1
|
Tateishi-Karimata H, Kawauchi K, Takahashi S, Sugimoto N. Development of a Pseudocellular System to Quantify Specific Interactions Determining the G-Quadruplex Function in Cells. J Am Chem Soc 2024; 146:8005-8015. [PMID: 38498910 DOI: 10.1021/jacs.3c11160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Intracellular chemical microenvironments, including ion concentrations and molecular crowding, play pivotal roles in cell behaviors, such as proliferation, differentiation, and cell death via regulation of gene expression. However, there is no method for quantitative analysis of intracellular environments due to their complexity. Here, we have developed a system for highlighting the environment inside of the cell (SHELL). SHELL is a pseudocellular system, wherein small molecules are removed from the cell and a crowded intracellular environment is maintained. SHELL offers two prominent advantages: (1) It allows for precise quantitative biochemical analysis of a specific factor, and (2) it enables the study of any cell, thereby facilitating the study of target molecule effects in various cellular environments. Here, we used SHELL to study G-quadruplex formation, an event that implicated cancer. We show that G-quadruplexes are more stable in SHELL compared with in vitro conditions. Although malignant transformation perturbs cellular K+ concentrations, environments in SHELL act as buffers against G-quadruplex destabilization at lower K+ concentrations. Notably, the buffering effect was most pronounced in SHELL derived from nonaggressive cancer cells. Stable G-quadruplexes form due to the binding of the G-quadruplex with K+ in different cancer cells. Furthermore, the observed pattern of G-quadruplex-induced transcriptional inhibition in SHELL is consistent with that in living cells at different cancer stages. Our results indicate that ion binding to G-quadruplexes regulates gene expression during pathogenesis.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keiko Kawauchi
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Bhowmik S, Ghosh T, Sanghvi YS, Das AK. Synthesis and Structural Studies of Nucleobase Functionalized Hydrogels for Controlled Release of Vitamins. ACS APPLIED BIO MATERIALS 2023; 6:5301-5309. [PMID: 37971725 DOI: 10.1021/acsabm.3c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of biomolecule-derived biocompatible scaffolds for drug delivery applications is an emerging research area. Herein, we have synthesized a series of nucleobase guanine (G) functionalized amino acid conjugates having different chain lengths to study their molecular self-assembly in the hydrogel state. The gelation properties have been induced by the correct choice of chain lengths of fatty acids present in nucleobase functionalized molecules. The effect of alkali metal cations, pH, and the concentration of nucleobase functionalized amino acid conjugates in the molecular self-assembly process has been explored. The presence of Hoogsteen hydrogen bonding interaction drives the formation of a G-quadruplex functionalized hydrogel. The DOSY nuclear magnetic resonance is also performed to evaluate the self-assembling behavior of the newly formed nucleobase functionalized hydrogel. The nanofibrillar morphology is responsible for the formation of a hydrogel, which has been confirmed by various microscopic experiments. The mechanical behaviors of the hydrogel were evaluated by rheological experiments. The in vitro biostability of the synthesized nucleobase amino acid conjugate is also investigated in the presence of hydrolytic enzymes proteinase K and chymotrypsin. Finally, the nucleobase functionalized hydrogel has been used as a drug delivery platform for the control and sustained pH-responsive release of vitamins B2 and B12. This synthesized nucleobase functionalized hydrogel also exhibits noncytotoxic behavior, which has been evaluated by their in vitro cell viability experiment using HEK 293 and MCF-7 cell lines.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
3
|
Gao C, Mohamed HI, Deng J, Umer M, Anwar N, Chen J, Wu Q, Wang Z, He Y. Effects of Molecular Crowding on the Structure, Stability, and Interaction with Ligands of G-quadruplexes. ACS OMEGA 2023; 8:14342-14348. [PMID: 37125118 PMCID: PMC10134454 DOI: 10.1021/acsomega.3c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
G-quadruplexes (G4s) are widely found in cells and have significant biological functions, which makes them a target for screening antitumor and antiviral drugs. Most of the previous research on G4s has been conducted mainly in diluted solutions. However, cells are filled with organelles and many biomolecules, resulting in a constant state of a crowded molecular environment. The conformation and stability of some G4s were found to change significantly in the molecularly crowded environment, and interactions with ligands were disturbed to some extent. The structure of the G4s and their biological functions are correlated, and the effect of the molecularly crowded environment on G4 conformational transitions and interactions with ligands should be considered in drug design targeting G4s. This review discusses the changes in the conformation and stability of G4s in a physiological environment. Moreover, the mechanism of action of the molecularly crowded environment affecting the G4 has been further reviewed based on previous studies. Furthermore, current challenges and future research directions are put forward. This review has implications for the design of drugs targeting G4s.
