1
|
Moncada-Diaz MJ, Rodríguez-Almonacid CC, Quiceno-Giraldo E, Khuong FTH, Muskus C, Karamysheva ZN. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens 2024; 13:835. [PMID: 39452707 PMCID: PMC11510721 DOI: 10.3390/pathogens13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that disproportionately affects underdeveloped countries. This disease has major health, economic, and social implications, particularly because of the limited treatment options, high cost, the severe side effects associated with available therapeutics, and the high rate of treatment failure caused by the parasites' growing resistance to current medications. In this review, we describe first the common strategies used by pathogens to develop drug resistance and then focus on the arsenal of available drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational control. We focus more specifically on our recent discovery of translational reprogramming as a major driver of drug resistance leading to coordinated changes in the translation of transcripts and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough understanding of these mechanisms is essential to identify the key elements needed to combat resistance and improve leishmaniasis treatment methods.
Collapse
Affiliation(s)
- Maria Juliana Moncada-Diaz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Cristian Camilo Rodríguez-Almonacid
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Eyson Quiceno-Giraldo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Francis T. H. Khuong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Zemfira N. Karamysheva
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| |
Collapse
|
2
|
Nawaz A, Priya B, Singh K, Ali V. Unveiling the role of serine o-acetyltransferase in drug resistance and oxidative stress tolerance in Leishmania donovani through the regulation of thiol-based redox metabolism. Free Radic Biol Med 2024; 213:371-393. [PMID: 38272324 DOI: 10.1016/j.freeradbiomed.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.
Collapse
Affiliation(s)
- Afreen Nawaz
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Bhawna Priya
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Vahab Ali
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India.
| |
Collapse
|
3
|
Nieto-Meneses R, Castillo R, Hernández-Campos A, Nogueda-Torres B, López-Villegas EO, Moreno-Rodríguez A, Matadamas-Martínez F, Yépez-Mulia L. Characterization of the Effect of N-(2-Methoxyphenyl)-1-methyl-1 H-benzimidazol-2-amine, Compound 8, against Leishmania mexicana and Its In Vivo Leishmanicidal Activity. Int J Mol Sci 2024; 25:659. [PMID: 38203832 PMCID: PMC10779428 DOI: 10.3390/ijms25010659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Chemotherapy currently available for leishmaniasis treatment has many adverse side effects and drug resistance. Therefore, the identification of new targets and the development of new drugs are urgently needed. Previously, we reported the synthesis of a N-(2-methoxyphenyl)-1-methyl-1H-benzimidazol-2-amine, named compound 8, with an IC50 value in the micromolar range against L. mexicana, it also inhibited 68.27% the activity of recombinant L. mexicana arginase. Herein, we report studies carried out to characterize the mechanism of action of compound 8, as well as its in vivo leishmanicidal activity. It was shown in our ultrastructural studies that compound 8 induces several changes, such as membrane blebbing, the presence of autophagosomes, membrane detachment and mitochondrial and kinetoplast disorganization, among others. Compound 8 triggers the production of ROS and parasite apoptosis. It reduced 71% of the parasite load of L. mexicana in an experimental model of cutaneous leishmaniasis in comparison with a control. Altogether, the data obtained suggest the potential use of compound 8 in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Rocío Nieto-Meneses
- Departamento de Parasitología, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.N.-M.); (B.N.-T.)
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.C.); (A.H.-C.)
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.C.); (A.H.-C.)
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.N.-M.); (B.N.-T.)
| | | | - Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Félix Matadamas-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Gupta P, Mansuri R, Priydarshni P, Behera S, Zaidi A, Nehar S, Sahoo GC, Pandey K, Ali V. Interaction between Cfd1 and Nbp35 proteins involved in cytosolic FeS cluster assembly machinery deciphers a stable complexation in Leishmania donovani. Int J Biol Macromol 2023; 253:127073. [PMID: 37774824 DOI: 10.1016/j.ijbiomac.2023.127073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Leishmania donovani is the causative unicellular parasite for visceral leishmaniasis (VL); and FeS proteins are likely to be very essential for their survival and viability. Cytosolic FeS cluster assembly (CIA) machinery is one of the four systems for the biosynthesis and transfer of FeS clusters among eukaryotes; Cfd1 and Nbp35 are the scaffold components for cytosolic FeS cluster biogenesis. We investigated the role of CIA machinery components and purified Cfd1 and Nbp35 proteins of L. donovani. We also investigated the interactive nature between LdCfd1 and LdNbp35 proteins by in silico analysis, in vitro co-purification, pull down assays along with in vivo immuno-precipitation; which inferred that both LdCfd1 and LdNbp35 proteins are interacting with each other. Thus, our collective data revealed the interaction between these two proteins which forms a stable complex that can be attributed to the cellular process of FeS clusters biogenesis, and transfer to target apo-proteins of L. donovani. The expression of Cfd1 and Nbp35 proteins in Amp B resistant parasites is up-regulated leading to increased amount of FeS proteins. Hence, it favors increased tolerance towards ROS level, which helps parasites survival under drug pressure contributing in Amphotericin B resistance.
