1 Cells. J Clin Lab Anal 2024; 38:e25031. [PMID: 38514901 PMCID: PMC11033345 DOI: 10.1002/jcla.25031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Primary cilia are static microtubule-based structures protruding from the cell surface and present on most vertebrate cells. The appropriate localization of phospholipids is essential for cilia formation and stability. INPP5E is a cilia-localized inositol 5-phosphatase; its deletion alters the phosphoinositide composition in the ciliary membrane, disrupting ciliary function. METHODS The EGFP-2xP4MSidM, PHPLCδ1-EGFP, and SMO-tRFP plasmids were constructed by the Gateway system to establish a stable RPE1 cell line. The INPP5E KO RPE1 cell line was constructed with the CRISPR/Cas9 system. The localization of INPP5E and the distribution of PI(4,5)P2 and PI4P were examined by immunofluorescence microscopy. The fluorescence intensity co-localized with cilia was quantified by ImageJ. RESULTS In RPE1 cells, PI4P is localized at the ciliary membrane, whereas PI(4,5)P2 is localized at the base of cilia. Knocking down or knocking out INPP5E alters this distribution, resulting in the distribution of PI(4,5)P2 along the ciliary membrane and the disappearance of PI4P from the cilia. Meanwhile, PI(4,5)P2 is located in the ciliary membrane labeled by SMO-tRFP. CONCLUSIONS INPP5E regulates the distribution of phosphoinositide on cilia. PI(4,5)P2 localizes at the ciliary membrane labeled with SMO-tRFP, indicating that ciliary pocket membrane contains PI(4,5)P2, and phosphoinositide composition in early membrane structures may differ from that in mature ciliary membrane.
Collapse
Affiliation(s)
- Denghui Zhai
- State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Lamei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Cheng Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Ying Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
4
|
Severin S, Gratacap MP, Bouvet L, Borret M, Kpotor AO, Chicanne G, Xuereb JM, Viaud J, Payrastre B. Phosphoinositides take a central stage in regulating blood platelet production and function. Adv Biol Regul 2024; 91:100992. [PMID: 37793962 DOI: 10.1016/j.jbior.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.
Collapse
Affiliation(s)
- Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Laura Bouvet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Maxime Borret
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Afi Oportune Kpotor
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Jean-Marie Xuereb
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France; Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Toulouse Rangueil, F-31432, Toulouse, France.
| |
Collapse
|
5
|
Chicanne G, Darcourt J, Bertrand-Michel J, Garcia C, Ribes A, Payrastre B. What can we learn from the platelet lipidome? Platelets 2023; 34:2182180. [PMID: 36880158 DOI: 10.1080/09537104.2023.2182180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Besides their proteome, platelets use, in all responses to the environmental cues, a huge and diverse family of hydrophobic and amphipathic small molecules involved in structural, metabolic and signaling functions; the lipids. Studying how platelet lipidome changes modulate platelet function is an old story constantly renewed through the impressive technical advances allowing the discovery of new lipids, functions and metabolic pathways. Technical progress in analytical lipidomic profiling by top-of-the-line approaches such as nuclear magnetic resonance and gas chromatography or liquid chromatography coupled to mass spectrometry enables either large-scale analysis of lipids or targeted lipidomics. With the support of bioinformatics tools and databases, it is now possible to investigate thousands of lipids over a concentration range of several orders of magnitude. The lipidomic landscape of platelets is considered a treasure trove, not only able to expand our knowledge of platelet biology and pathologies but also to bring diagnostic and therapeutic opportunities. The aim of this commentary article is to summarize the advances in the field and to highlight what lipidomics can tell us about platelet biology and pathophysiology.
Collapse
Affiliation(s)
- Gaëtan Chicanne
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France
| | - Jean Darcourt
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France
| | - Justine Bertrand-Michel
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Cédric Garcia
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,Laboratory of Haematology, University Hospital of Toulouse, Toulouse, France
| | - Agnès Ribes
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,Laboratory of Haematology, University Hospital of Toulouse, Toulouse, France
| | - Bernard Payrastre
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,Laboratory of Haematology, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
6
|
Di Bartolo AL, Caparotta M, Masone D. Intrinsic Disorder in α-Synuclein Regulates the Exocytotic Fusion Pore Transition. ACS Chem Neurosci 2023. [PMID: 37192400 DOI: 10.1021/acschemneuro.3c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Marcelo Caparotta
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
7
|
Mujalli A, Viaud J, Severin S, Gratacap MP, Chicanne G, Hnia K, Payrastre B, Terrisse AD. Exploring the Role of PI3P in Platelets: Insights from a Novel External PI3P Pool. Biomolecules 2023; 13:biom13040583. [PMID: 37189331 DOI: 10.3390/biom13040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023] Open
Abstract
Phosphoinositides (PIs) play a crucial role in regulating intracellular signaling, actin cytoskeleton rearrangements, and membrane trafficking by binding to specific domains of effector proteins. They are primarily found in the membrane leaflets facing the cytosol. Our study demonstrates the presence of a pool of phosphatidylinositol 3-monophosphate (PI3P) in the outer leaflet of the plasma membrane of resting human and mouse platelets. This pool of PI3P is accessible to exogenous recombinant myotubularin 3-phosphatase and ABH phospholipase. Mouse platelets with loss of function of class III PI 3-kinase and class II PI 3-kinase α have a decreased level of external PI3P, suggesting a contribution of these kinases to this pool of PI3P. After injection in mouse, or incubation ex vivo in human blood, PI3P-binding proteins decorated the platelet surface as well as α-granules. Upon activation, these platelets were able to secrete the PI3P-binding proteins. These data sheds light on a previously unknown external pool of PI3P in the platelet plasma membrane that recognizes PI3P-binding proteins, leading to their uptake towards α-granules. This study raises questions about the potential function of this external PI3P in the communication of platelets with the extracellular environment, and its possible role in eliminating proteins from the plasma.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Karim Hnia
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
- Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Toulouse Rangueil, F-31432 Toulouse Cedex, France
| | - Anne-Dominique Terrisse
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| |
Collapse
|
8
|
Discovery of endosomalytic cell-penetrating peptides based on bacterial membrane-targeting sequences. Bioorg Chem 2023; 134:106424. [PMID: 36868126 DOI: 10.1016/j.bioorg.2023.106424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Cell-penetrating peptides (CPPs) are prominent scaffolds for drug developments and related research, particularly the endocytic delivery of biomacromolecules. Effective cargo release from endosomes prior to lysosomal degradation is a crucial step, where the rational design and selection of CPPs remains a challenge and calls for deeper mechanistic understandings. Here, we have investigated a strategy of designing CPPs that selectively disrupt endosomal membranes based on bacterial membrane targeting sequences (MTSs). Six synthesized MTS peptides all exhibit cell-penetrating abilities, among which two d-peptides (d-EcMTS and d-TpMTS) are able to escape from endosomes and localize at ER after entering the cell. The utility of this strategy has been demonstrated by the intracellular delivery of green fluorescent protein (GFP). Together, these results suggest that the large pool of bacterial MTSs may be a rich source for the development of novel CPPs.