Collapse
Affiliation(s)
- Chao Gao
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hany I. Mohamed
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Jieya Deng
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Umer
- Institute
for Forest Resources and Environment of Guizhou and Forestry College,
Research Center of Forest Ecology, Guizhou
University, Guiyang 550025, China
| | - Naureen Anwar
- Department
of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Jixin Chen
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan
Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| | - Zhangqian Wang
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. Optimization of an aptamer against Prorocentrum minimum - A common harmful algae by truncation and G-quadruplex-forming mutation. ENVIRONMENTAL RESEARCH 2023; 220:115099. [PMID: 36563978 DOI: 10.1016/j.envres.2022.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Harmful algal blooms (HABs) caused by Prorocentrum minimum have seriously posed economic losses and ecological disasters. To reduce these losses, aptamers are used as a new molecular probe to establish rapid methods. Herein, to improve the affinity and application of aptamers in the detection of harmful algae, the optimization was performed on the previously reported aptamers against P. minimum. First, a total of seven candidate aptamers, including three truncated aptamers (TA1, TA2 and TA3) and four mutant aptamers (MA1, MA2, MA3 and MA4), were obtained by truncation and G-quadruplex (GQ)-forming mutation. Next, the specificity and affinity test by flow cytometry revealed that except for TA1 and TA2, all of the candidate aptamers are specific with the equilibrium dissociation constant of (40.4 ± 5.5) nM for TA3, (63.3 ± 24.0) nM for MA1, (71.7 ± 14.6) nM for MA2, (365.9 ± 74.4) nM for MA3, and (21.1 ± 0.5) nM for MA4, respectively. The circular dichroism analysis of the mutant aptamers demonstrated that the GQ structures formed by MA1/MA2, MA3 and MA4 were antiparallel, mixed parallel and parallel, respectively. The affinity of aptamers with various GQ is in the order of parallel structure > antiparallel structure > mixed parallel structure. In addition, to further improve binding ability, the binding conditions of MA4 were optimized as follows: binding time, 60 min; binding temperature, 37 °C; pH of the binding buffer, 7.5; and Na+/Mg2+ concentration in the binding buffer, 100 mM/0.5 mM. The binding examination by fluorescence microscopy showed that MA4 had a stronger binding ability to P. minimum than the original aptamer. Taken together, this study not only obtained an aptamer with higher affinity than the original aptamer, which laid a good foundation for subsequent application, but also may provide a feasible reference method for aptamer optimization.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Yu Duan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinju Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| |
Collapse
|
5
|
Salem AA, El Haty IA, Ghattas MA. GW-2974 and SCH-442416 modulators of tyrosine kinase and adenosine receptors can also stabilize human telomeric G-quadruplex DNA. PLoS One 2022; 17:e0277963. [PMID: 36476719 PMCID: PMC9728906 DOI: 10.1371/journal.pone.0277963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
GW-2974 is a potent tyrosine kinase receptor inhibitor while SCH-442416 is a potent adenosine receptors' antagonist with high selectivity towards human adenosine A2A receptor over other adenosine receptors. The two compounds were reported to possess anti-cancer properties. This study aimed to investigate whether stabilization of human telomeric G-quadruplex DNA by GW-2974- and SCH-442416 is a plausible fundamental mechanism underlying their anti-cancer effects. Human telomeric G-quadruplex DNA with sequence AG3(TTAGGG)3 was used. The study used ultraviolet-visible (UV-Vis), fluorescence, fluorescence quenching, circular dichroism (CD), melting temperatures (Tm) and molecular docking techniques to evaluate interactions. The results showed that GW-2974 and SCH-442416 interacted with G-quadruplex DNA through intercalation binding into two types of dependent binding sites. Binding affinities of 1.3 × 108-1.72 × 106 M-1 and 1.55 × 107-3.74 × 105 M-1 were obtained for GW-2974 and SCH-442416, respectively. An average number of binding sites between 1 and 2 was obtained. Additionally, the melting temperature curves indicated that complexation of both compounds to G-quadruplex DNA provided more stability (ΔTm = 9.9°C and 9.6°C, respectively) compared to non-complexed G-quadruplex DNA. Increasing the molar ratios over 1:1 (drug:G-quadruplex) showed less stabilization effect on DNA. Furthermore, GW-2974 and SCH-442516 have proven ≥ 4.0 folds better selective towards G-quadruplex over double-stranded ct-DNA. In silico molecular docking and dynamics revealed favorable exothermic binding for the two compounds into two sites of parallel and hybrid G-quadruplex DNA structures. The results supported the hypothesis that GW-2974 and SCH-442416 firmly stabilize human telomeric G-quadruplex DNA in additions to modulating tyrosine kinase and adenosine receptors. Consequently, stabilizing G-quadruplex DNA could be a mechanism underlying their anti-cancer activity.