Collapse
Affiliation(s)
- Parool Gupta
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Rani Mansuri
- Department of Bio-informatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Priya Priydarshni
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Shamshun Nehar
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Ganesh Chandra Sahoo
- Department of Bio-informatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agam Kuan, Patna 800007, India.
| |
Collapse
|
5
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Kumari S, Kumar V, Tiwari RK, Ravidas V, Pandey K, Kumar A. - Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta Trop 2022; 235:106661. [PMID: 35998680 DOI: 10.1016/j.actatropica.2022.106661] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022]
Abstract
Visceral leishmaniasis or Kala-azar is a vector-borne disease caused by an intracellular parasite of the genus leishmania. In India, Amphotericin B (AmB) is a first-line medication for treating leishmaniasis. After a large-scale resistance to pentavalent antimony therapy developed in Bihar state, it was rediscovered as an effective treatment for Leishmania donovani infection. AmB which binds to the ergosterol of protozoan cells causes a change in membrane integrity resulting in ions leakage, and ultimately leading to cell death. The treatment effect of liposomal AmB can be seen more quickly than deoxycholate AmB because, it has some toxic effects, but liposomal AmB is significantly less toxic. Evidence from studies suggested that ABLC (Abelcet) and ABCD (Amphotec) are as effective as L-AmB but Liposomal form (Ambisome) is a more widely accepted treatment option than conventional ones. Nevertheless, the world needs some way more efficient antileishmanial drugs that are less toxic and less expensive for people living with parasitic infections caused by Leishmania. So, academics, researchers, and sponsors need to focus on finding such drugs. This review provides a summary of the chemical, pharmacokinetic, drug-target interactions, stability, dose efficacy, and many other characteristics of the AmB and their various formulations. We have also highlighted the clinically significant aspects of PKDL and VL co-infection with HIV/TB.
Collapse
Affiliation(s)
- Shobha Kumari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Vikash Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Ritesh Kumar Tiwari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Vidyanand Ravidas
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India.
| |
Collapse
|
8
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
9
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
10
|
Nateghi-Rostami M, Tasbihi M, Darzi F. Involvement of tryparedoxin peroxidase (TryP) and trypanothione reductase (TryR) in antimony unresponsive of Leishmania tropica clinical isolates of Iran. Acta Trop 2022; 230:106392. [PMID: 35276060 DOI: 10.1016/j.actatropica.2022.106392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
Clinical resistance to pentavalent antimonial compounds has long been recognized as a major problem in the treatment of human leishmaniasis. Trypanothione metabolism, the main form of thiol, has shown to play a central role in antimony resistance of laboratory-generated resistant Leishmania spp. and field-isolated resistant L. donovani; but the mechanism of antimony resistance in the clinical isolates of L. tropica causing anthroponotic cutaneous leishmaniasis (ACL) is less studied. Patients were selected among confirmed positive ACL cases who referred to Pasteur Institute of Iran, Tehran, from endemic regions of north-east and south of Iran. L. tropica clinical isolates were collected from patients who were either treatment-responsive (MAS=S1 to S5) or unresponsive (MAR=R1 to R4) to Glucantime® (meglumine antimoniate=MA). Isolates were tested for sensitivity to trivalent antimony (SbIII) in promastigotes and to pentavalent antimony (SbV) in intracellular amastigotes stages. Intracellular thiol levels were assayed and trypanothione-dependent components, including trypanothione reductase (TR) and tryparedoxin peroxidase I (TryP) were analysed at protein level and enzymatic activity in isolates. The MAR isolates had an approximate two fold increase in the levels of intracellular thiols (P< 0.05) accompanied by an average 5-10 fold increase in in vitro resistance to antimony. TryP was amplified at the protein level in all MAR strains as compared to the MAS strains (range: 2.8-5.6 fold). All MAR isolates metabolized H2O2 at higher rates than MAS isolates (8.55±0.75 nmol/min/mg vs. 3.14±0.36 nmol/min/mg) (P< 0.05). In addition, levels of TryR protein were also markedly elevated in 3 out of 4 MAR isolates (range: 2.2-4.1 fold). This was accompanied by overexpressed TryR activity (mean level of 46.83±2.43 for extracts of MAR vs. 20.98±3.02 for MAS strains) (P< 0.05). Elevated levels of TryP, active enzyme in peroxide detoxification, were observed in MAR parasites resulting in an increased metabolism of H2O2. TryR activity was overexpressed on average in extracts of MAR strains, but not in all isolates. Enhanced anti-oxidant defenses through thiol metabolism may play a significant role in clinical resistance of ACL patients to Glucantime.