Collapse
|
9
|
Wang A, Zhang H, Liu J, Yan Z, Sun Y, Su W, Yu JG, Mi J, Zhao L. Targeted Lipidomics and Inflammation Response to Six Weeks of Sprint Interval Training in Male Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3329. [PMID: 36834025 PMCID: PMC9963480 DOI: 10.3390/ijerph20043329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Lipids play an important role in coordinating and regulating metabolic and inflammatory processes. Sprint interval training (SIT) is widely used to improve sports performance and health outcomes, but the current understanding of SIT-induced lipid metabolism and the corresponding systemic inflammatory status modification remains controversial and limited, especially in male adolescents. To answer these questions, twelve untrained male adolescents were recruited and underwent 6 weeks of SIT. The pre- and post-training testing included analyses of peak oxygen consumption (VO2peak), biometric data (weight and body composition), serum biochemical parameters (fasting blood glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triacylglycerol, testosterone, and cortisol), inflammatory markers, and targeted lipidomics. After the 6-week SIT, the serum C-reactive protein (CRP), interleukin (IL)-1β, IL-2, IL-4, IL-10, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β significantly decreased (p < 0.05), whereas IL-6 and IL-10/TNF-α significantly increased (p < 0.05). In addition, the targeted lipidomics revealed changes in 296 lipids, of which 33 changed significantly (p < 0.05, fold change > 1.2 or <1/1.2). The correlation analysis revealed that the changes in the inflammatory markers were closely correlated with the changes in some of the lipids, such as LPC, HexCer, and FFA. In conclusion, the 6-week SIT induced significant changes in the inflammatory markers and circulating lipid composition, offering health benefits to the population.
Collapse
Affiliation(s)
- Aozhe Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Haifeng Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianming Liu
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Zhiyi Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yaqi Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Wantang Su
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Ji-Guo Yu
- Department of Community Medicine and Rehabilitation, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Jing Mi
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
10
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
11
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
12
|
Caux M, Mansour R, Xuereb JM, Chicanne G, Viaud J, Vauclard A, Boal F, Payrastre B, Tronchère H, Severin S. PIKfyve-Dependent Phosphoinositide Dynamics in Megakaryocyte/Platelet Granule Integrity and Platelet Functions. Arterioscler Thromb Vasc Biol 2022; 42:987-1004. [PMID: 35708031 DOI: 10.1161/atvbaha.122.317559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Secretory granules are key elements for platelet functions. Their biogenesis and integrity are regulated by fine-tuned mechanisms that need to be fully characterized. Here, we investigated the role of the phosphoinositide 5-kinase PIKfyve and its lipid products, PtdIns5P (phosphatidylinositol 5 monophosphate) and PtdIns(3,5)P2 (phosphatidylinositol (3,5) bisphosphate) in granule homeostasis in megakaryocytes and platelets. METHODS For that, we invalidated PIKfyve by pharmacological inhibition or gene silencing in megakaryocytic cell models (human MEG-01 cell line, human imMKCLs, mouse primary megakaryocytes) and in human platelets. RESULTS We unveiled that PIKfyve expression and its lipid product levels increased with megakaryocytic maturation. In megakaryocytes, PtdIns5P and PtdIns(3,5)P2 were found in alpha and dense granule membranes with higher levels in dense granules. Pharmacological inhibition or knock-down of PIKfyve in megakaryocytes decreased PtdIns5P and PtdIns(3,5)P2 synthesis and induced a vacuolar phenotype with a loss of alpha and dense granule identity. Permeant PtdIns5P and PtdIns(3,5)P2 and the cation channel TRPML1 (transient receptor potential mucolipins) and TPC2 activation were able to accelerate alpha and dense granule integrity recovery following release of PIKfyve pharmacological inhibition. In platelets, PIKfyve inhibition specifically impaired the integrity of dense granules culminating in defects in their secretion, platelet aggregation, and thrombus formation. CONCLUSIONS These data demonstrated that PIKfyve and its lipid products PtdIns5P and PtdIns(3,5)P2 control granule integrity both in megakaryocytes and platelets.
Collapse
Affiliation(s)
- Manuella Caux
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Rana Mansour
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Jean-Marie Xuereb
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Gaëtan Chicanne
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Julien Viaud
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Alicia Vauclard
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Frédéric Boal
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Bernard Payrastre
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.).,CHU de Toulouse, Laboratoire d'Hématologie, Toulouse, France (B.P.)
| | - Hélène Tronchère
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| | - Sonia Severin
- INSERM U1297, I2MC and Université Paul Sabatier, Toulouse, France (M.C., R.M., J.-M.X., G.C., J.V., A.V., F.B., B.P., H.T., S.S.)
| |
Collapse
|
13
|
Molière A, Beer KB, Wehman AM. Dopey proteins are essential but overlooked regulators of membrane trafficking. J Cell Sci 2022; 135:274973. [PMID: 35388894 DOI: 10.1242/jcs.259628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.
Collapse
Affiliation(s)
- Adrian Molière
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katharina B Beer
- Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.,Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
14
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
15
|
Borges-Araújo L, Souza PCT, Fernandes F, Melo MN. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field. J Chem Theory Comput 2021; 18:357-373. [PMID: 34962393 DOI: 10.1021/acs.jctc.1c00615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoinositides are a family of membrane phospholipids that play crucial roles in membrane regulatory events. As such, these lipids are often a key part of molecular dynamics simulation studies of biological membranes, in particular of those employing coarse-grain models because of the potential long times and sizes of the involved membrane processes. Version 3 of the widely used Martini coarse-grain force field has been recently published, greatly refining many aspects of biomolecular interactions. In order to properly use it for lipid membrane simulations with phosphoinositides, we put forth the Martini 3-specific parameterization of inositol, phosphatidylinositol, and seven physiologically relevant phosphorylated derivatives of phosphatidylinositol. Compared to parameterizations for earlier Martini versions, focus was put on a more accurate reproduction of the behavior seen in both atomistic simulations and experimental studies, including the signaling-relevant phosphoinositide interaction with divalent cations. The models that we develop improve upon the conformational dynamics of phosphoinositides in the Martini force field and provide stable topologies at typical Martini time steps. They are able to reproduce experimentally known protein-binding poses as well as phosphoinositide aggregation tendencies. The latter was tested both in the presence and absence of calcium and included correct behavior of PI(4,5)P2 calcium-induced clusters, which can be of relevance for regulation.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Associate Laboratory i4HB─Institute for Health and Bioeconomy, at Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, 7 Passage du Vercors, Lyon F-69367, France
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Associate Laboratory i4HB─Institute for Health and Bioeconomy, at Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
16
|
Sighinolfi G, Clark S, Blanc L, Cota D, Rhourri-Frih B. Mass spectrometry imaging of mice brain lipid profile changes over time under high fat diet. Sci Rep 2021; 11:19664. [PMID: 34608169 PMCID: PMC8490458 DOI: 10.1038/s41598-021-97201-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity have been shown to significantly affect brain structures and size. Obesity has been associated with cerebral atrophy, alteration of brain functions, including cognitive impairement, and psychiatric diseases such as depression. Given the importance of lipids in the structure of the brain, here, by using 47 mice fed a high fat diet (HFD) with 60% calories from fat (40% saturated fatty acids) and 20% calories from carbohydrates and age-matched control animals on a normal chow diet, we examined the effects of HFD and diet-induced obesity on the brain lipidome. Using a targeted liquid chromatography mass spectrometry analysis and a non-targeted mass spectrometry MALDI imaging approach, we show that the relative concentration of most lipids, in particular brain phospholipids, is modified by diet-induced obesity (+ 40%of body weight). Use of a non-targeted MALDI-MS imaging approach further allowed define cerebral regions of interest (ROI) involved in eating behavior and changes in their lipid profile. Principal component analysis (PCA) of the obese/chow lipidome revealed persistence of some of the changes in the brain lipidome of obese animals even after their switch to chow feeding and associated weight loss. Altogether, these data reveal that HFD feeding rapidly modifies the murine brain lipidome. Some of these HFD-induced changes persist even after weight loss, implying that some brain sequelae caused by diet-induced obesity are irreversible.