Collapse
Affiliation(s)
- Alaa A. Salem
- Department of Chemistry, College of science, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| | - Ismail A. El Haty
- Department of Chemistry, College of science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
6
|
Tsao L, Shepardson-Fungairiño S, Murayama H, Cecere A, Wren E, Núñez M. Assessing the Potential for DNA Quadruplex Formation in the Predatory Bacterium Bdellovibrio bacteriovorus. Biochemistry 2022; 61:2073-2087. [PMID: 36193632 PMCID: PMC9536305 DOI: 10.1021/acs.biochem.2c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 11/29/2022]
Abstract
During its life cycle, the predatory bacterium Bdellovibrio bacteriovorus switches between an attack and a growth phase, each of which is characterized by a distinct pattern of gene expression. Twenty-one potential G-quadruplex-forming sequences (PQFS) have been identified in the Bdellovibrio genome. These G-rich sequences are prevalent within open reading frames and nearly evenly distributed between the template and the coding strand, suggesting that they could play a role in gene expression and life cycle switching. Published transcriptomic data show that the genes nearest these sequences are not (de)activated together during the same phases of the life cycle. We explored the biophysical properties of three identified PQFS using circular dichroism (CD) spectroscopy and gel electrophoresis and demonstrated that all three sequences fold into stable unimolecular quadruplexes with distinct topologies. In the presence of their complementary strands, each forms an equilibrium mixture of duplex and quadruplex in which quadruplex formation is favored at higher temperatures. Once the quadruplexes are folded, they are slow to form a duplex when the complementary strand is added, with one sequence requiring the equivalent of many Bdellovibrio lifetimes to do so. Using a variety of cosolutes, we showed that molecular crowding mimicking cellular conditions stabilizes the quadruplex structures and induces structural transitions to the parallel topology regardless of the original topology. Taken together, these experiments suggest that Bdellovibrio PQFS are capable of forming quadruplexes in vivo and thereby playing a role in gene expression.
Collapse
Affiliation(s)
- Lucille
H. Tsao
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Sally Shepardson-Fungairiño
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Hikari Murayama
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Amelia Cecere
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Elizabeth Wren
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Megan Núñez
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| |
Collapse
|
7
|
Interface of G-quadruplex with both stabilizing and destabilizing ligands for targeting various diseases. Int J Biol Macromol 2022; 219:414-427. [DOI: 10.1016/j.ijbiomac.2022.07.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
|
8
|
New insights into the effect of molecular crowding environment induced by dimethyl sulfoxide on the conformation and stability of G-quadruplex. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu J, Yan L, He S, Hu J. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. NANO RESEARCH 2021; 15:3504-3513. [PMID: 35401944 PMCID: PMC8983328 DOI: 10.1007/s12274-021-3869-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/14/2023]
Abstract
DNA quadruplexes are nucleic acid conformations comprised of four strands. They are prevalent in human genomes and increasing efforts are being directed toward their engineering. Taking advantage of the programmability of Watson-Crick base-pairing and conjugation methodology of DNA with other molecules, DNA nanostructures of increasing complexity and diversified geometries have been artificially constructed since 1980s. In this review, we investigate the interweaving of natural DNA quadruplexes and artificial DNA nanostructures in the development of the ever-prosperous field of biosensing, highlighting their specific roles in the construction of biosensor, including recognition probe, signal probe, signal amplifier and support platform. Their implementation in various sensing scenes was surveyed. And finally, general conclusion and future perspective are discussed for further developments.