Collapse
Affiliation(s)
- Mahmoud Nateghi-Rostami
- Department of Parasitology, Pasteur Institute of Iran, No. 69, 12 Farvardin St., Pasteur Sq., 1316943551, Tehran, Iran.
| | - Minoo Tasbihi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darzi
- Department of Parasitology, Pasteur Institute of Iran, No. 69, 12 Farvardin St., Pasteur Sq., 1316943551, Tehran, Iran
| |
Collapse
|
11
|
Germanó MJ, Mackern-Oberti JP, Vitório JG, Duarte MC, Pimenta DC, Sanchez MV, Bruna FA, Lozano ES, Fernandes AP, Cargnelutti DE. Identification of Immunodominant Antigens From a First-Generation Vaccine Against Cutaneous Leishmaniasis. Front Immunol 2022; 13:825007. [PMID: 35634280 PMCID: PMC9133320 DOI: 10.3389/fimmu.2022.825007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease (NTD) caused by parasites belonging to the Leishmania genus for which there is no vaccine available for human use. Thus, the aims of this study are to evaluate the immunoprotective effect of a first-generation vaccine against L. amazonensis and to identify its immunodominant antigens. BALB/c mice were inoculated with phosphate buffer sodium (PBS), total L. amazonensis antigens (TLAs), or TLA with Poly (I:C) and Montanide ISA 763. The humoral and cellular immune response was evaluated before infection. IgG, IgG1, and IgG2a were measured on serum, and IFN-γ, IL-4, and IL-10 cytokines as well as cell proliferation were measured on a splenocyte culture from vaccinated mice. Immunized mice were challenged with 104 infective parasites of L. amazonensis on the footpad. After infection, the protection provided by the vaccine was analyzed by measuring lesion size, splenic index, and parasite load on the footpad and spleen. To identify immunodominant antigens, total proteins of L. amazonensis were separated on 2D electrophoresis gel and transferred to a membrane that was incubated with serum from immunoprotected mice. The antigens recognized by the serum were analyzed through a mass spectrometric assay (LC-MS/MS-IT-TOF) to identify their protein sequence, which was subjected to bioinformatic analysis. The first-generation vaccine induced higher levels of antibodies, cytokines, and cell proliferation than the controls after the second dose. Mice vaccinated with TLA + Poly (I:C) + Montanide ISA 763 showed less footpad swelling, a lower splenic index, and a lower parasite load than the control groups (PBS and TLA). Four immunodominant proteins were identified by mass spectrometry: cytosolic tryparedoxin peroxidase, an uncharacterized protein, a kinetoplast-associated protein-like protein, and a putative heat-shock protein DNAJ. The identified proteins showed high levels of conserved sequence among species belonging to the Leishmania genus and the Trypanosomatidae family. These proteins also proved to be phylogenetically divergent to human and canine proteins. TLA + Poly (I:C) + Montanide ISA 763 could be used as a first-generation vaccine against leishmaniasis. The four proteins identified from the whole-protein vaccine could be good antigen candidates to develop a new-generation vaccine against leishmaniasis.
Collapse
Affiliation(s)
- María José Germanó
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Jessica Gardone Vitório
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Costa Duarte
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Victoria Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Flavia Alejandra Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Esteban Sebastián Lozano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- *Correspondence: Diego Esteban Cargnelutti,
| |
Collapse
|
12
|
Escrivani DO, Charlton RL, Caruso MB, Burle-Caldas GA, Borsodi MPG, Zingali RB, Arruda-Costa N, Palmeira-Mello MV, de Jesus JB, Souza AMT, Abrahim-Vieira B, Freitag-Pohl S, Pohl E, Denny PW, Rossi-Bergmann B, Steel PG. Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Negl Trop Dis 2021; 15:e0009951. [PMID: 34780470 PMCID: PMC8664226 DOI: 10.1371/journal.pntd.0009951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/10/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones. Leishmaniasis is an insect vector-borne parasitic disease. With >350 million people world wide considered at risk, 12 million people currently infected and an economic cost that can be estimated in terms of >3.3 million working life years lost, leishmaniasis is a major global health challenge. The disease is of particular importance in Brazil. Current treatment of leishmaniasis is difficult requiring a long, costly course of drug treatment using old drugs with poor safety indications requiring close medical supervision. Moreover, resistance to current antileishmanials is growing, emphasising a major need for new drug targets. In earlier work we had identified a naturally inspired chalcone which had promising antileishmanial activity but with no known mode of action. In this work we use an analogue of this molecule as an activity based probe to identify a protein target of the chalcone. This protein, cTXNPx, has a major role in protecting the parasite against attack by reactive oxygen species in the host cell. By inhibiting this protein the parasite can no longer survive in the host. Collectively this work validates cTXNPx as a drug target with the chalcone as a lead structure for future drug discovery programmes.
