1
|
Kim YK, Giordano E, Hammerling U, Champaneri D, von Lintig J, Hussain MM, Quadro L. The intestine-specific homeobox (ISX) modulates β-carotene-dependent regulation of microsomal triglyceride transfer protein (MTP) in a tissue-specific manner. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159584. [PMID: 39645027 DOI: 10.1016/j.bbalip.2024.159584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Vitamin A is an essential nutrient crucial to ensuring proper mammalian embryonic development. β-Carotene is the most prevalent form of vitamin A in food that, when transferred in its intact form from mother to the developing tissues, can serve as an in situ source of retinoic acid, the active form of vitamin A. We have previously provided evidence that the maternal-fetal transfer of β-carotene across the placenta is mediated by lipoproteins and that β-carotene itself regulates placenta lipoprotein biogenesis by means of its derivatives β-apo-10'-carotenoids and retinoic acid. These metabolites exert antagonistic transcriptional activity on placental microsomal triglyceride transfer protein (MTP) and apolipoprotein B (APOB), two key players of lipoprotein biosynthesis. Here, we analyzed the time-dependency of this regulation over the course of 24 h upon a single maternal administration of β-carotene. We also tested the hypothesis that the transcriptional repressor intestine-specific homeobox (ISX) plays a role in the regulation of Mttp in placenta. We observed that ISX is expressed in placenta of mouse dams and is regulated by β-carotene availability. Furthermore, we demonstrated that the absence of Isx disrupts the β-carotene-mediated regulation of placental MTP. We also showed that this mechanism is organ-specific, as it was not observed in enterocytes of the intestine, a major place of Isx expression. Therefore, we identified ISX as a "master" regulator of a placental β-carotene-dependent transcriptional regulatory cascade that fine-tunes the flux of provitamin A carotenoid towards the developing fetus.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Elena Giordano
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Dhruv Champaneri
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Nargis T, Lin X, Giordano E, Ijaz L, Suhail S, Gurzenda EM, Kiefer D, Quadro L, Hanna N, Hussain MM. Characterization of lipoproteins in human placenta and fetal circulation as well as gestational changes in lipoprotein assembly and secretion in human and mouse placentas. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159357. [PMID: 37315736 PMCID: PMC10529644 DOI: 10.1016/j.bbalip.2023.159357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/28/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
In the maternal circulation, apoB-containing low-density lipoproteins (LDL) and apoA1-containing high-density lipoproteins (HDL) transport lipids. The production of lipoproteins in the placenta has been suggested, but the directionality of release has not been resolved. We compared apolipoprotein concentrations and size-exclusion chromatography elution profiles of lipoproteins in maternal/fetal circulations, and in umbilical arteries/veins; identified placental lipoprotein-producing cells; and studied temporal induction of lipoprotein-synthesizing machinery during pregnancy. We observed that maternal and fetal lipoproteins are different with respect to concentrations and elution profiles. Surprisingly, concentrations and elution profiles of lipoproteins in umbilical arteries and veins were similar indicating their homeostatic control. Human placental cultures synthesized apoB100-containing LDL-sized and apoA1-containing HDL-sized particles. Immunolocalization techniques revealed that ApoA1 was present mainly in syncytiotrophoblasts. MTP, a critical protein for lipoprotein assembly, was in these trophoblasts. ApoB was in the placental stroma indicating that trophoblasts secrete apoB-containing lipoproteins into the stroma. ApoB and MTP expressions increased in placentas from the 2nd trimester to term, whereas apoA1 expression was unchanged. Thus, our studies provide new information regarding the timing of lipoprotein gene induction during gestation, the cells involved in lipoprotein assembly and the gel filtration profiles of human placental lipoproteins. Next, we observed that mouse placenta produces MTP, apoB100, apoB48 and apoA1. The expression of genes gradually increased and peaked in late gestation. This information may be useful in identifying transcription factors regulating the induction of these genes in gestation and the importance of placental lipoprotein assembly in fetal development.