Collapse
Affiliation(s)
- Jingxin Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
- Shenzhen Bey Laboratory, Shenzhen, 518132 China
| |
Collapse
|
10
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
11
|
Bednářová K, Vorlíčková M, Renčiuk D. Diversity of Parallel Guanine Quadruplexes Induced by Guanine Substitutions. Int J Mol Sci 2020; 21:E6123. [PMID: 32854410 PMCID: PMC7503932 DOI: 10.3390/ijms21176123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 01/17/2023] Open
Abstract
Recently, we reported an inhibitory effect of guanine substitutions on the conformational switch from antiparallel to parallel quadruplexes (G4) induced by dehydrating agents. As a possible cause, we proposed a difference in the sensitivity of parallel and antiparallel quadruplexes to the guanine substitutions in the resulting thermodynamic stability. Reports on the influence of guanine substitutions on the biophysical properties of intramolecular parallel quadruplexes are rare. Moreover, such reports are often complicated by the multimerisation tendencies of parallel quadruplexes. To address this incomplete knowledge, we employed circular dichroism spectroscopy (CD), both as stopped-flow-assisted fast kinetics measurements and end-point measurements, accompanied by thermodynamic analyses, based on UV absorption melting profiles, and electrophoretic methods. We showed that parallel quadruplexes are significantly more sensitive towards guanine substitutions than antiparallel ones. Furthermore, guanine-substituted variants, which in principle might correspond to native genomic sequences, distinctly differ in their biophysical properties, indicating that the four guanines in each tetrad of parallel quadruplexes are not equal. In addition, we were able to distinguish by CD an intramolecular G4 from intermolecular ones resulting from multimerisation mediated by terminal tetrad association, but not from intermolecular G4s formed due to inter-strand Hoogsteen hydrogen bond formation. In conclusion, our study indicates significant variability in parallel quadruplex structures, otherwise disregarded without detailed experimental analysis.
Collapse
Affiliation(s)
| | | | - Daniel Renčiuk
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (K.B.); (M.V.)
| |
Collapse
|
12
|
Abstract
Several decades elapsed between the first descriptions of G-quadruplex nucleic acid structures (G4s) assembled in vitro and the emergence of experimental findings indicating that such structures can form and function in living systems. A large body of evidence now supports roles for G4s in many aspects of nucleic acid biology, spanning processes from transcription and chromatin structure, mRNA processing, protein translation, DNA replication and genome stability, and telomere and mitochondrial function. Nonetheless, it must be acknowledged that some of this evidence is tentative, which is not surprising given the technical challenges associated with demonstrating G4s in biology. Here I provide an overview of evidence for G4 biology, focusing particularly on the many potential pitfalls that can be encountered in its investigation, and briefly discuss some of broader biological processes that may be impacted by G4s including cancer.
Collapse
Affiliation(s)
- F. Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Matsumoto S, Tateishi-Karimata H, Takahashi S, Ohyama T, Sugimoto N. Effect of Molecular Crowding on the Stability of RNA G-Quadruplexes with Various Numbers of Quartets and Lengths of Loops. Biochemistry 2020; 59:2640-2649. [PMID: 32578417 DOI: 10.1021/acs.biochem.0c00346] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-Quadruplexes are noncanonical structures formed by guanine-rich regions of not only DNA but also RNA. RNA G-quadruplexes are widely present in the transcriptome as mRNAs and noncoding RNAs and take part in various essential functions in cells. Furthermore, stable RNA G-quadruplexes control the extent of biological functions, such as mRNA translation and antigen presentation. To understand and regulate the functions controlled by RNA G-quadruplexes in cellular environments, which are molecularly crowded, we would be required to investigate the stability of G-quadruplexes in molecular crowding. Here, we systematically investigated the thermodynamic stability of RNA G-quadruplexes with different numbers of G-quartets and lengths of loops. The molecular crowding conditions of polyethylene glycol with an average molecular weight of 200 (PEG200) were found to stabilize RNA G-quadruplexes with three and four G-quartets, while G-quadruplexes with two G-quartets did not exhibit any stabilization upon addition of PEG200. On the other hand, no difference in stabilization by PEG200 was observed among the G-quadruplexes with different loop lengths. Thermodynamic analysis of the RNA G-quadruplexes revealed more appropriate motifs for identifying G-quadruplex-forming sequences. The informatics analysis with new motifs demonstrated that the distributions of G-quadruplexes in human noncoding RNAs differed depending on the number of G-quartets. Therefore, RNA G-quadruplexes with different numbers of G-quartets may play different roles in response to environmental changes in cells.