Collapse
Affiliation(s)
- Douglas O. Escrivani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Rebecca L. Charlton
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Marjolly B. Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela A. Burle-Caldas
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Maria Paula G. Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Arruda-Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jéssica B. de Jesus
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (BR-B); (PGS)
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- * E-mail: (BR-B); (PGS)
| |
Collapse
|
13
|
Kumari D, Perveen S, Sharma R, Singh K. Advancement in leishmaniasis diagnosis and therapeutics: An update. Eur J Pharmacol 2021; 910:174436. [PMID: 34428435 DOI: 10.1016/j.ejphar.2021.174436] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is regarded as a neglected tropical disease by World Health Organization (WHO) and is ranked next to malaria as the deadliest protozoan disease. The primary causative agents of the disease comprise of diverse leishmanial species sharing clinical features ranging from skin abrasions to lethal infection in the visceral organs. As several Leishmania species are involved in infection, the role of accurate diagnosis becomes pivotal in adding new dimensions to anti-leishmanial therapy. Diagnostic methods must be fast, reliable, easy to perform, highly sensitive, and specific to differentiate among similar parasitic diseases. Herein, we present the conventional and recent approaches impended for the disease diagnosis and their sensitivity, specificity, and clinical application in parasite detection. Furthermore, we have also elaborated various new methods to cure leishmaniasis, which include host-directed therapies, drug repurposing, nanotechnology, and combinational therapy. This review addresses novel techniques and innovations in leishmaniasis, which can aid in unraveling new strategies to fight against the deadly infection.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
The ultimate fate determinants of drug induced cell-death mechanisms in Trypanosomatids. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:81-91. [PMID: 33601284 PMCID: PMC7900639 DOI: 10.1016/j.ijpddr.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy constitutes a major part of modern-day therapy for infectious and chronic diseases. A drug is said to be effective if it can inhibit its target, induce stress, and thereby trigger an array of cell death pathways in the form of programmed cell death, autophagy, necrosis, etc. Chemotherapy is the only treatment choice against trypanosomatid diseases like Leishmaniasis, Chagas disease, and sleeping sickness. Anti-trypanosomatid drugs can induce various cell death phenotypes depending upon the drug dose and growth stage of the parasites. The mechanisms and pathways triggering cell death in Trypanosomatids serve to help identify potential targets for the development of effective anti-trypanosomatids. Studies show that the key proteins involved in cell death of trypanosomatids are metacaspases, Endonuclease G, Apoptosis-Inducing Factor, cysteine proteases, serine proteases, antioxidant systems, etc. Unlike higher eukaryotes, these organisms either lack the complete set of effectors involved in cell death pathways, or are yet to be deciphered. A detailed summary of the existing knowledge of different drug-induced cell death pathways would help identify the lacuna in each of these pathways and therefore open new avenues for research and thereby new therapeutic targets to explore. The cell death pathway associated complexities in metazoans are absent in trypanosomatids; hence this summary can also help understand the trigger points as well as cross-talk between these pathways. Here we provide an in-depth overview of the existing knowledge of these drug-induced trypanosomatid cell death pathways, describe their associated physiological changes, and suggest potential interconnections amongst them.
Collapse
|
15
|
Suman SS, Kumar A, Singh AK, Amit A, Topno RK, Pandey K, Das VNR, Das P, Ali V, Bimal S. Dendritic cell engineered cTXN as new vaccine prospect against L. donovani. Cytokine 2020; 145:155208. [PMID: 32736961 DOI: 10.1016/j.cyto.2020.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs), as antigen-presenting cells, can reportedly be infected withLeishmaniaparasites and hence provide a better option to trigger T-cell primary immune responses and immunological memory. We consistently primed DCs during culture with purified recombinant cytosolic tryparedoxin (rcTXN) and then evaluated the vaccine prospect of presentation of rcTXN against VL in BALB/c mice. We reported earlier the immunogenic properties of cTXN antigen derived fromL. donovani when anti-cTXN antibody was detected in the sera of kala-azar patients. It was observed that cTXN antigen, when used as an immunogen with murine DCs acting as a vehicle, was able to induce complete protection against VL in an infected group of immunized mice. This vaccination triggered splenic macrophages to produce more IL-12 and GM-CSF, and restricted IL-10 release to a minimum in an immunized group of infected animals. Concomitant changes in T-cell responses against cTXN antigen were also noticed, which increased the release of protective cytokine-like IFN-γ under the influence of NF-κβ in the indicated vaccinated group of animals. All cTXN-DCs-vaccinated BALB/c mice survived during the experimental period of 120 days. The results obtained in our study suggest that DCs primed with cTXN can be used as a vaccine prospect for the control of visceral leishmaniasis.
