1
|
Liu J, Gao K, Ren X, Wu T, Zhang H, Yang D, Wang H, Xu Y, Yan Y. TMT-based proteomic analysis of radiation lung injury in rats. Clin Proteomics 2024; 21:67. [PMID: 39701953 PMCID: PMC11657687 DOI: 10.1186/s12014-024-09518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common adverse effect of radiation therapy that negatively affects treatment progression and the quality of life of patients. Identifying biomarkers for RILI can provide reference for the prevention and treatment of RILI in clinical practice. In this study, to explore key proteins related to RILI, we constructed a rat model of RILI and analyzed RILI tissues and normal lung tissues using tandem mass spectrometry labeling and quantitative proteomics technology. We used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Gene Ontology (GO) enrichment and protein-protein interaction (PPI) networks for bioinformatics analysis of Differentially expressed proteins (DEPs). The results identified 185 differentially expressed proteins in lung tissue from the RILI group compared with the controls, including 110 up-regulated proteins and 75 down-regulated proteins. GO analysis showed that the differentially expressed proteins were involved oxidation-reduction process, cellular biosynthetic processes and extracellular matrix. KEGG results demonstrated that the differentially expressed proteins were mainly involved in the PI3K-Akt, ECM receptor interactions, arachidonic acid metabolism, glutathione metabolism and other pathways. These results on the functions and signaling pathways of the differentially expressed proteins provide a theoretical basis for further study of the mechanism of RILI.
Collapse
Affiliation(s)
- Jing Liu
- Graduate school of Dalian Medical University, Dalian, China
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Kuanke Gao
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xue Ren
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Tong Wu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Haibo Zhang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Defu Yang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Hengjiao Wang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ying Xu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Ying Yan
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
2
|
Kalogeropoulos K, Moldt Haack A, Madzharova E, Di Lorenzo A, Hanna R, Schoof EM, Auf dem Keller U. CLIPPER 2.0: Peptide-Level Annotation and Data Analysis for Positional Proteomics. Mol Cell Proteomics 2024; 23:100781. [PMID: 38703894 PMCID: PMC11192779 DOI: 10.1016/j.mcpro.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
Positional proteomics methodologies have transformed protease research, and have brought mass spectrometry (MS)-based degradomics studies to the forefront of protease characterization and system-wide interrogation of protease signaling. Considerable advancements in both sensitivity and throughput of liquid chromatography (LC)-MS/MS instrumentation enable the generation of enormous positional proteomics datasets of natural and protein termini and neo-termini of cleaved protease substrates. However, concomitant progress has not been observed to the same extent in data analysis and post-processing steps, arguably constituting the largest bottleneck in positional proteomics workflows. Here, we present a computational tool, CLIPPER 2.0, that builds on prior algorithms developed for MS-based protein termini analysis, facilitating peptide-level annotation and data analysis. CLIPPER 2.0 can be used with several sample preparation workflows and proteomics search algorithms and enables fast and automated database information retrieval, statistical and network analysis, as well as visualization of terminomic datasets. We demonstrate the applicability of our tool by analyzing GluC and MMP9 cleavages in HeLa lysates. CLIPPER 2.0 is available at https://github.com/UadKLab/CLIPPER-2.0.
Collapse
Affiliation(s)
| | - Aleksander Moldt Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Antea Di Lorenzo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Rawad Hanna
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City Haifa, Israel
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Cruz FT, Rosa DP, Vasconcelos AVB, de Oliveira JS, Bleicher L, Santos AMC. Purification and partial physical-chemical characterization of a new bovine trypsin proteoform (zeta-trypsin). Int J Biol Macromol 2024; 268:131860. [PMID: 38670206 DOI: 10.1016/j.ijbiomac.2024.131860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Recent advancements in enzyme research have unveiled a new proteoform of bovine trypsin, expanding our understanding of this well-characterized enzyme. While generally similar to other trypsins, this novel proteoform comprises three polypeptide chains, marking a significant difference in activity, kinetic properties, and conformational stability. Compared with the already known bovine trypsin proteoforms, the results showed a lower: activity, kcat and kcat.KM-1 and protein 'foldedness' ratio for the new proteoform. Molecular autolysis, a common feature in trypsin and chymotrypsin, has been explored through comparative physical chemistry properties with other proteoforms. This new proteoform of trypsin not only enriches the existing enzyme repertoire but also promises to shed light on the intricate physiological pathway for enzyme inactivation. Our results suggest that the new trypsin proteoform is one of the likely final pathways for enzyme inactivation in a physiological environment. This discovery opens up new avenues for further research into the functional implications of this new trypsin proteoform.