Collapse
Affiliation(s)
| | - Samantha Clark
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | | - Daniela Cota
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | |
Collapse
|
17
|
Dysregulation of myelin synthesis and actomyosin function underlies aberrant myelin in CMT4B1 neuropathy. Proc Natl Acad Sci U S A 2021; 118:2009469118. [PMID: 33653949 DOI: 10.1073/pnas.2009469118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P 2, with a preference for PtdIns(3,5)P 2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P 2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P 2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.
Collapse
|
18
|
Abstract
Phosphoinositides (PIPs) are lipid messengers with different functions according to their localization. After their local production by the action of lipid kinases or phosphatases, PIPs regulate various biological processes such as cytoskeleton rearrangement, membrane remodeling/trafficking, or gene expression through binding of their phosphorylated inositol head group with different protein domains such as PH, PX, and FYVE. It is well known that PIPs regulate the activity of small GTPases by interacting with and activating Guanyl-nucleotide Exchange Factor (GEF) proteins through specific domains such as the ones mentioned above. However, most of the in vitro assays to assess the activation of GTPases focus on the GTPase only and neglect the fact that co-activators, such as membranes and protein activators, have a significant effect in vivo. Herein, we describe not only the classical protein-lipid overlay and liposome sedimentation methods but also an assay we have developed, which contains three partners: a liposome which composition reproduces the membrane of the target of the GTPase, the recombinant specific DH-(PIP affinity) GEF domain, and the recombinant GTPase to be tested by different PIPs. This assay allows us to clearly quantify the GTPase activation.
Collapse
|
19
|
Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochem J 2021; 477:4327-4342. [PMID: 33242335 DOI: 10.1042/bcj20190402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, β, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2β), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.
Collapse
|
20
|
Joffrin AM, Saunders AM, Barneda D, Flemington V, Thompson AL, Sanganee HJ, Conway SJ. Development of isotope-enriched phosphatidylinositol-4- and 5-phosphate cellular mass spectrometry probes. Chem Sci 2021; 12:2549-2557. [PMID: 34820112 PMCID: PMC8607509 DOI: 10.1039/d0sc06219g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphatidylinositol phosphate (PtdInsPn) derivatives play a pivotal role in broadening our understanding of PtdInsPn metabolism. However, the development of such tools is reliant on efficient enantioselective and regioselective synthetic strategies. Here we report the development of a divergent synthetic route applicable to the synthesis of deuterated PtdIns4P and PtdIns5P derivatives. The synthetic strategy developed involves a key enzymatic desymmetrisation step using Lipozyme TL-IM®. In addition, we optimised the large-scale synthesis of deuterated myo-inositol, allowing for the preparation of a series of saturated and unsaturated deuterated PtdIns4P and PtdIns5P derivatives. Experiments in MCF7 cells demonstrated that these deuterated probes enable quantification of the corresponding endogenous phospholipids in a cellular setting. Overall, these deuterated probes will be powerful tools to help improve our understanding of the role played by PtdInsPn in physiology and disease. We report the synthesis of deuterium-labelled derivatives of phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, and demonstrate their use in quantifying levels of endogenous phospholipids in cells.![]()
Collapse
Affiliation(s)
- Amélie M Joffrin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Alex M Saunders
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David Barneda
- Inositide Laboratory, Babraham Institute Babraham Research Campus Cambridge CB22 3AT UK.,Bioscience, Oncology R&D, AstraZeneca Cambridge CB4 0WG UK
| | | | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Hitesh J Sanganee
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
21
|
Mansat M, Picot M, Chicanne G, Nahoum V, Gaits-Iacovoni F, Payrastre B, Hnia K, Viaud J. Liposome-Based Methods to Study Protein-Phosphoinositide Interaction. Methods Mol Biol 2021; 2251:177-184. [PMID: 33481239 DOI: 10.1007/978-1-0716-1142-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Following their generation by lipid kinases and phosphatases, phosphoinositides regulate important biological processes such as cytoskeleton rearrangement, membrane remodeling/trafficking, and gene expression through the interaction of their phosphorylated inositol head group with a variety of protein domains such as PH, PX, and FYVE. Therefore, it is important to determine the specificity of phosphoinositides toward effector proteins to understand their impact on cellular physiology. Several methods have been developed to identify and characterize phosphoinositide effectors, and liposomes-based methods are preferred because the phosphoinositides are incorporated in a membrane, the composition of which can mimic cellular membranes. In this report, we describe the experimental setup for liposome flotation assay and a recently developed method called protein-lipid interaction by fluorescence (PLIF) for the characterization of phosphoinositide-binding specificities of proteins.