Collapse
Affiliation(s)
- Shashi S Suman
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ashish K Singh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - R K Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
16
|
Ashrafmansouri M, Amiri‐Dashatan N, Ahmadi N, Rezaei‐Tavirani M, SeyyedTabaei S, Haghighi A. Quantitative proteomic analysis to determine differentially expressed proteins in axenic amastigotes of
Leishmania tropica
and
Leishmania major. IUBMB Life 2020; 72:1715-1724. [DOI: 10.1002/iub.2300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Marzieh Ashrafmansouri
- Department of Medical Parasitology and Mycology, Student Research Committee, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
- Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical SciencesShiraz University of Medical Sciences Shiraz Iran
| | - Nasrin Amiri‐Dashatan
- Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Mostafa Rezaei‐Tavirani
- Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyyedjavad SeyyedTabaei
- Department of Medical Parasitology and Mycology, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Haghighi
- Department of Medical Parasitology and Mycology, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Kalesh K, Denny PW. A BONCAT-iTRAQ method enables temporally resolved quantitative profiling of newly synthesised proteins in Leishmania mexicana parasites during starvation. PLoS Negl Trop Dis 2019; 13:e0007651. [PMID: 31856154 PMCID: PMC6939940 DOI: 10.1371/journal.pntd.0007651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/02/2020] [Accepted: 11/20/2019] [Indexed: 11/19/2022] Open
Abstract
Adaptation to starvation is integral to the Leishmania life cycle. The parasite can survive prolonged periods of nutrient deprivation both in vitro and in vivo. The identification of parasite proteins synthesised during starvation is key to unravelling the underlying molecular mechanisms facilitating adaptation to these conditions. Additionally, as stress adaptation mechanisms in Leishmania are linked to virulence as well as infectivity, profiling of the complete repertoire of Newly Synthesised Proteins (NSPs) under starvation is important for drug target discovery. However, differential identification and quantitation of low abundance, starvation-specific NSPs from the larger background of the pre-existing parasite proteome has proven difficult, as this demands a highly selective and sensitive methodology. Herein we introduce an integrated chemical proteomics method in L. mexicana promastigotes that involves a powerful combination of the BONCAT technique and iTRAQ quantitative proteomics Mass Spectrometry (MS), which enabled temporally resolved quantitative profiling of de novo protein synthesis in the starving parasite. Uniquely, this approach integrates the high specificity of the BONCAT technique for the NSPs, with the high sensitivity and multiplexed quantitation capability of the iTRAQ proteomics MS. Proof-of-concept experiments identified over 250 starvation-responsive NSPs in the parasite. Our results show a starvation-specific increased relative abundance of several translation regulating and stress-responsive proteins in the parasite. GO analysis of the identified NSPs for Biological Process revealed translation (enrichment P value 2.47e-35) and peptide biosynthetic process (enrichment P value 4.84e-35) as extremely significantly enriched terms indicating the high specificity of the NSP towards regulation of protein synthesis. We believe that this approach will find widespread use in the study of the developmental stages of Leishmania species and in the broader field of protozoan biology. Periodic nutrient scarcity plays crucial roles in the life cycle of the protozoan parasite Leishmania spp. Although adaptation to nutrient stress has a pivotal role in Leishmania biology, the underlying mechanisms remain poorly understood. In a period of nutrient starvation, the parasite responds by decreasing its protein production to conserve nutrient resources and to prevent formation of toxic proteins. However, even during severe starvation, the parasite generates certain essential quality control and rescue proteins. Differential identification of the complete repertoire of these proteins synthesised during starvation from the pre-existing proteins in the parasite holds the key to understanding the starvation adaptation mechanisms. This has been challenging to accomplish due to technical limitations. Using a combination of chemical labelling techniques and protein mass-spectrometry, we selectively identified and measured the proteins generated in the starving Leishmania parasite. Our results show a starvation time-dependent differential expression of important protein synthesis regulators in the parasite. This will serve as an important dataset for a holistic understanding of the starvation adaptation mechanisms in Leishmania. We also believe that this method will find widespread applications in the field of protozoa and other parasites causing Neglected Tropical Diseases.