Collapse
Affiliation(s)
- Fabiano Torres Cruz
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Dayanne Pinho Rosa
- Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Jamil Silvano de Oliveira
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Bleicher
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Pos-Graduate at Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Martins Costa Santos
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil; Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
4
|
Lange PF, Schilling O, Huesgen PF. Positional proteomics: is the technology ready to study clinical cohorts? Expert Rev Proteomics 2023; 20:309-318. [PMID: 37869791 DOI: 10.1080/14789450.2023.2272046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Positional proteomics provides proteome-wide information on protein termini and their modifications, uniquely enabling unambiguous identification of site-specific, limited proteolysis. Such proteolytic cleavage irreversibly modifies protein sequences resulting in new proteoforms with distinct protease-generated neo-N and C-termini and altered localization and activity. Misregulated proteolysis is implicated in a wide variety of human diseases. Protein termini, therefore, constitute a huge, largely unexplored source of specific analytes that provides a deep view into the functional proteome and a treasure trove for biomarkers. AREAS COVERED We briefly review principal approaches to define protein termini and discuss recent advances in method development. We further highlight the potential of positional proteomics to identify and trace specific proteoforms, with a focus on proteolytic processes altered in disease. Lastly, we discuss current challenges and potential for applying positional proteomics in biomarker and pre-clinical research. EXPERT OPINION Recent developments in positional proteomics have provided significant advances in sensitivity and throughput. In-depth analysis of proteolytic processes in clinical cohorts thus appears feasible in the near future. We argue that this will provide insights into the functional state of the proteome and offer new opportunities to utilize proteolytic processes altered or targeted in disease as specific diagnostic, prognostic and companion biomarkers.
Collapse
Affiliation(s)
- Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Department for Chemistry, University of Cologne, Cologne, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:57-100. [PMID: 36008002 DOI: 10.1016/bs.pmbts.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integration of artificial intelligence in precision medicine has revolutionized healthcare delivery. Precision medicine identifies the phenotype of particular patients with less-common responses to treatment. Recent studies have demonstrated that translational research exploring the convergence between artificial intelligence and precision medicine will help solve the most difficult challenges facing precision medicine. Here, we discuss different aspects of artificial intelligence in precision medicine that improve healthcare delivery. First, we discuss how artificial intelligence changes the landscape of precision medicine and the evolution of artificial intelligence in precision medicine. Second, we highlight the synergies between artificial intelligence and precision medicine and promises of artificial intelligence and precision medicine in healthcare delivery. Third, we briefly explain the promise of big data analytics and the integration of nanomaterials in precision medicine. Last, we highlight the challenges and opportunities of artificial intelligence in precision medicine.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India.
| |
Collapse
|
6
|
Winkels K, Koudelka T, Kaulich PT, Leippe M, Tholey A. Validation of Top-Down Proteomics Data by Bottom-Up-Based N-Terminomics Reveals Pitfalls in Top-Down-Based Terminomics Workflows. J Proteome Res 2022; 21:2185-2196. [PMID: 35972260 DOI: 10.1021/acs.jproteome.2c00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bottom-up proteomics (BUP)-based N-terminomics techniques have become standard to identify protein N-termini. While these methods rely on the identification of N-terminal peptides only, top-down proteomics (TDP) comes with the promise to provide additional information about post-translational modifications and the respective C-termini. To evaluate the potential of TDP for terminomics, two established TDP workflows were employed for the proteome analysis of the nematode Caenorhabditis elegans. The N-termini of the identified proteoforms were validated using a BUP-based N-terminomics approach. The TDP workflows used here identified 1658 proteoforms, the N-termini of which were verified by BUP in 25% of entities only. Caveats in both the BUP- and TDP-based workflows were shown to contribute to this low overlap. In BUP, the use of trypsin prohibits the detection of arginine-rich or arginine-deficient N-termini, while in TDP, the formation of artificially generated termini was observed in particular in a workflow encompassing sample treatment with high acid concentrations. Furthermore, we demonstrate the applicability of reductive dimethylation in TDP to confirm biological N-termini. Overall, our study shows not only the potential but also current limitations of TDP for terminomics studies and also presents suggestions for future developments, for example, for data quality control, allowing improvement of the detection of protein termini by TDP.
Collapse
Affiliation(s)
- Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
7
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
8
|
Koudelka T, Winkels K, Kaleja P, Tholey A. Shedding light on both ends: An update on analytical approaches for N- and C-terminomics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119137. [PMID: 34626679 DOI: 10.1016/j.bbamcr.2021.119137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023]
Abstract
Though proteases were long regarded as nonspecific degradative enzymes, over time, it was recognized that they also hydrolyze peptide bonds very specifically with a limited substrate pool. This irreversible posttranslational modification modulates the fate and activity of many proteins, making proteolytic processing a master switch in the regulation of e.g., the immune system, apoptosis and cancer progression. N- and C-terminomics, the identification of protein termini, has become indispensable in elucidating protease substrates and therefore protease function. Further, terminomics has the potential to identify yet unknown proteoforms, e.g. formed by alternative splicing or the recently discovered alternative ORFs. Different strategies and workflows have been developed that achieve higher sensitivity, a greater depth of coverage or higher throughput. In this review, we summarize recent developments in both N- and C-terminomics and include the potential of top-down proteomics which inherently delivers information on both ends of analytes in a single analysis.