Collapse
Affiliation(s)
- Mélanie Mansat
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Mélanie Picot
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Gaëtan Chicanne
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Virginie Nahoum
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS (Université Paul Sabatier), IPBS, Toulouse, France
| | | | - Bernard Payrastre
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
- CHU (Centre Hospitalier Universitaire) de Toulouse, Laboratoire d'Hématologie, Toulouse Cedex, France
| | - Karim Hnia
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Julien Viaud
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France.
| |
Collapse
|
22
|
Chicanne G, Bertrand-Michel J, Viaud J, Hnia K, Clark J, Payrastre B. Profiling of Phosphoinositide Molecular Species in Resting or Activated Human or Mouse Platelets by a LC-MS Method. Methods Mol Biol 2021; 2251:39-53. [PMID: 33481230 DOI: 10.1007/978-1-0716-1142-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our knowledge of the role and biology of the different phosphoinositides has greatly expanded over recent years. Reversible phosphorylation by specific kinases and phosphatases of positions 3, 4, and 5 on the inositol ring is a highly dynamic process playing a critical role in the regulation of the spatiotemporal recruitment and binding of effector proteins. The specific phosphoinositide kinases and phosphatases are key players in the control of many cellular functions, including proliferation, survival, intracellular trafficking, or cytoskeleton reorganization. Several of these enzymes are mutated in human diseases. The impact of the fatty acid composition of phosphoinositides in their function is much less understood. There is an important molecular diversity in the fatty acid side chains of PI. While stearic and arachidonic fatty acids are the major acyl species in PIP, PIP2, and PIP3, other fatty acid combinations are also found. The role of these different molecular species is still unknown, but it is important to quantify these different molecules and their potential changes during cell stimulation to better characterize this emerging field. Here, we describe a sensitive high-performance liquid chromatography-mass spectrometry method that we used for the first time to profile the changes in phosphoinositide molecular species (summed fatty acyl chain profiles) in human and mouse platelets under resting conditions and following stimulation. This method can be applied to other hematopoietic primary cells isolated from human or experimental animal models.
Collapse
Affiliation(s)
- Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
| | - Justine Bertrand-Michel
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
- MetaToul-Lipidomic Facility, MetaboHUB, Université Toulouse III, Toulouse, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
| | - Karim Hnia
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
| | | | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France.
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
23
|
Review of PIP2 in Cellular Signaling, Functions and Diseases. Int J Mol Sci 2020; 21:ijms21218342. [PMID: 33172190 PMCID: PMC7664428 DOI: 10.3390/ijms21218342] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositides play a crucial role in regulating many cellular functions, such as actin dynamics, signaling, intracellular trafficking, membrane dynamics, and cell-matrix adhesion. Central to this process is phosphatidylinositol bisphosphate (PIP2). The levels of PIP2 in the membrane are rapidly altered by the activity of phosphoinositide-directed kinases and phosphatases, and it binds to dozens of different intracellular proteins. Despite the vast literature dedicated to understanding the regulation of PIP2 in cells over past 30 years, much remains to be learned about its cellular functions. In this review, we focus on past and recent exciting results on different molecular mechanisms that regulate cellular functions by binding of specific proteins to PIP2 or by stabilizing phosphoinositide pools in different cellular compartments. Moreover, this review summarizes recent findings that implicate dysregulation of PIP2 in many diseases.
Collapse
|
24
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
25
|
Li X, Wang M, Cheng A, Wen X, Ou X, Mao S, Gao Q, Sun D, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Enterovirus Replication Organelles and Inhibitors of Their Formation. Front Microbiol 2020; 11:1817. [PMID: 32973693 PMCID: PMC7468505 DOI: 10.3389/fmicb.2020.01817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Enteroviral replication reorganizes the cellular membrane. Upon infection, viral proteins and hijacked host factors generate unique structures called replication organelles (ROs) to replicate their viral genomes. ROs promote efficient viral genome replication, coordinate the steps of the viral replication cycle, and protect viral RNA from host immune responses. More recent researches have focused on the ultrastructure structures, formation mechanism, and functions in the virus life cycle of ROs. Dynamic model of enterovirus ROs structure is proposed, and the secretory pathway, the autophagy pathway, and lipid metabolism are found to be associated in the formation of ROs. With deeper understanding of ROs, some compounds have been found to show inhibitory effects on viral replication by targeting key proteins in the process of ROs formation. Here, we review the recent findings concerning the role, morphology, biogenesis, formation mechanism, and inhibitors of enterovirus ROs.
Collapse
Affiliation(s)
- Xinhong Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Smith L, Fabian L, Al-Maawali A, Noche RR, Dowling JJ. De novo phosphoinositide synthesis in zebrafish is required for triad formation but not essential for myogenesis. PLoS One 2020; 15:e0231364. [PMID: 32804943 PMCID: PMC7430711 DOI: 10.1371/journal.pone.0231364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/01/2020] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation.
Collapse
Affiliation(s)
- Lindsay Smith
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Lacramioara Fabian
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Almundher Al-Maawali
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University & Sultan Qaboos University Hospital, Muscat, Oman
| | - Ramil R. Noche
- Zebrafish Genetics and Disease Models Core Facility, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James J. Dowling
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
28
|
Super-Resolution Localisation of Nuclear PI(4)P and Identification of Its Interacting Proteome. Cells 2020; 9:cells9051191. [PMID: 32403279 PMCID: PMC7291030 DOI: 10.3390/cells9051191] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides are glycerol-based phospholipids, and they play essential roles in cellular signalling, membrane and cytoskeletal dynamics, cell movement, and the modulation of ion channels and transporters. Phosphoinositides are also associated with fundamental nuclear processes through their nuclear protein-binding partners, even though membranes do not exist inside of the nucleus. Phosphatidylinositol 4-phosphate (PI(4)P) is one of the most abundant cellular phosphoinositides; however, its functions in the nucleus are still poorly understood. In this study, we describe PI(4)P localisation in the cell nucleus by super-resolution light and electron microscopy, and employ immunoprecipitation with a specific anti-PI(4)P antibody and subsequent mass spectrometry analysis to determine PI(4)P’s interaction partners. We show that PI(4)P is present at the nuclear envelope, in nuclear lamina, in nuclear speckles and in nucleoli and also forms multiple small foci in the nucleoplasm. Nuclear PI(4)P undergoes re-localisation to the cytoplasm during cell division; it does not localise to chromosomes, nucleolar organising regions or mitotic interchromatin granules. When PI(4)P and PI(4,5)P2 are compared, they have different nuclear localisations during interphase and mitosis, pointing to their functional differences in the cell nucleus. Mass spectrometry identified hundreds of proteins, including 12 potentially novel PI(4)P interactors, most of them functioning in vital nuclear processes such as pre-mRNA splicing, transcription or nuclear transport, thus extending the current knowledge of PI(4)P’s interaction partners. Based on these data, we propose that PI(4)P also plays a role in essential nuclear processes as a part of protein–lipid complexes. Altogether, these observations provide a novel insight into the role of PI(4)P in nuclear functions and provide a direction for further investigation.
