1
|
Zhou J, Franceschini N, Townley-Tilson WHD, Maeda-Smithies N. Nutritional Strategies against Diabetic Nephropathy: Insights from Animal Studies and Human Trials. Nutrients 2024; 16:1918. [PMID: 38931271 PMCID: PMC11206721 DOI: 10.3390/nu16121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic nephropathy (DN), defined as continuously elevated urinary albumin and a diminished estimated glomerular filtration rate, is a serious complication of both type 1 diabetes and type 2 diabetes and is the main cause of end-stage kidney disease. Patients with end-stage renal disease require chronic kidney dialysis and/or a kidney transplantation. Research highlights the role of diet in modulating specific signaling pathways that are instrumental in the progression of DN. Nutrient-sensitive pathways, affected by nutritional compounds and dietary components, offer a novel perspective on the management of DN by influencing inflammation, oxidative stress, and nutrient metabolism. Animal models have identified signaling pathways related to glucose metabolism, inflammation responses, autophagy, and lipid metabolism, while human population studies have contributed to the clinical significance of designing medical and nutritional therapies to attenuate DN progression. Here, we will update recent progress in research into the renoprotective or therapeutic effects of nutritional compounds, and potential nutrition-modulated pathways.
Collapse
Affiliation(s)
- Jiayi Zhou
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - W. H. Davin Townley-Tilson
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Nobuyo Maeda-Smithies
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
2
|
Sánchez-Ospina D, Mas-Fontao S, Gracia-Iguacel C, Avello A, González de Rivera M, Mujika-Marticorena M, Gonzalez-Parra E. Displacing the Burden: A Review of Protein-Bound Uremic Toxin Clearance Strategies in Chronic Kidney Disease. J Clin Med 2024; 13:1428. [PMID: 38592263 PMCID: PMC10934686 DOI: 10.3390/jcm13051428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Uremic toxins (UTs), particularly protein-bound uremic toxins (PBUTs), accumulate in chronic kidney disease (CKD) patients, causing significant health complications like uremic syndrome, cardiovascular disease, and immune dysfunction. The binding of PBUTs to plasma proteins such as albumin presents a formidable challenge for clearance, as conventional dialysis is often insufficient. With advancements in the classification and understanding of UTs, spearheaded by the European Uremic Toxins (EUTox) working group, over 120 molecules have been identified, prompting the development of alternative therapeutic strategies. Innovations such as online hemodiafiltration aim to enhance the removal process, while novel adsorptive therapies offer a means to address the high affinity of PBUTs to plasma proteins. Furthermore, the exploration of molecular displacers, designed to increase the free fraction of PBUTs, represents a cutting-edge approach to facilitate their dialytic clearance. Despite these advancements, the clinical application of displacers requires more research to confirm their efficacy and safety. The pursuit of such innovative treatments is crucial for improving the management of uremic toxicity and the overall prognosis of CKD patients, emphasizing the need for ongoing research and clinical trials.
Collapse
Affiliation(s)
- Didier Sánchez-Ospina
- Servicio Análisis Clínicos, Hospital Universitario de Burgos, 09006 Burgos, Spain; (D.S.-O.); (M.M.-M.)
| | - Sebastián Mas-Fontao
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), 28037 Madrid, Spain
| | - Carolina Gracia-Iguacel
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Alejandro Avello
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Marina González de Rivera
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | | | - Emilio Gonzalez-Parra
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| |
Collapse
|
3
|
Boss K, Waterstradt K, Schnurr K, Paar M, Stolpe S, Ickerott P, Wieneke U, Spitthöver R, Oettl K, Kribben A. Binding and detoxification efficiency of albumin decline after haemodialysis. Nephrol Dial Transplant 2024; 39:215-221. [PMID: 37558390 PMCID: PMC10828194 DOI: 10.1093/ndt/gfad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Albumin, as the most abundant plasma protein, represents a target structure for both drug and physicochemical therapeutic approaches to eliminate uraemic toxins more efficiently. Potentially, this approach could reduce mortality of haemodialysis patients. However, little is known about albumin functional properties in these patients and its alteration by haemodialysis treatment. METHODS The binding and detoxification efficiency of albumin were assessed by electron paramagnetic resonance spectroscopy using a spin-labelled fatty acid. Binding efficiency (BE) reflects strength and amount of bound fatty acids under certain ethanol concentration. Detoxification efficiency (DTE) reflects the molecular flexibility of the patient's albumin molecule, thus the ability to change the conformation depending on ethanol concentration. Percentage of BE and DTE are depicted in relation to healthy individuals (100%). RESULTS Fifty-eight patients (59% male, median age 68 years, median time on haemodialysis 32 months) were included in the study. Before haemodialysis treatment, albumin binding and detoxification efficiency were substantially below healthy individuals [median BE 52% (interquartile range, IQR, 45%-59%); median DTE 38% (IQR 32-49%)]. After haemodialysis treatment, median BE and DTE significantly decreased [BE 28% (IQR 20-41%); DTE 11% (IQR 7%-27%; P < .001)]. BE and DTE decline after haemodialysis was not dependent on age, sex or treatment modalities, but was to a certain extent on the level of non-esterified fatty acids. CONCLUSION Albumin binding and detoxification efficiency of fatty acids in maintenance haemodialysis patients were substantially below those in healthy individuals and even declined after dialysis treatment. These findings might be helpful when considering new therapeutic approaches in maintenance haemodialysis patients.