Collapse
Affiliation(s)
- Karunakaran Kalesh
- Department of Chemistry, Durham University, Durham, United Kingdom
- * E-mail:
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
18
|
Garg G, Ali V, Singh K, Gupta P, Ganguly A, Sahasrabuddhe AA, Das P. Quantitative secretome analysis unravels new secreted proteins in Amphotericin B resistant Leishmania donovani. J Proteomics 2019; 207:103464. [PMID: 31357030 DOI: 10.1016/j.jprot.2019.103464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is second most neglected disease after malaria and seems to be a worldwide concern because of increased drug resistance and non-availability of approved vaccine. The underlying molecular mechanism of drug resistance (Amp B) in Leishmania parasites still remains elusive. Herein, the present study investigated differentially expressed secreted proteins of Amphotericin B sensitive (S) and resistant (R) isolate of Leishmania donovani by using label free quantitative LC-MS/MS approach. A total of 406 differentially expressed secreted proteins were found between sensitive (S) and resistant (R) isolate. Among 406 proteins, 32 were significantly up regulated (>2.0 fold) while 22 were down regulated (<0.5 fold) in resistant isolate of L. donovani. Further, differentially expressed proteins were classified into 11 various biological processes. Interestingly, identified up regulated proteins in resistant parasites were dominated in carbohydrate metabolism, stress response, transporters and proteolysis. Western blot and enzymatic activity of identified proteins validate our proteomic findings. Finally, our study demonstrated some new secreted proteins associated with Amp B resistance which provides a basis for further investigations to understand the role of proteins in L. donovani. BIOLOGICAL SIGNIFICANCE: Although great advances have been achieved in the diagnosis and treatment of leishmaniasis, still drug resistance is major hurdle in control of disease. Present study will enhance the deeper understanding of altered metabolic pathways involved in Amp B resistance mechanism and provide possible new proteins which can be potential candidate either for exploring as new drug target or vaccine. Protein-protein interactions highlighted the up-regulated metabolic pathways in resistant parasites which further unravel the adaptive mechanism of parasites.
Collapse
Affiliation(s)
- Gaurav Garg
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India.
| | - Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India
| | - Parool Gupta
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Ashish Ganguly
- CSIR- Institute of Microbial Technology, Chandigarh, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| |
Collapse
|
19
|
Ortiz-Joya L, Contreras-Rodríguez LE, Ramírez-Hernández MH. Protein-protein interactions of the nicotinamide/nicotinate mononucleotide adenylyltransferase of Leishmania braziliensis. Mem Inst Oswaldo Cruz 2019; 114:e180506. [PMID: 30916117 PMCID: PMC6430020 DOI: 10.1590/0074-02760180506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/05/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD) plays a central role in energy metabolism and integrates cellular metabolism with signalling and gene expression. NAD biosynthesis depends on the enzyme nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT; EC: 2.7.7.1/18), in which converge the de novo and salvage pathways. OBJECTIVE The purpose of this study was to analyse the protein-protein interactions (PPI) of NMNAT of Leishmania braziliensis (LbNMNAT) in promastigotes. METHODS Transgenic lines of L. braziliensis promastigotes were established by transfection with the pSP72αneoαLbNMNAT-GFP vector. Soluble protein extracts were prepared, co-immunoprecipitation assays were performed, and the co-immunoprecipitates were analysed by mass spectrometry. Furthermore, bioinformatics tools such as network analysis were applied to generate a PPI network. FINDINGS Proteins involved in protein folding, redox homeostasis, and translation were found to interact with the LbNMNAT protein. The PPI network indicated enzymes of the nicotinate and nicotinamide metabolic routes, as well as RNA-binding proteins, the latter being the point of convergence between our experimental and computational results. MAIN CONCLUSION We constructed a model of PPI of LbNMNAT and showed its association with proteins involved in various functions such as protein folding, redox homeostasis, translation, and NAD synthesis.
Collapse
Affiliation(s)
- Lesly Ortiz-Joya
- Universidad Nacional de Colombia, Facultad de Ciencias, Laboratorio
de Investigaciones Básicas en Bioquímica, Bogotá, Colombia
| | | | - María Helena Ramírez-Hernández
- Universidad Nacional de Colombia, Facultad de Ciencias, Laboratorio
de Investigaciones Básicas en Bioquímica, Bogotá, Colombia
| |
Collapse
|
20
|
Osorio-Méndez JF, Cevallos AM. Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease. Front Cell Infect Microbiol 2019; 8:439. [PMID: 30666299 PMCID: PMC6330712 DOI: 10.3389/fcimb.2018.00439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
There is an urgent need to develop new treatments for Chagas' disease. To identify drug targets, it is important to understand the basic biology of Trypanosoma cruzi, in particular with respect to the biological pathways or proteins that are essential for its survival within the host. This review provides a streamlined approach for identifying drug targets using freely available chemogenetic databases and outlines the relevant characteristics of an ideal chemotherapeutic target. Among those are their essentiality, druggability, availability of structural information, and selectivity. At the moment only 16 genes have been found as essential by gene disruption in T. cruzi. At the TDR Targets database, a chemogenomics resource for neglected diseases, information about published structures for these genes was only found for three of these genes, and annotation of validated inhibitors was found in two. These inhibitors have activity against the parasitic stages present in the host. We then analyzed three of the pathways that are considered promising in the search for new targets: (1) Ergosterol biosynthesis, (2) Resistance to oxidative stress, (3) Synthesis of surface glycoconjugates. We have annotated all the genes that participate in them, identified those that are considered as druggable, and incorporated evidence from either Trypanosoma brucei, and Leishmania spp. that supports the hypothesis that these pathways are essential for T. cruzi survival.