Collapse
Affiliation(s)
- Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Patrick Kaleja
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
9
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Protein cleavage influences surface protein presentation in Mycoplasma pneumoniae. Sci Rep 2021; 11:6743. [PMID: 33762641 PMCID: PMC7990945 DOI: 10.1038/s41598-021-86217-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasma pneumoniae is a significant cause of pneumonia and post infection sequelae affecting organ sites distant to the respiratory tract are common. It is also a model organism where extensive 'omics' studies have been conducted to gain insight into how minimal genome self-replicating organisms function. An N-terminome study undertaken here identified 4898 unique N-terminal peptides that mapped to 391 (56%) predicted M. pneumoniae proteins. True N-terminal sequences beginning with the initiating methionine (iMet) residue from the predicted Open Reading Frame (ORF) were identified for 163 proteins. Notably, almost half (317; 46%) of the ORFS derived from M. pneumoniae strain M129 are post-translationally modified, presumably by proteolytic processing, because dimethyl labelled neo-N-termini were characterised that mapped beyond the predicted N-terminus. An analysis of the N-terminome describes endoproteolytic processing events predominately targeting tryptic-like sites, though cleavages at negatively charged residues in P1' (D and E) with lysine or serine/alanine in P2' and P3' positions also occurred frequently. Surfaceome studies identified 160 proteins (23% of the proteome) to be exposed on the extracellular surface of M. pneumoniae. The two orthogonal methodologies used to characterise the surfaceome each identified the same 116 proteins, a 72% (116/160) overlap. Apart from lipoproteins, transporters, and adhesins, 93/160 (58%) of the surface proteins lack signal peptides and have well characterised, canonical functions in the cell. Of the 160 surface proteins identified, 134 were also targets of endo-proteolytic processing. These processing events are likely to have profound implications for how the host immune system recognises and responds to M. pneumoniae.
Collapse
|
11
|
New strategies to identify protease substrates. Curr Opin Chem Biol 2020; 60:89-96. [PMID: 33220627 DOI: 10.1016/j.cbpa.2020.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Proteome dynamics is governed by transcription, translation, and post-translational modifications. Limited proteolysis is an irreversible post-translational modification that generates multiple but unique proteoforms from almost every native protein. Elucidating these proteoforms and understanding their dynamics at a system-wide level is of utmost importance because uncontrolled proteolytic cleavages correlate with many pathologies. Mass spectrometry-based degradomics has revolutionized protease research and invented workflows for global identification of protease substrates with resolution down to precise cleavage sites. In this review, we provide an overview of current strategies in protease substrate degradomics and introduce the concept of workflow, mass spectrometry-based and in silico enrichment of protein termini with the perspective of full deconvolution of digital proteome maps for precision medicine, and degradomics biomarker diagnostics.
Collapse
|
12
|
Khodadadian A, Darzi S, Haghi-Daredeh S, Sadat Eshaghi F, Babakhanzadeh E, Mirabutalebi SH, Nazari M. Genomics and Transcriptomics: The Powerful Technologies in Precision Medicine. Int J Gen Med 2020; 13:627-640. [PMID: 32982380 PMCID: PMC7509479 DOI: 10.2147/ijgm.s249970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
In a clinical trial, people with the same disease can show different responses after treatment with the same drug and exactly under the same conditions. Some of them may improve, some may not show any response, and occasionally side effects may be observed. In other words, people with the same disease process under the same therapeutic conditions may have different responses. Today, some diseases are resistant to conventional (standard) treatment procedures. Why do people with the same disease show different responses to the treatment with the same drug? This is primarily due to differences in molecular pathways (especially genetic variations) associated with the disease. On the other hand, designing and delivery of a new drug is a time-consuming and costly process, so any mistake in any stage of this process can have irreparable consequences for pharmaceutical companies and consumer patients. Therefore, we can achieve more accurate and reliable treatments by acquiring precise insight into different aspects of precision medicine including genomics and transcriptomics. The aim of this paper is to address the role of genomics and transcriptomics in precision medicine.
Collapse
Affiliation(s)
- Ali Khodadadian
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somaye Darzi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeed Haghi-Daredeh
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Farzaneh Sadat Eshaghi
- Department of Medical Genetics, Biotechnology Research Center, International Campus, Shahid Sadoughi University of Science, Yazd, Iran
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Majid Nazari
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Arteel GE, Naba A. The liver matrisome - looking beyond collagens. JHEP Rep 2020; 2:100115. [PMID: 32637906 PMCID: PMC7330160 DOI: 10.1016/j.jhepr.2020.100115] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a diverse microenvironment that maintains bidirectional communication with surrounding cells to regulate cell and tissue homeostasis. The classical definition of the ECM has more recently been extended to include non-fibrillar proteins that either interact or are structurally affiliated with the ECM, termed the 'matrisome.' In addition to providing the structure and architectural support for cells and tissue, the matrisome serves as a reservoir for growth factors and cytokines, as well as a signaling hub via which cells can communicate with their environment and vice-versa. The matrisome is a master regulator of tissue homeostasis and organ function, which can dynamically and appropriately respond to any stress or injury. Failure to properly regulate these responses can lead to changes in the matrisome that are maladaptive. Hepatic fibrosis is a canonical example of ECM dyshomeostasis, leading to accumulation of predominantly collagenous ECM; indeed, hepatic fibrosis is considered almost synonymous with collagen accumulation. However, the qualitative and quantitative alterations of the hepatic matrisome during fibrosis are much more diverse than simple accumulation of collagens and occur long before fibrosis is histologically detected. A deeper understanding of the hepatic matrisome and its response to injury could yield new mechanistic insights into disease progression and regression, as well as potentially identify new biomarkers for both. In this review, we discuss the role of the ECM in liver diseases and look at new "omic" approaches to study this compartment.