Collapse
|
29
|
Valet C, Levade M, Bellio M, Caux M, Payrastre B, Severin S. Phosphatidylinositol 3-monophosphate: A novel actor in thrombopoiesis and thrombosis. Res Pract Thromb Haemost 2020; 4:491-499. [PMID: 32548550 PMCID: PMC7292656 DOI: 10.1002/rth2.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
Phosphoinositides are lipid second messengers regulating in time and place the formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking, and cytoskeleton/membrane dynamics. One of these lipids, phosphatidylinositol 3 monophosphate (PtdIns3P), is present in small amounts in mammalian cells and is involved in the control of endocytic/endosomal trafficking and in autophagy. Its metabolism is finely regulated by specific kinases and phosphatases including class II phosphoinositide 3-kinases (PI3KC2s) and the class III PI3K, Vps34. Recently, PtdIns3P has emerged as an important regulator of megakaryocyte/platelet structure and functions. Here, we summarize the current knowledge in the role of different pools of PtdIns3P regulated by class II and III PI3Ks in platelet production and thrombosis. Potential new antithrombotic therapeutic perspectives based on the use of inhibitors targeting specifically PtdIns3P-metabolizing enzymes will also be discussed. Finally, we provide report of new research in this area presented at the International Society of Thrombosis and Haemostasis 2019 Annual Congress.
Collapse
Affiliation(s)
- Colin Valet
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Marie Levade
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Marie Bellio
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Manuella Caux
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Bernard Payrastre
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
- Hematology LaboratoryToulouse University HospitalToulouseFrance
| | - Sonia Severin
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| |
Collapse
|
30
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
31
|
Rodríguez-Fdez S, Citterio C, Lorenzo-Martín LF, Baltanás-Copado J, Llorente-González C, Corbalán-García S, Vicente-Manzanares M, Bustelo XR. Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells 2019; 8:cells8121649. [PMID: 31888228 PMCID: PMC6952945 DOI: 10.3390/cells8121649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
Phosphatidylinositol–5 phosphate (PI5P) and other mono-phosphoinositides (mono-PIs) play second messenger roles in both physiological and pathological conditions. Despite this, their intracellular targets and mechanisms of action remain poorly characterized. Here, we show that Vav1, a protein that exhibits both Rac1 GDP/GTP exchange and adaptor activities, is positively modulated by PI5P and, possibly, other mono-PIs. Unlike other phospholipid–protein complexes, the affinity and specificity of the Vav1–lipid interaction entail a new structural solution that involves the synergistic action of the Vav1 C1 domain and an adjacent polybasic tail. This new regulatory layer, which is not conserved in the Vav family paralogs, favors the engagement of optimal Vav1 signaling outputs in lymphocytes.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Carmen Citterio
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Baltanás-Copado
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Clara Llorente-González
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
32
|
Severe Consequences of SAC3/FIG4 Phosphatase Deficiency to Phosphoinositides in Patients with Charcot-Marie-Tooth Disease Type-4J. Mol Neurobiol 2019; 56:8656-8667. [PMID: 31313076 DOI: 10.1007/s12035-019-01693-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Charcot-Marie-Tooth disease type-4J (CMT4J), an autosomal recessively inherited peripheral neuropathy characterized by neuronal degeneration, segmental demyelination, and limb muscle weakness, is caused by compound heterozygous mutations in the SAC3/FIG4 gene, resulting in SAC3/FIG4 protein deficiency. SAC3/FIG4 is a phosphatase that not only turns over PtdIns(3,5)P2 to PtdIns3P but also promotes PtdIns(3,5)P2 synthesis by activating the PIKFYVE kinase that also makes PtdIns5P. Whether CMT4J patients have alterations in PtdIns(3,5)P2, PtdIns5P or in other phosphoinositides (PIs), and if yes, in what direction these changes might be, has never been examined. We performed PI profiling in primary fibroblasts from a cohort of CMT4J patients. Subsequent to myo-[2-3H]inositol cell labeling to equilibrium, steady-state levels of PIs were quantified by HPLC under conditions concurrently detecting PtdIns5P, PtdIns(3,5)P2, and the other PIs. Immunoblotting verified SAC3/FIG4 depletion in CMT4J fibroblasts. Compared to normal human controls (n = 9), both PtdIns(3,5)P2 and PtdIns5P levels were significantly decreased in CMT4J fibroblasts (n = 13) by 36.4 ± 3.6% and 43.1 ± 4.4%, respectively (p < 0.0001). These reductions were independent of patients' gender or disease onset. Although mean values for PtdIns3P in the CMT4J cohort remained unchanged, there were high variations in PtdIns3P among individual patients. Aberrant endolysosomal vacuoles, typically seen under PtdIns(3,5)P2 reduction, were apparent but not in fibroblasts from all patients. The subset of patients without aberrant vacuoles exhibited especially low PtdIns3P levels. Concomitant decreases in PtdIns5P and PtdIns(3,5)P2 and the link between PtdIns3P levels and cellular vacuolization are novel insights shedding further light into the molecular determinants in CMT4J polyneuropathy.
Collapse
|
33
|
Bellio M, Caux M, Vauclard A, Chicanne G, Gratacap MP, Terrisse AD, Severin S, Payrastre B. Phosphatidylinositol 3 monophosphate metabolizing enzymes in blood platelet production and in thrombosis. Adv Biol Regul 2019; 75:100664. [PMID: 31604685 DOI: 10.1016/j.jbior.2019.100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/09/2023]
Abstract
Blood platelets, produced by the fragmentation of megakaryocytes, play a key role in hemostasis and thrombosis. Being implicated in atherothrombosis and other thromboembolic disorders, they represent a major therapeutic target for antithrombotic drug development. Several recent studies have highlighted an important role for the lipid phosphatidylinositol 3 monophosphate (PtdIns3P) in megakaryocytes and platelets. PtdIns3P, present in small amounts in mammalian cells, is involved in the control of endocytic trafficking and autophagy. Its metabolism is finely regulated by specific kinases and phosphatases. Class II (α, β and γ) and III (Vps34) phosphoinositide-3-kinases (PI3Ks), INPP4 and Fig4 are involved in the production of PtdIns3P whereas PIKFyve, myotubularins (MTMs) and type II PIPK metabolize PtdIns3P. By regulating the turnover of different pools of PtdIns3P, class II (PI3KC2α) and class III (Vps34) PI3Ks have been recently involved in the regulation of platelet production and functions. These pools of PtdIns3P appear to modulate membrane organization and intracellular trafficking. Moreover, PIKFyve and INPP4 have been recently implicated in arterial thrombosis. In this review, we will discuss the role of PtdIns3P metabolizing enzymes in platelet production and function. Potential new anti-thrombotic therapeutic perspectives based on inhibitors targeting specifically PtdIns3P metabolizing enzymes will also be commented.