Collapse
Affiliation(s)
- Juan Felipe Osorio-Méndez
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia.,Grupo de Estudio en Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
21
|
Suman SS, Amit A, Singh KP, Gupta P, Equbal A, Kumari A, Topno RK, Ravidas V, Pandey K, Bimal S, Das P, Ali V. Cytosolic tryparedoxin of Leishmania donovani modulates host immune response in visceral leishmaniasis. Cytokine 2018; 108:1-8. [DOI: 10.1016/j.cyto.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/28/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022]
|
22
|
Vijayakumar S, Das P. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop 2018; 181:95-104. [PMID: 29452111 DOI: 10.1016/j.actatropica.2018.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Lesihmaniasis is one of the major neglected tropical disease caused by the parasite of the genus Leishmania. The disease has more than one clinical forms and the visceral form is considered fatal. With the lack of potential vaccine, chemotherapy is the major treatment source considered for the control of the disease in the infected people. Drugs including amphotericin B and miltefosine are widely used for the treatment, however, development of resistance by the parasite towards the administered drug and high-toxicity of the drug are of major concern. Hence, more attention has been shown on identifying new targets, effective inhibitors, and better drug delivery system against the disease. This review deals with recent studies on drug targets and exploring their essentiality for the survival of Leishmania. Further, new inhibitors for those targets, novel anti-leishmanial peptides and vaccines against leishmaniasis were discussed. We believe that this pool of information will ease the researchers to gain knowledge and help in choosing right targets and design of new inhibitors against Leishmaniasis.
Collapse
|
23
|
Franco-Muñoz C, Manjarrés-Estremor M, Ovalle-Bracho C. Intraspecies differences in natural susceptibility to amphotericine B of clinical isolates of Leishmania subgenus Viannia. PLoS One 2018; 13:e0196247. [PMID: 29698432 PMCID: PMC5919572 DOI: 10.1371/journal.pone.0196247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/08/2018] [Indexed: 12/18/2022] Open
Abstract
Amphotericin B (AmB) is a recommended medication for the treatment of cutaneous and mucosal leishmaniasis in cases of therapeutic failure with first-line medications; however, little is known about the in vitro susceptibility to AmB of clinical isolates of the subgenus Viannia, which is most prevalent in South America. This work aimed to determine the in vitro susceptibility profiles to AmB of clinical isolates of the species L. (V.) panamensis, L. (V.) guyanensis and L. (V.) braziliensis. In vitro susceptibility to AmB was evaluated for 65 isolates. Macrophages derived from the U937 cell line were infected with promastigotes and exposed to different AmB concentrations. After 96 hours, the number of intracellular amastigotes was quantified by qPCR, and median effective concentration (EC50) was determined using the PROBIT model. The controls included sensitive strains and experimentally derived less sensitive strains generated in vitro, which presented EC50 values up to 7.57-fold higher than the values of the sensitive strains. The isolates were classified into groups according to their in vitro susceptibility profiles using Ward’s hierarchical method. The susceptibility to AmB differed in an intraspecies-specific manner as follows: 28.21% (11/39) of L. (V.) panamensis strains, 50% (3/6) of L. (V.) guyanensis strains and 34.61% (9/26) of L. (V.) braziliensis strains were classified as less sensitive. The latter subset featured three susceptibility groups. We identified Colombian isolates with different AmB susceptibility profiles. In addition, the capacity of species of subgenus Viannia to develop lower susceptibility to AmB was demonstrated in vitro. These new findings should be considered in the pharmacovigilance of AmB in Colombia and South America.