Collapse
Key Words
- AUROC, area under the receiver operating characteristic curve
- CCl4, carbon tetrachloride
- ECM
- ECM, extracellular matrix
- Extracellular matrix
- Fibrosis
- HCC, hepatocellular carcinoma
- Liver disease
- MMP, matrix metalloproteinase
- NAFLD, non-alcoholic fatty liver disease
- NPV, negative predictive value
- POSTN, periostin
- PPV, positive predictive values
- Proteomics
- Regeneration
- TGFβ, transforming growth factor beta
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
14
|
Dengjel J, Bruckner-Tuderman L, Nyström A. Skin proteomics - analysis of the extracellular matrix in health and disease. Expert Rev Proteomics 2020; 17:377-391. [PMID: 32552150 DOI: 10.1080/14789450.2020.1773261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The skin protects the human body from external insults and regulates water and temperature homeostasis. A highly developed extracellular matrix (ECM) supports the skin and instructs its cell functions. Reduced functionality of the ECM is often associated with skin diseases that cause physical impairment and also have implications on social interactions and quality of life of affected individuals. AREAS COVERED With a focus on the skin ECM we discuss how mass spectrometry (MS)-based proteomic approaches first contributed to establishing skin protein inventories and then facilitated elucidation of molecular functions and disease mechanisms. EXPERT OPINION MS-based proteomic approaches have significantly contributed to our understanding of skin pathophysiology, but also revealed the challenges in assessing the skin ECM. The numerous posttranslational modifications of ECM proteins, like glycosylation, crosslinking, oxidation, and proteolytic maturation in disease settings can be difficult to tackle and remain understudied. Increased ease of handling of LC-MS/MS systems and automated/streamlined data analysis pipelines together with the accompanying increased usage of LC-MS/MS approaches will ensure that in the coming years MS-based proteomic approaches will continue to play a vital part in skin disease research. They will facilitate the elucidation of molecular disease mechanisms and, ultimately, identification of new druggable targets.
Collapse
Affiliation(s)
- Jörn Dengjel
- Department of Biology, University of Fribourg , Fribourg, Switzerland
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| |
Collapse
|
15
|
Ju S, Kwon Y, Kim JM, Park D, Lee S, Lee JW, Hwang CS, Lee C. iNrich, Rapid and Robust Method to Enrich N-Terminal Proteome in a Highly Multiplexed Platform. Anal Chem 2020; 92:6462-6469. [DOI: 10.1021/acs.analchem.9b05653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Yumi Kwon
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong-Mok Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Daechan Park
- Department of Biological Sciences, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Seonjeong Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Affiliation(s)
- Andreas O. Helbig
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
17
|
Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63:417-432. [DOI: 10.1042/ebc20190001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins that constitutes the scaffold of multicellular organisms. In addition to providing architectural and mechanical support to the surrounding cells, it conveys biochemical signals that regulate cellular processes including proliferation and survival, fate determination, and cell migration. Defects in ECM protein assembly, decreased ECM protein production or, on the contrary, excessive ECM accumulation, have been linked to many pathologies including cardiovascular and skeletal diseases, cancers, and fibrosis. The ECM thus represents a potential reservoir of prognostic biomarkers and therapeutic targets. However, our understanding of the global protein composition of the ECM and how it changes during pathological processes has remained limited until recently.
In this mini-review, we provide an overview of the latest methodological advances in sample preparation and mass spectrometry-based proteomics that have permitted the profiling of the ECM of now dozens of normal and diseased tissues, including tumors and fibrotic lesions.