Collapse
Affiliation(s)
- Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Kobe 650-0047, Japan
| |
Collapse
|
14
|
Kinetics, conformation, stability, and targeting of G-quadruplexes from a physiological perspective. Biochem Biophys Res Commun 2020; 531:84-87. [PMID: 32331835 DOI: 10.1016/j.bbrc.2020.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023]
Abstract
The particular enrichment of G-quadruplex-forming sequences near transcription start sites signifies the involvement of G-quadruplexes in the regulation of transcription. The characterization of G-quadruplex formation, which holds the key to understand the function it plays in physiological and pathological processes, is mostly performed under simplified in vitro experimental conditions. Formation of G-quadruplexes in cells, however, occurs in an environment far different from the ones in which the in vitro studies on G-quadruplexes are normally carried out. Therefore, the characteristics of G-quadruplex structures obtained under the in vitro conditions may not faithfully reveal how the G-quadruplexes would behave in a physiologically relevant situation. In this mini-review, we attempt to briefly summarize the differences in a few important characteristics, including kinetics, conformation, and stability of G-quadruplex formation observed under the two conditions to illustrate how the intracellular environment might affect the behavior of G-quadruplexes largely based on the previous work carried out in the authors' laboratory. We also propose that unstable G-quadruplex variants may be better drug target candidates to improve selectivity and potency.
Collapse
|
15
|
Effects of Molecular Crowding on G-Quadruplex-hemin Mediated Peroxidase Activity. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Yao P, Zhang J, You S, Qi W, Su R, He Z. Ferrocene-modified peptides as inhibitors against insulin amyloid aggregation based on molecular simulation. J Mater Chem B 2020; 8:3076-3086. [PMID: 32202581 DOI: 10.1039/d0tb00144a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Peptide-based inhibitors have gradually been implicated as drugs for treating protein folding diseases because of their favorable biocompatibility and low toxicity. To develop potential therapeutic strategies for amyloid-related disorders, short peptides modified by Fc, ferrocene-l-Phe-l-Phe (Fc-FF) and ferrocene-l-Phe-l-Tyr (Fc-FY), were used as inhibitors for the investigation of the aggregation behavior of insulin. Firstly, molecular docking predicted the interaction between both Fc-peptides and insulin. Then, the experimental data from ThT, DLS, CD and TEM confirmed that Fc-FF and Fc-FY effectively inhibited insulin fibrillation and disaggregated mature insulin fibrils. Based on a dose-dependent manner, both Fc-peptides can strongly inhibit insulin fibrillation, extend lag phase time, reduce final fibril formation (beyond 99% by Fc-peptides of 400 µM), decrease the formation of high-content β-sheet structures and reduce the size of insulin fibrils. Additionally, we found that compared with Fc-FY, the better inhibitory effect of Fc-FF at concentration below 400 µM was mainly resulted from the difference in π-π interaction and hydrogen bonds between Fc-peptides and insulin, according to molecular dynamics analysis. Our results demonstrated Fc-peptides, Fc-FF and Fc-FY, may play effective roles in the development of new therapeutic drugs or strategies for amyloid-related disorders, and the molecular dynamics simulation may be helpful for designing appropriate inhibitors of anti-amyloidosis diseases.
Collapse
Affiliation(s)
- Pin Yao
- Chemical Engineering Research Centre, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Morgan RK, Psaras AM, Lassiter Q, Raymer K, Brooks TA. G-quadruplex deconvolution with physiological mimicry enhances primary screening: Optimizing the FRET Melt 2 assay. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194478. [PMID: 31891781 PMCID: PMC8922283 DOI: 10.1016/j.bbagrm.2019.194478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
Non-B-DNA G-quadruplex (G4) structures have shown promise as molecular targets. Modulating G4 stability for oncogenic transcriptional control is a promising avenue for the development of novel therapeutics. Extracellularly, G4 stabilization can be mediated by alkali cations, modifying water content, or with molecular crowding. Intracellularly, G4 formation is mediated by negative superhelicity and transcriptional activity, and can be stabilized with small molecules or oligonucleotides. Numerous G4-stabilizing compounds have been identified that impact promoter activity in plasmids. These compounds, however, infrequently show activity in cells, are found to have non-G4-mediated mechanisms of action, or do not demonstrate activity in vivo. The G4 field requires enhanced predictive screening methods to identify compounds with G4-mediated in vitro activity and in vivo efficacy. Using the best characterized promoter G4 to date, MYC, we examined the effects of varying annealing conditions (rate of cool down and number of heat/cool cycles), co-solvents (glucose, acetonitrile, polyethylene glycol, dextran sulfate, sucrose, ficoll-70, glycerol) and nucleoplasm on G4 formation and compound screening. We observed a marked decrease in hit rates when shifting from simple buffer conditions to include potassium and glycerol, and utilizing two or more rapid annealing cycles; the difference in hit compounds coincides with previous findings of active, inactive, and non-G4-mediated activity, including NSC338258, Quindoline i, and TMPyP4; with these changes, we describe a modification of the primary FRET Melt screening assay - the FRET Melt2. This understanding of physiological principles governing the above G4 formation will better inform future drug discovery efforts for this and other oncogenic promoters.