Collapse
Affiliation(s)
- Titli Nargis
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Xinhua Lin
- Department of Pediatrics, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Elena Giordano
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Laraib Ijaz
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Sarah Suhail
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Ellen M Gurzenda
- Department of Pediatrics, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Daniel Kiefer
- Department of Obstetrics and Gynecology, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Loredana Quadro
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Nazeeh Hanna
- Department of Pediatrics, NYU Long Island School of Medicine, Mineola, New York, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
3
|
The LDL receptor: Traffic and function in trophoblast cells under normal and pathological conditions. Placenta 2022; 127:12-19. [DOI: 10.1016/j.placenta.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
4
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
5
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
6
|
Materno-fetal cholesterol transport during pregnancy. Biochem Soc Trans 2021; 48:775-786. [PMID: 32369555 DOI: 10.1042/bst20190129] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Cholesterol is a major nutrient required for fetal growth. It is also a precursor for the synthesis of steroid hormones and essential for the development and maturation of fetal organs. During pregnancy, the placenta controls the transport of cholesterol from the mother to the fetus and vice versa. Cholesterol originating from the maternal circulation has to cross two main membrane barriers to reach the fetal circulation: Firstly, cholesterol is acquired by the apical side of the syncytiotrophoblast (STB) from the maternal circulation as high-density lipoprotein (HDL)-, low-density lipoprotein (LDL)- or very-low-density lipoprotein (VLDL)-cholesterol and secreted at the basal side facing the villous stroma. Secondly, from the villous stroma cholesterol is taken up by the endothelium of the fetal vasculature and transported to the fetal vessels. The proteins involved in the uptake of HDL-, LDL-, VLDL- or unesterified-cholesterol are scavenger receptor type B class 1 (SR-B1), cubulin, megalin, LDL receptor (LDLR) or Niemann-Pick-C1 (NPC1) which are localized at the apical and/or basal side of the STB or at the fetal endothelium. Through interaction with apolipoproteins (e.g. apoA1) cholesterol is effluxed either to the maternal or fetal circulation via the ATP-binding-cassette (ABC)-transporter A1 and ABCG1 localized at the apical/basal side of the STB or the endothelium. In this mini-review, we summarize the transport mechanisms of cholesterol across the human placenta, the expression and localization of proteins involved in the uptake and efflux of cholesterol, and the expression pattern of cholesterol transport proteins in pregnancy pathologies such as pre-eclampsia, gestational diabetes mellitus and intrauterine growth retardation.
Collapse
|
7
|
The polarized localization of lipoprotein receptors and cholesterol transporters in the syncytiotrophoblast of the placenta is reproducible in a monolayer of primary human trophoblasts. Placenta 2021; 105:50-60. [PMID: 33548684 DOI: 10.1016/j.placenta.2021.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The uptake of low- and high-density lipoproteins (LDL and HDL) through the LDL receptor (LDLR) and the scavenger receptor class B type I (SR-BI) mediates maternal to fetal cholesterol transfer in syncytiotrophoblast (STB) cells. STB cells deliver cholesterol via cholesterol efflux through the ATP-binding cassette transporters A1 (ABCA1, to ApoA-I), G1 (ABCG1, to HDL), and SR-BI (to HDL). In the human placenta, these proteins are localized in the apical (LDLR, SR-BI, ABCA1) and basal (SR-BI, ABCA1, ABCG1) membrane of STB cells. However, whether these proteins in polarized primary culture models of STB show a similar localization to those in the human placenta is currently unknown. METHODS Primary human trophoblasts (PHT) were isolated from normal placentas and cultured in Transwells® with Matrigel to obtain a polarized STB monolayer, proteins were determined by immunofluorescence and cholesterol efflux determined to different acceptors. RESULTS At day 5, LDLR and ABCA1 localized mainly in the apical membrane, ABCG1 in the basal membrane, and SR-BI in both. Cholesterol efflux towards the apical compartment was higher to adult and neonatal HDL compared to ApoA-I. When acceptors were added in the basal compartment, cholesterol was retained in the Matrigel. DISCUSSION Polarized STB monolayers express LDLR, SR-BI, ABCA1 and ABCG1, and their apical/basal localization resembles the one described in human placental tissue. This study confirms the high physiological value and suitability of this model for use in functional studies. Our findings also suggest that ABCA1 and SR-BI participate in cholesterol efflux to the maternal side of the cells.