Collapse
|
18
|
Ma H, Li R, Di X, Jin X, Wang Y, Lai B, Shi C, Ji M, Zhu X, Wang K. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics 2019; 20:655. [PMID: 31419939 PMCID: PMC6697928 DOI: 10.1186/s12864-019-6030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism (PA), which is the most common form of secondary arterial hypertension. However, the authentic fundamental mechanisms underlying ACAs remain unclear. Objective Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analyses from etiological studies of ACAs were performed to screen the differentially expressed proteins (DEPs) and investigate the relevant mechanisms of their occurrence and development. Results could help determine therapeutic targets of clinical significance. Methods In the present study, iTRAQ-based proteomics was applied to analyze ACA tissue samples from normal adrenal cortex tissues adjacent to the tumor. Using proteins extracted from a panel of four pairs of ACA samples, we identified some upregulated proteins and other downregulated proteins in all four pairs of ACA samples compared with adjacent normal tissue. Subsequently, we predicted protein–protein interaction networks of three DEPs to determine the authentic functional factors in ACA. Results A total of 753 DEPs were identified, including 347 upregulated and 406 downregulated proteins. The expression of three upregulated proteins (E2F3, KRT6A, and ALDH1A2) was validated by Western blot in 24 ACA samples. Our data suggested that some DEPs might be important hallmarks during the development of ACA. Conclusions This study is the first proteomic research to investigate alterations in protein levels and affected pathways in ACA using the iTRAQ technique. Thus, this study not only provides a comprehensive dataset on overall protein changes but also sheds light on its potential molecular mechanism in human ACAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6030-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- He Ma
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Hematology, the Second Hospital of Jilin University, Changchun, China
| | - Yan Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Bingjie Lai
- Department of Intensive Care Unit, the Second Hospital of Jilin University, Changchun, China
| | - Cailian Shi
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Mingxin Ji
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Xinran Zhu
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Hurtado Silva M, Berry IJ, Strange N, Djordjevic SP, Padula MP. Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes 2019; 7:proteomes7020011. [PMID: 30934878 PMCID: PMC6631386 DOI: 10.3390/proteomes7020011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
Methods for analyzing the terminal sequences of proteins have been refined over the previous decade; however, few studies have evaluated the quality of the data that have been produced from those methodologies. While performing global N-terminal labelling on bacteria, we observed that the labelling was not complete and investigated whether this was a common occurrence. We assessed the completeness of labelling in a selection of existing, publicly available N-terminomics datasets and empirically determined that amine-based labelling chemistry does not achieve complete labelling and potentially has issues with labelling amine groups at sequence-specific residues. This finding led us to conduct a thorough review of the historical literature that showed that this is not an unexpected finding, with numerous publications reporting incomplete labelling. These findings have implications for the quantitation of N-terminal peptides and the biological interpretations of these data.
Collapse
Affiliation(s)
- Mariella Hurtado Silva
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Iain J Berry
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
- The ithree Institute, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Natalie Strange
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Steven P Djordjevic
- The ithree Institute, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Matthew P Padula
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| |
Collapse
|
20
|
Hosseini M, Pratas D, Pinho AJ. AC: A Compression Tool for Amino Acid Sequences. Interdiscip Sci 2019; 11:68-76. [PMID: 30721401 DOI: 10.1007/s12539-019-00322-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
21
|
Herrera C, Escalante T, Rucavado A, Fox JW, Gutiérrez JM. Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Rev Proteomics 2018; 15:967-982. [DOI: 10.1080/14789450.2018.1538800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA22959, USA
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
22
|
Thomford NE, Dzobo K, Chimusa E, Andrae-Marobela K, Chirikure S, Wonkam A, Dandara C. Personalized Herbal Medicine? A Roadmap for Convergence of Herbal and Precision Medicine Biomarker Innovations. ACTA ACUST UNITED AC 2018; 22:375-391. [DOI: 10.1089/omi.2018.0074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- School of Medical Sciences, University of Cape Coast, Cape Coast, PMB, Ghana
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology, Cape Town component, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Science, Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile Chimusa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kerstin Andrae-Marobela
- Molecular Cell Biology, Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Shadreck Chirikure
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
King SL, Goth CK, Eckhard U, Joshi HJ, Haue AD, Vakhrushev SY, Schjoldager KT, Overall CM, Wandall HH. TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by O-glycosylation. J Biol Chem 2018; 293:7629-7644. [PMID: 29593093 PMCID: PMC5961060 DOI: 10.1074/jbc.ra118.001978] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
Proteolytic processing is an irreversible post-translational modification functioning as a ubiquitous regulator of cellular activity. Protease activity is tightly regulated via control of gene expression, enzyme and substrate compartmentalization, zymogen activation, enzyme inactivation, and substrate availability. Emerging evidence suggests that proteolysis can also be regulated by substrate glycosylation and that glycosylation of individual sites on a substrate can decrease or, in rare cases, increase its sensitivity to proteolysis. Here, we investigated the relationship between site-specific, mucin-type (or GalNAc-type) O-glycosylation and proteolytic cleavage of extracellular proteins. Using in silico analysis, we found that O-glycosylation and cleavage sites are significantly associated with each other. We then used a positional proteomic strategy, terminal amine isotopic labeling of substrates (TAILS), to map the in vivo cleavage sites in HepG2 SimpleCells with and without one of the key initiating GalNAc transferases, GalNAc-T2, and after treatment with exogenous matrix metalloproteinase 9 (MMP9) or neutrophil elastase. Surprisingly, we found that loss of GalNAc-T2 not only increased cleavage, but also decreased cleavage across a broad range of other substrates, including key regulators of the protease network. We also found altered processing of several central regulators of lipid homeostasis, including apolipoprotein B and the phospholipid transfer protein, providing new clues to the previously reported link between GALNT2 and lipid homeostasis. In summary, we show that loss of GalNAc-T2 O-glycosylation leads to a general decrease in cleavage and that GalNAc-T2 O-glycosylation affects key regulators of the cellular proteolytic network, including multiple members of the serpin family.