Collapse
Affiliation(s)
- Rhianna K Morgan
- School of Veterinary Medicine, Department of Molecular Biosciences, University of California-Davis, Davis, CA 95616, United States of America; School of Pharmacy, Department of BioMolecular Sciences, University of Mississippi, MS 38677, United States of America
| | - Alexandra Maria Psaras
- School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, United States of America
| | - Quinea Lassiter
- School of Pharmacy, Department of BioMolecular Sciences, University of Mississippi, MS 38677, United States of America; Department of Microbiology, University of Arizona, Tucson, AZ 85721, United States of America
| | - Kelsey Raymer
- School of Pharmacy, Department of BioMolecular Sciences, University of Mississippi, MS 38677, United States of America
| | - Tracy A Brooks
- School of Pharmacy, Department of BioMolecular Sciences, University of Mississippi, MS 38677, United States of America; School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, United States of America.
| |
Collapse
|
18
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
19
|
Bednářová K, Kejnovská I, Vorlíčková M, Renčiuk D. Guanine Substitutions Prevent Conformational Switch from Antiparallel to Parallel G-Quadruplex. Chemistry 2019; 25:13422-13428. [PMID: 31453656 DOI: 10.1002/chem.201903015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Guanine quadruplexes, recently reported to form in vivo, represent a broad spectrum of non-canonical conformations of nucleic acids. The actual conformation might differ between water solutions and crowding or dehydrating solutions that better reflect the conditions in the cell. Here we show, using spectroscopic techniques, that most guanine substitutions prevent the conformational switch from antiparallel or hybrid forms to parallel ones when induced by dehydrating agents. The inhibitory effect does not depend on the position of the substitution, but, interestingly, on the type of substitution and, to some extent, on its destabilising potential. A parallel form might be induced in some cases by ligands such as N-methyl mesoporphyrin IX and even this ligand-induced switch is inhibited by guanine substitution. The ability or inability to have a conformation switch, based on actual conditions, might significantly influence potential conformation-dependent quadruplex interactions.
Collapse
Affiliation(s)
- Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Michaela Vorlíčková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
20
|
Arns L, Knop JM, Patra S, Anders C, Winter R. Single-molecule insights into the temperature and pressure dependent conformational dynamics of nucleic acids in the presence of crowders and osmolytes. Biophys Chem 2019; 251:106190. [PMID: 31146215 DOI: 10.1016/j.bpc.2019.106190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
Abstract
In this review we discuss results from temperature and pressure dependent single-molecule Förster resonance energy transfer (smFRET) studies on nucleic acids in the presence of macromolecular crowders and organic osmolytes. As representative examples, we have chosen fragments of both DNAs and RNAs, i.e., a synthetic DNA hairpin, a human telomeric G-quadruplex and the microROSE RNA hairpin. To mimic the effects of intracellular components, our studies include the macromolecular crowding agent Ficoll, a copolymer of sucrose and epichlorohydrin, and the organic osmolytes trimethylamine N-oxide, urea and glycine as well as natural occurring osmolyte mixtures from deep sea organisms. Furthermore, the impact of mutations in an RNA sequence on the conformational dynamics is examined. Different from proteins, the effects of the osmolytes and crowding agents seem to strongly dependent on the structure and chemical make-up of the nucleic acid.