Collapse
Affiliation(s)
- Carlos Franco-Muñoz
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E., Bogotá D.C., Colombia
| | - Merab Manjarrés-Estremor
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E., Bogotá D.C., Colombia
| | - Clemencia Ovalle-Bracho
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E., Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
24
|
Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, Dujardin JC, Castanys S, Aguado B, Gamarro F, Requena JM. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:246-264. [PMID: 29689531 PMCID: PMC6039315 DOI: 10.1016/j.ijpddr.2018.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and trancriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from Leishmania donovani, Leishmania infantum and Leishmania major species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with AmB-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Paola Vargas
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Functional Involvement of Leishmania donovani Tryparedoxin Peroxidases during Infection and Drug Treatment. Antimicrob Agents Chemother 2017; 62:AAC.00806-17. [PMID: 29061756 DOI: 10.1128/aac.00806-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
The parasite Leishmania donovani causes visceral leishmaniasis, a potentially fatal disease. The parasites survive within mammalian macrophages and express a unique set of enzymes, the tryparedoxin peroxidases, for their defense against oxidative stress generated by the host. In this study, we demonstrate different roles of two distinct enzymes, the mitochondrial tryparedoxin peroxidase (mTXNPx) and the cytosolic tryparedoxin peroxidase (cTXNPx), in defending the parasites against mitochondrial and exogenous oxidative stress during infection and drug treatment. Our findings indicate a greater increase in cTXNPx expression in response to exogenous oxidative stress and a higher elevation of mTXNPx expression in response to mitochondrial or endogenous stress created by respiratory chain complex inhibitors. Overexpression of cTXNPx in Leishmania showed improved protection against exogenous stress and enhanced protection against mitochondrial stress in parasites overexpressing mTXNPx. Further, parasites overexpressing cTXNPx infected host cells with increased efficiency at early times of infection compared to control parasites or parasites overexpressing mTXNPx. The mTXNPx-overexpressing parasites maintained higher infection at later times. Higher mTXNPx expression occurred in wild-type parasites on exposure to miltefosine, while treatment with antimony elevated cTXNPx expression. Parasites resistant to miltefosine or antimony demonstrated increased expression of mTXNPx, as well as cTXNPx. In summary, this study provides evidence of distinct roles of the two enzymes defined by virtue of their localization during infection and drug treatment.
Collapse
|
26
|
Singh K, Ali V, Pratap Singh K, Gupta P, Suman SS, Ghosh AK, Bimal S, Pandey K, Das P. Deciphering the interplay between cysteine synthase and thiol cascade proteins in modulating Amphotericin B resistance and survival of Leishmania donovani under oxidative stress. Redox Biol 2017; 12:350-366. [PMID: 28288415 PMCID: PMC5349463 DOI: 10.1016/j.redox.2017.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Leishmania donovani is the causative organism of the neglected human disease known as visceral leishmaniasis which is often fatal, if left untreated. The cysteine biosynthesis pathway of Leishmania may serve as a potential drug target because it is different from human host and regulates downstream components of redox metabolism of the parasites; essential for their survival, pathogenicity and drug resistance. However, despite the apparent dependency of redox metabolism of cysteine biosynthesis pathway, the role of L. donovani cysteine synthase (LdCS) in drug resistance and redox homeostasis has been unexplored. Herein, we report that over-expression of LdCS in Amphotericin B (Amp B) sensitive strain (S1-OE) modulates resistance towards oxidative stress and drug pressure. We observed that antioxidant enzyme activities were up-regulated in S1-OE parasites and these parasites alleviate intracellular reactive oxygen species (ROS) efficiently by maintaining the reduced thiol pool. In contrast to S1-OE parasites, Amp B sensitive strain (S1) showed higher levels of ROS which was positively correlated with the protein carbonylation levels and negatively correlated with cell viability. Moreover, further investigations showed that LdCS over-expression also augments the ROS-primed induction of LdCS-GFP as well as endogenous LdCS and thiol pathway proteins (LdTryS, LdTryR and LdcTXN) in L. donovani parasites; which probably aids in stress tolerance and drug resistance. In addition, the expression of LdCS was found to be up-regulated in Amp B resistant isolates and during infective stationary stages of growth and consistent with these observations, our ex vivo infectivity studies confirmed that LdCS over-expression enhances the infectivity of L. donovani parasites. Our results reveal a novel crosstalk between LdCS and thiol metabolic pathway proteins and demonstrate the crucial role of LdCS in drug resistance and redox homeostasis of Leishmania. Over-expression of CS in L. donovani modulates oxidative stress & Amp B resistance. Over-expressing parasite possess higher thiol to counteract the oxidative stress. Over-expressing parasites showed increased activity of TXNPx, GST, SOD, and APx. Expression/activity of LdCS is up-regulated in Amp B resistant clinical isolates. Ex vivo results confirm that LdCS over-expression enhance the parasites infectivity. Over-expressing parasites survived long time under oxidative stress conditions.
Collapse
Affiliation(s)
- Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India.
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Parool Gupta
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Shashi S Suman
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Ayan K Ghosh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| |
Collapse
|
27
|
Singh K, Singh KP, Equbal A, Suman SS, Zaidi A, Garg G, Pandey K, Das P, Ali V. Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani. Biochimie 2016; 131:29-44. [PMID: 27638321 DOI: 10.1016/j.biochi.2016.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 01/14/2023]
Abstract
Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a Km of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania.
Collapse
Affiliation(s)
- Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur, 844102, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Shashi S Suman
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Gaurav Garg
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur, 844102, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur, 844102, India.
| |
Collapse
|