Collapse
Affiliation(s)
- Sarah L King
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Christoffer K Goth
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Ulrich Eckhard
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hiren J Joshi
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Amalie D Haue
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Katrine T Schjoldager
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | - Christopher M Overall
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hans H Wandall
- From the Department of Cellular and Molecular Medicine, Centre for Glycomics, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| |
Collapse
|
24
|
Xiong L, Yan W, Zubia E, Zhou Y, Zhang Y, Duan Q, Narayan M, Xu G. Quantitative proteomics and biochemical analyses reveal the role of endoplasmin in the regulation of the expression and secretion of A Disintegrin And Metalloproteinase 12. J Proteomics 2018; 182:34-44. [PMID: 29729432 DOI: 10.1016/j.jprot.2018.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
A Disintegrin And Metalloproteinase 12 (ADAM12) is highly expressed in multiple cancers such as breast and cervical cancers and its high expression reduces the overall patient survival rate. ADAM12 has two major splicing variants, the long membrane-anchored form ADAM12L and the short secreted form ADAM12S. However, how they are regulated and whether they are modulated similarly or differently in cells are not clear. Here, we use affinity purification and mass spectrometry to identify the ADAM12S-interacting proteins. Spectral counting and MaxQuant label-free quantification reveal that ADAM12S but not ADAM12L specifically interacts with a subset of endoplasmic reticulum proteins, such as endoplasmin (GRP94), 78 kDa glucose-regulated protein (GRP78), and UDP-glucose:glycoprotein glucosyltransferase I (UGGT1), that regulate the folding and processing of secreted proteins. Further biochemical experiments validate the interaction between ADAM12S and several of its interacting proteins. Computational docking analysis demonstrates that GRP94 preferentially interacts with ADAM12S over ADAM12L. The data also suggest that both the protein expression level and the secretion of ADAM12S are regulated by GRP94 expression and knockdown. Our results reveal a link between these two proteins that are highly expressed in cancer cells. Furthermore, our studies define a new ADAM12S-specific regulator that may contribute to the cancer development. SIGNIFICANCE A Disintegrin And Metalloproteinase 12 (ADAM12) is highly expressed in many cancers such as lung, breast, and cervical cancers. ADAM12 has two major splicing variants, the long membrane-anchored form ADAM12L and the short secreted form ADAM12S. However, how they are regulated and whether they are modulated similarly or differently are not completely understood. We use affinity purification and label-free quantitative proteomics to identify the ADAM12S-interacting proteins. Our results reveal that ADAM12S specifically interacts with a subset of endoplasmic reticulum proteins, including endoplasmin (GRP94), UDP-glucose:glycoprotein glucosyltransferase I (UGGT1), and neutral α-glucosidase AB (GANAB). Computer modeling reveals that ADAM12S interacts with the surface amino acids of GRP94 more strongly than ADAM12L. Biochemical experiments further reveal that GRP94 regulates both the protein level and the secretion of ADAM12S. Database mining finds that both GRP94 and ADAM12 are highly expressed in multiple cancers and their high expression is correlated with poor patient survival rate. Taken together, our work discovers a new upstream regulator for ADAM12S, which may contribute to its distinct functions in the regulation of the migration and invasion of cancer cells.
Collapse
Affiliation(s)
- Lipeng Xiong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Wenwen Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Emmanuel Zubia
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Yanqing Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qianqian Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
25
|
Liu C, Moschou PN. Cutting in the middleman: hidden substrates at the interface between proteases and plant development. THE NEW PHYTOLOGIST 2018; 218:916-922. [PMID: 28262953 DOI: 10.1111/nph.14501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Contents Summary 916 I. Introduction 916 II. DEK1: towards identification of protease substrates 917 III. Separases: when proteolytic modules attain nonproteolytic functions 918 IV. The peculiar case of a nonredundant subtilisin 919 V. Towards a solution to the protease redundancy problem 920 VI. Matters arising and closing remarks 921 Acknowledgements 921 References 921 SUMMARY: Proteases are integral components of proteome remodelling networks that regulate turnover of proteins and expand their functional diversity. Accumulating evidence highlights the importance of proteases as being central hubs of developmental programs. Yet the molecular pathways that many proteases act on, their natural substrates and their putative nonproteolytic functions remain largely elusive. Here, we discuss recent findings on proteases with functions that converge into plant development regulation, such as DEFECTIVE KERNEL 1 (DEK1), separase and subtilisins, to highlight conspicuous but unexplored aspects of protease biology. We also suggest an exploratory framework for addressing protease functions.