Collapse
|
8
|
Quadro L, Giordano E, Costabile BK, Nargis T, Iqbal J, Kim Y, Wassef L, Hussain MM. Interplay between β-carotene and lipoprotein metabolism at the maternal-fetal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158591. [PMID: 31863969 PMCID: PMC7302977 DOI: 10.1016/j.bbalip.2019.158591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis. Thus, an adequate supply of vitamin A from the maternal circulation is vital for normal mammalian fetal development. Provitamin A carotenoids circulate in the maternal bloodstream and are available to the embryo. Of all the dietary carotenoids, β-carotene is the main vitamin A precursor, contributing at least 30% of the vitamin A intake in the industrialized countries and often constituting the sole source of retinoids (vitamin A and its derivatives) in the developing world. In humans, up to 40% of the absorbed dietary β-carotene is incorporated in its intact form in chylomicrons for distribution to other organs within the body, including the developing tissues. Here, it can serve as a source of vitamin A upon conversion into apocarotenoids by its cleavage enzymes. Given that β-carotene is carried in the bloodstream by lipoproteins, and that the placenta acquires, assembles and secretes lipoproteins, it is becoming evident that the maternal-fetal transfer of β-carotene relies on lipoprotein metabolism. Here, we will explore the current knowledge about this important biological process, the cross-talk between carotenoid and lipid metabolism in the context of the maternal-fetal transfer of this provitamin A precursor, and the mechanisms whereby β-carotene is metabolized by the developing tissues. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Loredana Quadro
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA;,Corresponding author: Loredana Quadro, PhD; Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; Tel: +1 848 9325491; Fax: +1 732 9326776;
| | - Elena Giordano
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Brianna K. Costabile
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA;,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Titli Nargis
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, USA
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA;,King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Younkyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Lesley Wassef
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York, USA;,Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
9
|
Cantin C, Fuenzalida B, Leiva A. Maternal hypercholesterolemia during pregnancy: Potential modulation of cholesterol transport through the human placenta and lipoprotein profile in maternal and neonatal circulation. Placenta 2020; 94:26-33. [DOI: 10.1016/j.placenta.2020.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/28/2023]
|
10
|
Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci Rep 2020; 10:5264. [PMID: 32210256 PMCID: PMC7093446 DOI: 10.1038/s41598-020-61629-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal physiological (MPH) or supraphysiological hypercholesterolaemia (MSPH) occurs during pregnancy. Cholesterol trafficking from maternal to foetal circulation requires the uptake of maternal LDL and HDL by syncytiotrophoblast and cholesterol efflux from this multinucleated tissue to ApoA-I and HDL. We aimed to determine the effects of MSPH on placental cholesterol trafficking. Placental tissue and primary human trophoblast (PHT) were isolated from pregnant women with total cholesterol <280 md/dL (MPH, n = 27) or ≥280 md/dL (MSPH, n = 28). The lipid profile in umbilical cord blood from MPH and MSPH neonates was similar. The abundance of LDL receptor (LDLR) and HDL receptor (SR-BI) was comparable between MSPH and MPH placentas. However, LDLR was localized mainly in the syncytiotrophoblast surface and was associated with reduced placental levels of its ligand ApoB. In PHT from MSPH, the uptake of LDL and HDL was lower compared to MPH, without changes in LDLR and reduced levels of SR-BI. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from MSPH, the cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with reduced levels of ABCG1, compared to MPH. Inhibition of SR-BI did not change cholesterol efflux in PHT. The TC content in PHT was comparable in MPH and MSPH cells. However, free cholesterol was increased in MSPH cells. We conclude that MSPH alters the trafficking and content of cholesterol in placental trophoblasts, which could be associated with changes in the placenta-mediated maternal-to-foetal cholesterol trafficking.
Collapse
|
11
|
Ducat A, Vargas A, Doridot L, Bagattin A, Lerner J, Vilotte JL, Buffat C, Pontoglio M, Miralles F, Vaiman D. Low-dose aspirin protective effects are correlated with deregulation of HNF factor expression in the preeclamptic placentas from mice and humans. Cell Death Discov 2019; 5:94. [PMID: 31098302 PMCID: PMC6510804 DOI: 10.1038/s41420-019-0170-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/07/2023] Open
Abstract
Aspirin (acetyl-salicylic acid) is one of the most ancient drugs of the human pharmacopeia. Nonetheless, its action at low doses is not well understood at the molecular level. One of the applications of low-dose aspirin treatment is the prevention of preeclampsia (PE) in patients at risk. Foeto-placental overexpression of the STOX1A transcription factor in mice triggers PE symptoms. Transcriptomic analysis of the placentas, showed that aspirin massively down-regulates genes of the coagulation and complement cascade, as well as genes involved in lipid transport. The genes modified by aspirin treatment are not the ones that are modified by STOX1 overexpression, suggesting that aspirin could act downstream, symptomatically on the preeclamptic disease. Bioinformatics analysis of the promoters of the deregulated genes showed that they are strongly enriched in HNF transcription factors-binding sites, in accordance with existing literature showing their roles as regulators of coagulation. Two of these transcription factors, Hnf1β and Hnf4α are found down-regulated by aspirin treatment. In parallel, we show that in human patient placentas, aspirin-induced deregulations of genes of the coagulation cascade are also observed. Finally, the expression of Hnf1β target sequences (Kif12, F2, Hnf4α promoters and a synthetic concatemer of the Hnf1β-binding site) were investigated by transfection in trophoblast cell models, with or without aspirin treatment and with or without STOX1A overexpression. In this model we observed that STOX1A and aspirin tended to synergize in the down-regulation of Hnf1β target genes in trophoblasts.