Collapse
Affiliation(s)
- Marie Bellio
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Manuella Caux
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alicia Vauclard
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Gaëtan Chicanne
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Marie-Pierre Gratacap
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Anne-Dominique Terrisse
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sonia Severin
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Laboratoire d'Hématologie, Hopital Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
34
|
Olivença DV, Fonseca LL, Voit EO, Pinto FR. Thickness of the airway surface liquid layer in the lung is affected in cystic fibrosis by compromised synergistic regulation of the ENaC ion channel. J R Soc Interface 2019; 16:20190187. [PMID: 31455163 DOI: 10.1098/rsif.2019.0187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lung epithelium is lined with a layer of airway surface liquid (ASL) that is crucial for healthy lung function. ASL thickness is controlled by two ion channels: epithelium sodium channel (ENaC) and cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Here, we present a minimal mathematical model of ENaC, CFTR and ASL regulation that sheds light on the control of ENaC by the short palate lung and nasal epithelial clone 1 (SPLUNC1) protein and by phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). The model, despite its simplicity, yields a good fit to experimental observations and is an effective tool for exploring the interplay between ENaC, CFTR and ASL. Steady-state data and dynamic information constrain the model's parameters without ambiguities. Testing the hypothesis that PI(4,5)P2 protects ENaC from ubiquitination suggests that this protection does not improve the model results and that the control of the ENaC opening probability by PI(4,5)P2 is sufficient to explain all available data. The model analysis further demonstrates that ASL at the steady state is sensitive to small changes in PI(4,5)P2 abundance, particularly in CF conditions, which suggests that manipulation of phosphoinositide metabolism may promote therapeutic benefits for CF patients.
Collapse
Affiliation(s)
- Daniel V Olivença
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Francisco R Pinto
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
35
|
Mondin VE, Ben El Kadhi K, Cauvin C, Jackson-Crawford A, Bélanger E, Decelle B, Salomon R, Lowe M, Echard A, Carréno S. PTEN reduces endosomal PtdIns(4,5)P 2 in a phosphatase-independent manner via a PLC pathway. J Cell Biol 2019; 218:2198-2214. [PMID: 31118240 PMCID: PMC6605811 DOI: 10.1083/jcb.201805155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023] Open
Abstract
This work reveals that the tumor suppressor PTEN acts through a PLC to reduce levels of endosomal PtdIns(4,5)P2, its own enzymatic product. This pathway can be chemically activated to rescue OCRL1 depletion in several disease models of the Lowe syndrome, a rare multisystemic genetic disease. The tumor suppressor PTEN dephosphorylates PtdIns(3,4,5)P3 into PtdIns(4,5)P2. Here, we make the unexpected discovery that in Drosophila melanogaster PTEN reduces PtdIns(4,5)P2 levels on endosomes, independently of its phosphatase activity. This new PTEN function requires the enzymatic action of dPLCXD, an atypical phospholipase C. Importantly, we discovered that this novel PTEN/dPLCXD pathway can compensate for depletion of dOCRL, a PtdIns(4,5)P2 phosphatase. Mutation of OCRL1, the human orthologue of dOCRL, causes oculocerebrorenal Lowe syndrome, a rare multisystemic genetic disease. Both OCRL1 and dOCRL loss have been shown to promote accumulation of PtdIns(4,5)P2 on endosomes and cytokinesis defects. Here, we show that PTEN or dPLCXD overexpression prevents these defects. In addition, we found that chemical activation of this pathway restores normal cytokinesis in human Lowe syndrome cells and rescues OCRL phenotypes in a zebrafish Lowe syndrome model. Our findings identify a novel PTEN/dPLCXD pathway that controls PtdIns(4,5)P2 levels on endosomes. They also point to a potential new strategy for the treatment of Lowe syndrome.
Collapse
Affiliation(s)
- Virginie E Mondin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Khaled Ben El Kadhi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Clothilde Cauvin
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, Centre National de la Recherche Scientifique, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | | | - Emilie Bélanger
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Rémi Salomon
- Institut des Maladies Génétiques Imagine, Hôpital Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, Centre National de la Recherche Scientifique, Paris, France
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada .,Université de Montréal, Département de Pathologie et de Biologie Cellulaire, Montreal, Canada
| |
Collapse
|
36
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
37
|
Chandra M, Chin YKY, Mas C, Feathers JR, Paul B, Datta S, Chen KE, Jia X, Yang Z, Norwood SJ, Mohanty B, Bugarcic A, Teasdale RD, Henne WM, Mobli M, Collins BM. Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. Nat Commun 2019; 10:1528. [PMID: 30948714 PMCID: PMC6449406 DOI: 10.1038/s41467-019-09355-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
Phox homology (PX) domains are membrane interacting domains that bind to phosphatidylinositol phospholipids or phosphoinositides, markers of organelle identity in the endocytic system. Although many PX domains bind the canonical endosome-enriched lipid PtdIns3P, others interact with alternative phosphoinositides, and a precise understanding of how these specificities arise has remained elusive. Here we systematically screen all human PX domains for their phospholipid preferences using liposome binding assays, biolayer interferometry and isothermal titration calorimetry. These analyses define four distinct classes of human PX domains that either bind specifically to PtdIns3P, non-specifically to various di- and tri-phosphorylated phosphoinositides, bind both PtdIns3P and other phosphoinositides, or associate with none of the lipids tested. A comprehensive evaluation of PX domain structures reveals two distinct binding sites that explain these specificities, providing a basis for defining and predicting the functional membrane interactions of the entire PX domain protein family.
Collapse
Affiliation(s)
- Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Caroline Mas
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Integrated Structural Biology Grenoble, Grenoble, France
| | - J Ryan Feathers
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Blessy Paul
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Sanchari Datta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Xinying Jia
- Centre for Advanced Imaging and School of Chemistry and Molecular Biology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Suzanne J Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, VIC, Australia
| | - Andrea Bugarcic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mehdi Mobli
- Centre for Advanced Imaging and School of Chemistry and Molecular Biology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
38
|
Botero S, Chiaroni-Clarke R, Simon SM. Escherichia coli as a platform for the study of phosphoinositide biology. SCIENCE ADVANCES 2019; 5:eaat4872. [PMID: 30944849 PMCID: PMC6436935 DOI: 10.1126/sciadv.aat4872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Despite being a minor component of cells, phosphoinositides are essential for eukaryotic membrane biology, serving as markers of organelle identity and involved in several signaling cascades. Their many functions, combined with alternative synthesis pathways, make in vivo study very difficult. In vitro studies are limited by their inability to fully recapitulate the complexities of membranes in living cells. We engineered the biosynthetic pathway for the most abundant phosphoinositides into the bacterium Escherichia coli, which is naturally devoid of this class of phospholipids. These modified E. coli, when grown in the presence of myo-inositol, incorporate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI4P), phosphatidylinositol-4,5-bisphosphate (PIP2), and phosphatidylinositol-3,4,5-trisphosphate (PIP3) into their plasma membrane. We tested models of biophysical mechanisms with these phosphoinositides in a living membrane, using our system to evaluate the role of PIP2 in nonconventional protein export of human basic fibroblast growth factor 2. We found that PI alone is sufficient for the process.