Collapse
Affiliation(s)
- Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| |
Collapse
|
26
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
27
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
28
|
Berry IJ, Jarocki VM, Tacchi JL, Raymond BBA, Widjaja M, Padula MP, Djordjevic SP. N-terminomics identifies widespread endoproteolysis and novel methionine excision in a genome-reduced bacterial pathogen. Sci Rep 2017; 7:11063. [PMID: 28894154 PMCID: PMC5593965 DOI: 10.1038/s41598-017-11296-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Proteolytic processing alters protein function. Here we present the first systems-wide analysis of endoproteolysis in the genome-reduced pathogen Mycoplasma hyopneumoniae. 669 N-terminal peptides from 164 proteins were identified, demonstrating that functionally diverse proteins are processed, more than half of which 75 (53%) were accessible on the cell surface. Multiple cleavage sites were characterised, but cleavage with arginine in P1 predominated. Putative functions for a subset of cleaved fragments were assigned by affinity chromatography using heparin, actin, plasminogen and fibronectin as bait. Binding affinity was correlated with the number of cleavages in a protein, indicating that novel binding motifs are exposed, and protein disorder increases, after a cleavage event. Glyceraldehyde 3-phosphate dehydrogenase was used as a model protein to demonstrate this. We define the rules governing methionine excision, show that several aminopeptidases are involved, and propose that through processing, genome-reduced organisms can expand protein function.
Collapse
Affiliation(s)
- Iain J Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica M Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Jessica L Tacchi
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Benjamin B A Raymond
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew P Padula
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
29
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
30
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
31
|
Marshall NC, Finlay BB, Overall CM. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol Cell Proteomics 2017; 16:S161-S171. [PMID: 28179412 PMCID: PMC5393396 DOI: 10.1074/mcp.o116.066456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The human immune system consists of an intricate network of tightly controlled pathways, where proteases are essential instigators and executioners at multiple levels. Invading microbial pathogens also encode proteases that have evolved to manipulate and dysregulate host proteins, including host proteases during the course of disease. The identification of pathogen proteases as well as their substrates and mechanisms of action have empowered significant developments in therapeutics for infectious diseases. Yet for many pathogens, there remains a great deal to be discovered. Recently, proteomic techniques have been developed that can identify proteolytically processed proteins across the proteome. These “degradomics” approaches can identify human substrates of microbial proteases during infection in vivo and expose the molecular-level changes that occur in the human proteome during infection as an operational network to develop hypotheses for further research as well as new therapeutics. This Perspective Article reviews how proteases are utilized during infection by both the human host and invading bacterial pathogens, including archetypal virulence-associated microbial proteases, such as the Clostridia spp. botulinum and tetanus neurotoxins. We highlight the potential knowledge that degradomics studies of host–pathogen interactions would uncover, as well as how degradomics has been successfully applied in similar contexts, including use with a viral protease. We review how microbial proteases have been targeted in current therapeutic approaches and how microbial proteases have shaped and even contributed to human therapeutics beyond infectious disease. Finally, we discuss how, moving forward, degradomics research can greatly contribute to our understanding of how microbial pathogens cause disease in vivo and lead to the identification of novel substrates in vivo, and the development of improved therapeutics to counter these pathogens.
Collapse
Affiliation(s)
- Natalie C Marshall
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories
| | - B Brett Finlay
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories.,¶Department of Biochemistry & Molecular Biology
| | - Christopher M Overall
- ¶Department of Biochemistry & Molecular Biology, .,**Department of Oral Biological & Medical Sciences, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Fuhrman-Luck RA, Silva LM, Hastie ML, Gorman JJ, Clements JA. Determining Protease Substrates Within a Complex Protein Background Using the PROtein TOpography and Migration Analysis Platform (PROTOMAP). Methods Mol Biol 2017; 1574:145-170. [PMID: 28315249 DOI: 10.1007/978-1-4939-6850-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The PROtein TOpography and Migration Analysis Platform (PROTOMAP) approach is a degradomics technique used to determine protease substrates within complex protein backgrounds. The method involves protein separation according to protein relative mobility, using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Gel lanes are then sliced into horizontal sections, and in-gel trypsin digestion performed for each gel slice. Extracted peptides and corresponding proteins are identified using liquid chromatography-tandem mass spectrometry and bioinformatics. Results are compiled in silico to generate a peptograph for every identified protein, being a pictorial representation of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins shown by their peptograph to have migrated further through the gel (i.e., to a lower gel slice) in the lane containing the active protease(s) of interest, as compared to the control, are deemed putative protease substrates. PROTOMAP has broad applicability to a range of experimental conditions and protein pools. Coupling this with its simple and robust methodology, the PROTOMAP approach has emerged as a valuable tool with which to determine protease substrates in complex systems.