Collapse
Affiliation(s)
- Loana Arns
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Jim-Marcel Knop
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Satyajit Patra
- Aix Marseille Université, CNRS, Centralle Marseille, Institut Fresnel, F-13013 Marseille, France
| | - Christian Anders
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
21
|
Mirihana Arachchilage G, Hetti Arachchilage M, Venkataraman A, Piontkivska H, Basu S. Stable G-quadruplex enabling sequences are selected against by the context-dependent codon bias. Gene 2019; 696:149-161. [PMID: 30753890 DOI: 10.1016/j.gene.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
The distributions of secondary structural elements appear to differ between coding regions (CDS) of mRNAs compared to the untranslated regions (UTRs), presumably as a mechanism to fine-tune gene expression, including efficiency of translation. However, a systematic and comprehensive analysis of secondary structure avoidance because of potential bias in codon usage is difficult as some of the common secondary structures, such as, hairpins can be formed by numerous sequence combinations. Using G-quadruplex (GQ) as the model secondary structure we studied the impact of codon bias on GQs within the CDS. Because GQs can be predicted using specific consensus sequence motifs, they provide an excellent platform for investigation of the selectivity of such putative structures at the codon level. Using a bioinformatics approach, we calculated the frequencies of putative GQs within the CDS of a variety of species. Our results suggest that the most stable GQs appear to be significantly underrepresented within the CDS, through the use of specific synonymous codon combinations. Furthermore, we identified many peptide sequence motifs in which silent mutations can potentially alter translation via stable GQ formation. This work not only provides a comprehensive analysis on how stable secondary structures appear to be avoided within the CDS of mRNA, but also broadens the current understanding of synonymous codon usage as they relate to the structure-function relationship of RNA.
Collapse
Affiliation(s)
| | | | - Aparna Venkataraman
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States of America
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States of America.
| |
Collapse
|
22
|
Di Fonzo S, Bottari C, Brady JW, Tavagnacco L, Caterino M, Petraccone L, Amato J, Giancola C, Cesàro A. Crowding and conformation interplay on human DNA G-quadruplex by ultraviolet resonant Raman scattering. Phys Chem Chem Phys 2019; 21:2093-2101. [DOI: 10.1039/c8cp04728f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The G-quadruplex-forming telomeric sequence (TTAGGG)4TT was investigated by polarized Ultraviolet Resonance Raman Scattering (UVRR) at 266 nm.
Collapse
Affiliation(s)
- Silvia Di Fonzo
- Elettra-Sincrotrone Trieste S. C. p. A
- Science Park
- Trieste
- Italy
| | - Cettina Bottari
- Elettra-Sincrotrone Trieste S. C. p. A
- Science Park
- Trieste
- Italy
- Department of Physics
| | - John W. Brady
- Department of Food Science
- Cornell University
- Ithaca
- USA
| | - Letizia Tavagnacco
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- Trieste
- Italy
| | - Marco Caterino
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | - Luigi Petraccone
- Department of Chemical Sciences
- University of Naples Federico II
- Naples
- Italy
| | - Jussara Amato
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | | | - Attilio Cesàro
- Elettra-Sincrotrone Trieste S. C. p. A
- Science Park
- Trieste
- Italy
- Department of Chemical and Pharmaceutical Sciences
| |
Collapse
|
23
|
Siddiqi MK, Alam P, Iqbal T, Majid N, Malik S, Nusrat S, Alam A, Ajmal MR, Uversky VN, Khan RH. Elucidating the Inhibitory Potential of Designed Peptides Against Amyloid Fibrillation and Amyloid Associated Cytotoxicity. Front Chem 2018; 6:311. [PMID: 30123793 PMCID: PMC6085999 DOI: 10.3389/fchem.2018.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Inhibition of fibrillation process and disaggregation of mature fibrils using small peptide are the promising remedial strategies to combat neurodegenerative diseases. However, designing peptide-based drugs to target β-sheet-rich amyloid has been a major challenge. The current work describes, for the first time, the amyloid inhibitory potential of the two short peptides (selected on the basis of predisposition of their amino acid residues toward β-sheet formation) using combination of biophysical, imaging methods, and docking approaches. Results showed that peptides employed different mechanisms to inhibit the amyloid fibrillation. Furthermore, they were also effective in blocking the amyloid fibrillation pathway. In contrary to the insulin fibrillar mesh, significantly less fibrillar species appeared in the presence of peptides, as confirmed by transmission electron microscopy. Circular dichroism analysis indicated that although peptides did not stabilize the native state of insulin, they inhibited amyloid aggregation by reducing the formation of β-sheet rich structures. Hemolytic assay revealed the non-hemolytic nature of the species formed when insulin was co-incubated with the peptides. Therefore, despite the inherent potential to form β-sheet structure, these peptides inhibited the amyloid formation and potentially can be used as therapeutics for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Mohammad K Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Tabish Iqbal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aftab Alam
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Mohd R Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Moscow, Russia.,Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
24
|
Hancock R. Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus. BIOCHEMISTRY (MOSCOW) 2018; 83:326-337. [PMID: 29626920 DOI: 10.1134/s0006297918040041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.