Collapse
|
39
|
Chen S, Wang J, Wang M, Lu J, Cai Y, Li B. In vitro fertilization alters phospholipid profiles in mouse placenta. J Assist Reprod Genet 2019; 36:557-567. [PMID: 30610659 DOI: 10.1007/s10815-018-1387-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Studies on humans and rodents have clearly shown that in vitro fertilization (IVF) is associated with abnormal placenta formation and function. Currently, dysregulated placental lipid metabolism is one of the emerging pathogenetic pathways implicated in adverse pregnancy outcomes. The purpose of this study was to identify the effects of IVF on lipid metabolism in the mouse placenta. METHODS Two groups of mouse placentas, composed of control and IVF, were collected at embryonic day 18.5. Placental lipid profiles were measured using liquid chromatography coupled with mass spectrometry. The relative levels of individual lipid were examined and compared. The proteins and enzymes that regulate the phospholipid biosynthesis were also compared by western blot. RESULTS A significant increase in levels of phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylglycerols, lysophosphatidylcholines, and mitochondrial cardiolipin were found in the IVF placenta. In addition, proteins and enzymes that regulate the phospholipid biosynthesis were also altered in IVF placentas. CONCLUSIONS After lipidomic analysis, we present the first detailed overview of the effect of IVF on lipid metabolism, especially phospholipid profiles in the placenta in a mouse model. The widespread lipidomic shifts identified in this study might explicate some of the placental dysfunction observed after IVF, thereby illustrating that phospholipids serve as early warning biomarkers of health risks in IVF offspring.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Jie Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Cai
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
40
|
Park N, Park Y, Ramalingam M, Yadav AK, Cho H, Hong VS, More KN, Bae J, Bishop‐Bailey D, Kano J, Noguchi M, Jang I, Lee K, Lee J, Choi J, Jang B. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. J Cell Mol Med 2018; 22:5833-5846. [PMID: 30246484 PMCID: PMC6237585 DOI: 10.1111/jcmm.13854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Meridianin C is a marine natural product known for its anti-cancer activity. At present, the anti-tumour effects of meridianin C on oral squamous cell carcinoma are unknown. Here, we investigated the effect of meridianin C on the proliferation of four different human tongue cancer cells, YD-8, YD-10B, YD-38 and HSC-3. Among the cells tested, meridianin C most strongly reduced the growth of YD-10B cells; the most aggressive and tumorigenic of the cell lines tested. Strikingly, meridianin C induced a significant accumulation of macropinosomes in the YD-10B cells; confirmed by the microscopic and TEM analysis as well as the entry of FITC-dextran, which was sensitive to the macropinocytosis inhibitor amiloride. SEM data also revealed abundant long and thin membrane extensions that resemble lamellipodia on the surface of YD-10B cells treated with meridianin C, pointing out that meridianin C-induced macropinosomes was the result of macropinocytosis. In addition, meridianin C reduced cellular levels of Dickkopf-related protein-3 (DKK-3), a known negative regulator of macropinocytosis. A role for DKK-3 in regulating macropinocytosis in the YD-10B cells was confirmed by siRNA knockdown of endogenous DKK-3, which led to a partial accumulation of vacuoles and a reduction in cell proliferation, and by exogenous DKK-3 overexpression, which resulted in a considerable inhibition of the meridianin C-induced vacuole formation and decrease in cell survival. In summary, this is the first study reporting meridianin C has novel anti-proliferative effects via macropinocytosis in the highly tumorigenic YD-10B cell line and the effects are mediated in part through down-regulation of DKK-3.
Collapse
Affiliation(s)
- Nam‐Sook Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Yu‐Kyoung Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Mahesh Ramalingam
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Anil Kumar Yadav
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Hyo‐Rim Cho
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Victor Sukbong Hong
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Kunal N. More
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Jae‐Hoon Bae
- Department of PhysiologyCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | | | - Junko Kano
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Masayuki Noguchi
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Ik‐Soon Jang
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Kyung‐Bok Lee
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Jinho Lee
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Jong‐Soon Choi
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Byeong‐Churl Jang
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| |
Collapse
|
41
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
42
|
Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 2018; 10:1323-1335. [PMID: 30027463 DOI: 10.1007/s12551-018-0445-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.
Collapse
Affiliation(s)
- Joelle V F Coumans
- School of Rural Medicine, University of New England, Armidale, Australia
| | - Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
43
|
Wittkowski KM, Dadurian C, Seybold MP, Kim HS, Hoshino A, Lyden D. Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. PLoS One 2018; 13:e0199012. [PMID: 29965997 PMCID: PMC6028090 DOI: 10.1371/journal.pone.0199012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
Collapse
Affiliation(s)
- Knut M. Wittkowski
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Christina Dadurian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Martin P. Seybold
- Institut für Formale Methoden der Informatik, Universität Stuttgart, Stuttgart, Germany
| | - Han Sang Kim
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ayuko Hoshino
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - David Lyden
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
44
|
Mujalli A, Chicanne G, Bertrand-Michel J, Viars F, Stephens L, Hawkins P, Viaud J, Gaits-Iacovoni F, Severin S, Gratacap MP, Terrisse AD, Payrastre B. Profiling of phosphoinositide molecular species in human and mouse platelets identifies new species increasing following stimulation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1121-1131. [PMID: 29902570 DOI: 10.1016/j.bbalip.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/15/2018] [Accepted: 06/10/2018] [Indexed: 12/17/2022]
Abstract
Phosphoinositides are bioactive lipids essential in the regulation of cell signaling as well as cytoskeleton and membrane dynamics. Their metabolism is highly active in blood platelets where they play a critical role during activation, at least through two well identified pathways involving phospholipase C and phosphoinositide 3-kinases (PI3K). Here, using a sensitive high-performance liquid chromatography-mass spectrometry method recently developed, we monitored for the first time the profiling of phosphatidylinositol (PI), PIP, PIP2 and PIP3 molecular species (fatty-acyl profiles) in human and mouse platelets during the course of stimulation by thrombin and collagen-related peptide. Furthermore, using class IA PI3K p110α or p110β deficient mouse platelets and a pharmacological inhibitor, we show the crucial role of p110β and the more subtle role of p110α in the production of PIP3 molecular species following stimulation. This comprehensive platelet phosphoinositides profiling provides important resources for future studies and reveals new information on phosphoinositides biology, similarities and differences in mouse and human platelets and unexpected dramatic increase in low-abundance molecular species of PIP2 during stimulation, opening new perspectives in phosphoinositide signaling in platelets.