Collapse
Affiliation(s)
- R A Fuhrman-Luck
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - L M Silva
- Translational Research Institute, Brisbane, Queensland, Australia
- Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - M L Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - J J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - J A Clements
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
- Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
33
|
|
34
|
Clair G, Piehowski PD, Nicola T, Kitzmiller JA, Huang EL, Zink EM, Sontag RL, Orton DJ, Moore RJ, Carson JP, Smith RD, Whitsett JA, Corley RA, Ambalavanan N, Ansong C. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples. Sci Rep 2016; 6:39223. [PMID: 28004771 PMCID: PMC5177886 DOI: 10.1038/srep39223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes.
Collapse
Affiliation(s)
- Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Paul D Piehowski
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Teodora Nicola
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Joseph A Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric L Huang
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erika M Zink
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ryan L Sontag
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Daniel J Orton
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald J Moore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78712, USA
| | - Richard D Smith
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richard A Corley
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
35
|
Klein T, Viner RI, Overall CM. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0372. [PMID: 27644975 PMCID: PMC5031638 DOI: 10.1098/rsta.2015.0372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Theo Klein
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Rosa I Viner
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| |
Collapse
|
36
|
Barallobre-Barreiro J, Gupta SK, Zoccarato A, Kitazume-Taneike R, Fava M, Yin X, Werner T, Hirt MN, Zampetaki A, Viviano A, Chong M, Bern M, Kourliouros A, Domenech N, Willeit P, Shah AM, Jahangiri M, Schaefer L, Fischer JW, Iozzo RV, Viner R, Thum T, Heineke J, Kichler A, Otsu K, Mayr M. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation. Circulation 2016; 134:817-32. [PMID: 27559042 DOI: 10.1161/circulationaha.115.016423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/27/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.
Collapse
Affiliation(s)
- Javier Barallobre-Barreiro
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Shashi K Gupta
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Anna Zoccarato
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Rika Kitazume-Taneike
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marika Fava
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Xiaoke Yin
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Tessa Werner
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marc N Hirt
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Anna Zampetaki
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Alessandro Viviano
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Mei Chong
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marshall Bern
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Antonios Kourliouros
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Nieves Domenech
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Peter Willeit
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Ajay M Shah
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marjan Jahangiri
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Liliana Schaefer
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Jens W Fischer
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Renato V Iozzo
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Rosa Viner
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Thomas Thum
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Joerg Heineke
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Antoine Kichler
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Kinya Otsu
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Manuel Mayr
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.).
| |
Collapse
|
37
|
Precision or Personalized Medicine for Cancer Chemotherapy: Is there a Role for Herbal Medicine. Molecules 2016; 21:molecules21070889. [PMID: 27399658 PMCID: PMC6273869 DOI: 10.3390/molecules21070889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022] Open
Abstract
Although over 100 chemotherapeutic agents are currently available for the treatment of cancer patients, the overall long term clinical benefit is disappointing due to the lack of effectiveness or severe side effects from these agents. In order to improve the therapeutic outcome, a new approach called precision medicine or personalized medicine has been proposed and initiated by the U.S. National Institutes of Health. However, the limited availability of effective medications and the high cost are still the major barriers for many cancer patients. Thus alternative approaches such as herbal medicines could be a feasible and less costly option. Unfortunately, scientific evidence for the efficacy of a majority of herbal medicines is still lacking and their development to meet FDA approval or other regulatory agencies is a big challenge. However, herbal medicines may be able to play an important role in precision medicine or personalized medicine. This review will focus on the existing and future technologies that could speed the development of herbal products for treatment of resistant cancer in individual patients. Specifically, it will concentrate on reviewing the phenotypic (activity based) rather than genotypic (mechanism based) approach to develop herbal medicine useful for personalized cancer chemotherapy.
Collapse
|
38
|
Catalán Ú, Rubió L, López de las Hazas MC, Herrero P, Nadal P, Canela N, Pedret A, Motilva MJ, Solà R. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects. Mol Nutr Food Res 2016; 60:2114-2129. [DOI: 10.1002/mnfr.201600052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Úrsula Catalán
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Laura Rubió
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | | | - Pol Herrero
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Pedro Nadal
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Núria Canela
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Maria-José Motilva
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| |
Collapse
|
39
|
Zhou L, Wang K, Li Q, Nice EC, Zhang H, Huang C. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives. Expert Rev Proteomics 2016; 13:367-81. [PMID: 26923776 DOI: 10.1586/14789450.2016.1159959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.
Collapse
Affiliation(s)
- Li Zhou
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Kui Wang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Qifu Li
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Edouard C Nice
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| |
Collapse
|
40
|
Sabbagh B, Mindt S, Neumaier M, Findeisen P. Clinical applications of MS-based protein quantification. Proteomics Clin Appl 2016; 10:323-45. [DOI: 10.1002/prca.201500116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Bassel Sabbagh
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Sonani Mindt
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
- MVZ Labor Dr. Limbach und Kollegen; Heidelberg Germany
- Working Group Proteomics of the German United Society for Clinical Chemistry and Laboratory Medicine e.V. (DGKL); Bonn Germany
| |
Collapse
|