Collapse
Affiliation(s)
- Aurélien Ducat
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Alexandra Vargas
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
- Epigenetics and Cell Signaling, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ludivine Doridot
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Alessia Bagattin
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Jonathan Lerner
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Jean-Luc Vilotte
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Christophe Buffat
- Department of Neonatology, Hôpital La Conception, 147 Boulevard Baille, 13005 Marseille, France
| | - Marco Pontoglio
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Francisco Miralles
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Daniel Vaiman
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| |
Collapse
|
12
|
Abstract
Pregnancy is associated with physiological adjustments in order to allow adequate growth and fetal development. In particular, steroids are necessary to maintain in balance numerous functions during gestation. Steroidogenesis in the maternal, placental and fetal compartments and the biological effects of progestins and estrogens that play a pivotal role before and during pregnancy are described. Although it is well-known that androgens are considered as substrate for estrogens biosynthesis, their biosynthesis and functionality in placental and other tissues have been questioned. As compared with healthy pregnancy, steroid hormones levels have been found altered in complicated pregnancies and hormonal treatments have been used is some pathologies. Therefore, the aim of this work was to review the biosynthesis, function and regulation of progestins, androgens and estrogens during gestation. Furthermore, steroid hormones concentrations during healthy and complicated pregnancy as well hormonal therapies for the prevention of miscarriages and preterm deliveries are discussed in the present review.
Collapse
Affiliation(s)
- Nancy Noyola-Martínez
- a Departamento de Biología de la Reproducción , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , D.F. México , México
| | - Ali Halhali
- a Departamento de Biología de la Reproducción , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , D.F. México , México
| | - David Barrera
- a Departamento de Biología de la Reproducción , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , D.F. México , México
| |
Collapse
|
13
|
Placental secretion of apolipoprotein A1 and E: the anti-atherogenic impact of the placenta. Sci Rep 2019; 9:6225. [PMID: 30996342 PMCID: PMC6470155 DOI: 10.1038/s41598-019-42522-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
High levels of atherogenic lipids in pregnancy are associated with health complications for the mother, the fetus and the newborn. As endocrine secretory tissue, the human placenta releases apolipoproteins (apos), particularly apoA1 and apoE. However, the magnitude and the directionality of the apo secretions remain unknown. We aimed to 1) determine the amount and orientation (apical-maternal versus basal-fetal) of placentally secreted apoA1 and apoE using human perfused placenta and primary trophoblast cell (PTC) culture, 2) compare apoA1 and apoE secretions of PTC with that of hepatocytes and 3) associate the obtained results with human blood levels by determining apoA1 and apoE concentrations in maternal and fetal serum samples. In perfused placenta and serum samples, apoA1 and apoE concentrations were significantly higher at the maternal compared to the fetal side. For apoE a similar trend was found in PTC. For apoA1, the secretion to the apical side declined over time while release to the basal side was stable resulting in significantly different apoA1 concentrations between both sides. Unexpectedly, PTC secreted significantly higher amounts of apoA1 and apoE compared to hepatocytes. Our data indicate that the placenta may play an important role in maternal and fetal cholesterol homeostasis via secretion of anti-atherogenic apos.
Collapse
|
14
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Zhang G, Zhou J, Huang W, Yu L, Zhang Y, Wang H. Placental mechanism of prenatal nicotine exposure-reduced blood cholesterol levels in female fetal rats. Toxicol Lett 2018; 296:31-38. [PMID: 30036686 DOI: 10.1016/j.toxlet.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Clinical studies showed that intrauterine growth retardation (IUGR) neonatus had lower cholesterol concentrations in cord blood, which might be associated with increased risk of metabolic syndrome and cardiovascular diseases in adulthood. We previously observed lower blood cholesterol levels in prenatal nicotine exposure (PNE)-induced IUGR fetal rats, and this study aimed to elucidate the placental mechanism. Pregnant Wistar rats were subcutaneously injected with nicotine (2.0 mg/kg⋅d) on gestational day 9-20. In vivo, PNE increased levels of total cholesterol (TCH), high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) in maternal serum, while decreased levels of TCH and LDL-C in female fetal serum. Meanwhile, the expression of scavenger receptor class B type 1 (SR-B1), ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) were decreased, and the expression of liver X receptor (LXR) α and β were also decreased in female placentas. In vitro, nicotine (0.1-10 μM) reduced the expression of LXRα, LXRβ, SR-B1, ABCA1 and ABCG1 in a concentration dependent manner, which could be annulled by nAChR antagonist and LXR agonist. Taken together, nicotine could inhibit the expression of SR-B1, ABCA1 and ABCG1 via nAChR and LXR α/β in female placentas, finally leading to reduced blood cholesterol levels in fetal rats.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Luting Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan 430071, China.
| |
Collapse
|