Collapse
Affiliation(s)
- R Hancock
- Biosystems Group, Biotechnology Centre, Silesian University of Technology, Poland and Laval University Cancer Research Centre, Québec, G1R2J6, Canada.
| |
Collapse
|
25
|
Zhao Y, Zhang JY, Zhang ZY, Tong TJ, Hao YH, Tan Z. Real-Time Detection Reveals Responsive Cotranscriptional Formation of Persistent Intramolecular DNA and Intermolecular DNA:RNA Hybrid G-Quadruplexes Stabilized by R-Loop. Anal Chem 2017; 89:6036-6042. [DOI: 10.1021/acs.analchem.7b00625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yang Zhao
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing 100083, P.R. China
| | - Jia-yu Zhang
- State
Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zong-yu Zhang
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing 100083, P.R. China
| | - Tan-jun Tong
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing 100083, P.R. China
| | - Yu-hua Hao
- State
Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zheng Tan
- State
Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
26
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
27
|
Maleki P, Budhathoki JB, Roy WA, Balci H. A practical guide to studying G-quadruplex structures using single-molecule FRET. Mol Genet Genomics 2017; 292:483-498. [PMID: 28150040 DOI: 10.1007/s00438-017-1288-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 11/26/2022]
Abstract
In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.
Collapse
Affiliation(s)
- Parastoo Maleki
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | | | - William A Roy
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
28
|
Targeting human telomeric and c-myc G-quadruplexes with alkynylplatinum(II) terpyridine complexes under molecular crowding conditions. J Inorg Biochem 2016; 166:126-134. [PMID: 27852004 DOI: 10.1016/j.jinorgbio.2016.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/27/2022]
Abstract
The interactions between alkynylplatinum(II) terpyridine complexes 1-3 and the G-quadruplex DNA, including c-myc and telomeric quadruplex DNA, are investigated both in dilute solution and under molecular crowding conditions. The UV-vis absorption spectroscopy, circular dichroism and molecular docking studies suggest that 1-3 associate with telomeric and c-myc G-quadruplexes via groove binding, and electrostatic interactions. Experimental studies indicate that under molecular crowding conditions (in the presence of 40wt% PEG 200), 1-2 show weak affinity for c-myc, while 3 still displays high affinity and selectivity for c-myc. On the other hand, 1-3 act as efficient and selective ligand for telomeric quadruplex DNA under molecular crowding conditions. The complex 3 exhibits excellent cytotoxicity against A549, K562 and SGC-7901, with IC50 values that are 35.0-fold, 10.0-fold, and 12.1-fold lower than the values of cisplatin under the same conditions, respectively.
Collapse
|
29
|
Effects of metal ions and cosolutes on G-quadruplex topology. J Inorg Biochem 2016; 166:190-198. [PMID: 27665315 DOI: 10.1016/j.jinorgbio.2016.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Topologies of G-quadruplexes depend on oligonucleotide sequences and on environmental factors, and the diversity of G-quadruplex topologies complicates investigation of functions of these nucleic acid structures. To investigate how metal ions and cosolutes regulate topologies of G-quadruplexes, we stabilized the antiparallel conformation by insertion of 2'-deoxyxanthosine and 8-oxo-2'-deoxyguanosine into selected positions of an oligonucleotide. Thermodynamic analyses of the oligonucleotide revealed that Na+ stabilized the antiparallel G-quadruplex, whereas K+ destabilized this topology. This result suggests that metal ions selectively stabilize G-quadruplex topologies with cavities between G-quartet planes of certain sizes. In the presence of KCl in 20wt% poly(ethylene glycol) with average molecular weight of 200, the antiparallel basket-type G-quadruplex conformation was not stabilized compared with the dilute condition. In the presence of NaCl, the cosolute did stabilize the G-quadruplex with respect to the dilute condition. The presented data show that metal ions and cosolutes regulate topologies of G-quadruplexes through mechanisms that depend on sizes of metal ion cavities and hydration states.
Collapse
|