Collapse
Affiliation(s)
| | - Gaëtan Chicanne
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic Core Facility, MetaboHUB, INSERM UMR-1048, Université Paul Sabatier, 31432 Toulouse, France
| | - Fanny Viars
- MetaToul-Lipidomic Core Facility, MetaboHUB, INSERM UMR-1048, Université Paul Sabatier, 31432 Toulouse, France
| | - Len Stephens
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Phil Hawkins
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Julien Viaud
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | | | - Sonia Severin
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | | | | | - Bernard Payrastre
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France.
| |
Collapse
|
45
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Olaisen C, Kvitvang HFN, Lee S, Almaas E, Bruheim P, Drabløs F, Otterlei M. The role of PCNA as a scaffold protein in cellular signaling is functionally conserved between yeast and humans. FEBS Open Bio 2018; 8:1135-1145. [PMID: 29988559 PMCID: PMC6026702 DOI: 10.1002/2211-5463.12442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/19/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA), a member of the highly conserved DNA sliding clamp family, is an essential protein for cellular processes including DNA replication and repair. A large number of proteins from higher eukaryotes contain one of two PCNA-interacting motifs: PCNA-interacting protein box (PIP box) and AlkB homologue 2 PCNA-interacting motif (APIM). APIM has been shown to be especially important during cellular stress. PIP box is known to be functionally conserved in yeast, and here, we show that this is also the case for APIM. Several of the 84 APIM-containing yeast proteins are associated with cellular signaling as hub proteins, which are able to interact with a large number of other proteins. Cellular signaling is highly conserved throughout evolution, and we recently suggested a novel role for PCNA as a scaffold protein in cellular signaling in human cells. A cell-penetrating peptide containing the APIM sequence increases the sensitivity toward the chemotherapeutic agent cisplatin in both yeast and human cells, and both yeast and human cells become hypersensitive when the Hog1/p38 MAPK pathway is blocked. These results suggest that the interactions between APIM-containing signaling proteins and PCNA during the DNA damage response is evolutionary conserved between yeast and mammals and that PCNA has a role in cellular signaling also in yeast.
Collapse
Affiliation(s)
- Camilla Olaisen
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Hans Fredrik N. Kvitvang
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Sungmin Lee
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Eivind Almaas
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Per Bruheim
- Department of Biotechnology and Food ScienceFaculty of Natural SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Finn Drabløs
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Marit Otterlei
- Department of Clinical and Molecular MedicineFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
47
|
PIP3-binding proteins promote age-dependent protein aggregation and limit survival in C. elegans. Oncotarget 2018; 7:48870-48886. [PMID: 27429199 PMCID: PMC5226477 DOI: 10.18632/oncotarget.10549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Class-I phosphatidylinositol 3-kinase (PI3KI) converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 comprises two fatty-acid chains that embed in lipid-bilayer membranes, joined by glycerol to inositol triphosphate. Proteins with domains that specifically bind that head-group (e.g. pleckstrin-homology [PH] domains) are thus tethered to the inner plasma-membrane surface where they have an enhanced likelihood of interaction with other PIP3-bound proteins, in particular other components of their signaling pathways. Null alleles of the C. elegans age-1 gene, encoding the catalytic subunit of PI3KI, lack any detectable class-I PI3K activity and so cannot form PIP3. These mutant worms survive almost 10-fold longer than the longest-lived normal control, and are highly resistant to a variety of stresses including oxidative and electrophilic challenges. Traits associated with age-1 mutation are widely believed to be mediated through AKT-1, which requires PIP3 for both tethering and activation. Active AKT complex phosphorylates and thereby inactivates the DAF-16/FOXO transcription factor. However, extensive evidence indicates that pleiotropic effects of age-1-null mutations, including extreme longevity, cannot be explained by insulin like-receptor/AKT/FOXO signaling alone, suggesting involvement of other PIP3-binding proteins. We used ligand-affinity capture to identify membrane-bound proteins downstream of PI3KI that preferentially bind PIP3. Computer modeling supports a subset of candidate proteins predicted to directly bind PIP3 in preference to PIP2, and functional testing by RNAi knockdown confirmed candidates that partially mediate the stress-survival, aggregation-reducing and longevity benefits of PI3KI disruption. PIP3-specific candidate sets are highly enriched for proteins previously reported to affect translation, stress responses, lifespan, proteostasis, and lipid transport.
Collapse
|
48
|
Abstract
The phox-homology (PX) domain is a phosphoinositide-binding domain conserved in all eukaryotes and present in 49 human proteins. Proteins containing PX domains, many of which are also known as sorting nexins (SNXs), have a large variety of functions in membrane trafficking, cell signaling, and lipid metabolism in association with membranes of the secretory and endocytic system. In this review we discuss the structural basis for both canonical lipid interactions with the endosome-enriched lipid phosphatidylinositol-3-phosphate (PtdIns3P) as well as non-canonical lipids that promote membrane association. We also describe recent advances in defining the diverse mechanisms by which PX domains interact with other proteins including the retromer trafficking complex and proteins secreted by bacterial pathogens. Like other membrane interacting domains, the attachment of PX domain proteins to specific membranes is often facilitated by additional interactions that contribute to binding avidity, and we discuss this coincidence detection for several known examples.
Collapse
|
49
|
Pridham KJ, Varghese RT, Sheng Z. The Role of Class IA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunits in Glioblastoma. Front Oncol 2017; 7:312. [PMID: 29326882 PMCID: PMC5736525 DOI: 10.3389/fonc.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) plays a critical role in the pathogenesis of cancer including glioblastoma, the most common and aggressive form of brain cancer. Targeting the PI3K pathway to treat glioblastoma has been tested in the clinic with modest effect. In light of the recent finding that PI3K catalytic subunits (PIK3CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, and PIK3CG/p110γ) are not functionally redundant, it is imperative to determine whether these subunits play divergent roles in glioblastoma and whether selectively targeting PI3K catalytic subunits represents a novel and effective strategy to tackle PI3K signaling. This article summarizes recent advances in understanding the role of PI3K catalytic subunits in glioblastoma and discusses the possibility of selective blockade of one PI3K catalytic subunit as a treatment option for glioblastoma.
Collapse
Affiliation(s)
- Kevin J Pridham
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
50
|
Ebrahimzadeh Z, Mukherjee A, Richard D. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. Int J Parasitol 2017; 48:13-25. [PMID: 29154995 DOI: 10.1016/j.ijpara.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Despite representing a small percentage of the cellular lipids of eukaryotic cells, phosphoinositides (PIPs) are critical in various processes such as intracellular trafficking and signal transduction. Central to their various functions is the differential distribution of PIP species to specific membrane compartments through the actions of kinases, phosphatases and lipases. Despite their importance in the malaria parasite lifecycle, the subcellular distribution of most PIP species in this organism is still unknown. We here localise several species of PIPs throughout the erythrocytic cycle of Plasmodium falciparum. We show that PI3P is mostly found at the apicoplast and the membrane of the food vacuole, that PI4P associates with the Golgi apparatus and the plasma membrane and that PI(4,5)P2, in addition to being detected at the plasma membrane, labels some cavity-like spherical structures. Finally, we show that the elusive PI5P localises to the plasma membrane, the nucleus and potentially to the transitional endoplasmic reticulum (ER). Our map of the subcellular distribution of PIP species in P. falciparum will be a useful tool to shed light on the dynamics of these lipids in this deadly parasite.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Angana Mukherjee
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Dave Richard
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|