Collapse
Affiliation(s)
- Kristina Boss
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Susanne Stolpe
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Philipp Ickerott
- Gemeinschaftspraxis für Nieren- und Hochdruckkrankheiten Essen-Steele, Essen, Germany
| | | | | | - Karl Oettl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Schildboeck C, Harm S, Hartmann J. In vitro Removal of Protein-Bound Retention Solutes by Extracorporeal Blood Purification Procedures. Blood Purif 2024; 53:231-242. [PMID: 38262384 DOI: 10.1159/000534906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION When the kidneys or liver fail, toxic metabolites accumulate in the patient's blood, causing cardiovascular and neurotoxic complications and increased mortality. Conventional membrane-based extracorporeal blood purification procedures cannot remove these toxins efficiently. The aim of this in vitro study was to determine whether commercial hemoperfusion adsorbers are suitable for removing protein-bound retention solutes from human plasma and whole blood as well as to compare the removal to conventional hemodialysis. METHODS For in vitro testing of the removal of protein-bound substances, whole blood and plasma were spiked with uremic retention solutes (homocysteine, hippuric acid, indoxyl sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid) and the toxins of liver failure (bilirubin, cholic acid, tryptophan, phenol). Subsequently, the protein binding of each retention solute was determined. The adsorption characteristics of the hemoperfusion adsorbers, Jafron HA and Biosky MG, both approved for the adsorption of protein-bound uremic retention solutes and Cytosorb, an adsorber recommended for adsorption of cytokines, were tested by incubating them in spiked whole blood or plasma for 1 h. Subsequently, the adsorption characteristics of the adsorbers were tested in a dynamic system. For this purpose, a 6-h in vitro hemoperfusion treatment was compared with an equally long in vitro hemodialysis treatment. RESULTS Hippuric acid, homocysteine, indoxyl sulfate, and tryptophan were most effectively removed by hemodialysis. Bilirubin and cholic acid were removed best by hemoperfusion with Cytosorb. A treatment with Jafron HA and Biosky MG showed similar results for the adsorption of the tested retention solutes and were best for removing phenol. 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid could not be removed with any treatment method. DISCUSSION/CONCLUSION A combination of hemodialysis with hemoperfusion seems promising to improve the removal of some toxic metabolites in extracorporeal therapies. However, some very strongly protein-bound metabolites cannot be removed adequately with the adsorbers tested.
Collapse
Affiliation(s)
- Claudia Schildboeck
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Stephan Harm
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Jens Hartmann
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
5
|
Dehghan Niestanak V, Unsworth LD. Detailing Protein-Bound Uremic Toxin Interaction Mechanisms with Human Serum Albumin in the Pursuit of Designing Competitive Binders. Int J Mol Sci 2023; 24:ijms24087452. [PMID: 37108613 PMCID: PMC10139063 DOI: 10.3390/ijms24087452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease is the gradual progression of kidney dysfunction and involves numerous co-morbidities, one of the leading causes of mortality. One of the primary complications of kidney dysfunction is the accumulation of toxins in the bloodstream, particularly protein-bound uremic toxins (PBUTs), which have a high affinity for plasma proteins. The buildup of PBUTs in the blood reduces the effectiveness of conventional treatments, such as hemodialysis. Moreover, PBUTs can bind to blood plasma proteins, such as human serum albumin, alter their conformational structure, block binding sites for other valuable endogenous or exogenous substances, and exacerbate the co-existing medical conditions associated with kidney disease. The inadequacy of hemodialysis in clearing PBUTs underscores the significance of researching the binding mechanisms of these toxins with blood proteins, with a critical analysis of the methods used to obtain this information. Here, we gathered the available data on the binding of indoxyl sulfate, p-cresyl sulfate, indole 3-acetic acid, hippuric acid, 3-carboxyl-4-methyl-5-propyl-2-furan propanoic acid, and phenylacetic acid to human serum albumin and reviewed the common techniques used to investigate the thermodynamics and structure of the PBUT-albumin interaction. These findings can be critical in investigating molecules that can displace toxins on HSA and improve their clearance by standard dialysis or designing adsorbents with greater affinity for PBUTs than HSA.
Collapse
Affiliation(s)
- Vida Dehghan Niestanak
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2G4, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
6
|
Systematic Comparison of Uremic Toxin Removal Using Different Hemodialysis Modes: A Single-Center Crossover Prospective Observational Study. Biomedicines 2023; 11:biomedicines11020373. [PMID: 36830910 PMCID: PMC9952943 DOI: 10.3390/biomedicines11020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Many hypotheses could explain the mortality decrease observed using hemodiafiltration, such as reduction of intradialytic hypotension and more efficient toxin removal. We led a systematic analysis of representative uremic toxin removal with hemodialysis (HD), online postdilution hemodiafiltration (postHDF) and online predilution hemodiafiltration (preHDF), in a single-center crossover and prospective observational study. The primary outcome was the reduction ratio of uremic toxins of the three categories defined by the Eutox group. Twenty-six patients were treated by those three techniques of extra renal epuration. Mean Kt/Vurea was not different between the treatment methods. Mean reduction ratio of beta2microglobulin was significantly higher for both HDF treatments than for HD (p < 0.001). Myoglobin, kappa, and lambda free light chain reduction ratio was significantly different between the modes: 37.75 ± 11.95%, 45.31 ± 11% and 61.22 ± 10.56%/57.21 ± 12.5%, 63.53 ± 7.93%, and 68.40 ± 11.79%/29.12 ± 8.44%, 34.73 ± 9.01%, and 45.55 ± 12.31% HD, preHDF, and postHDF, respectively (p < 0.001). Mean protein-bound solutes reduction ratio was not different between the different treatments except for PCS with a higher reduction ratio during HDF treatments. Mean albumin loss was always less than 2 g. HDF improved removal of middle molecules but had no effect on indoles concentration without any difference between synthetic dialysis membranes.
Collapse
|
7
|
Zhou Z, Kuang H, Wang F, Liu L, Zhang L, Fu P. High cut-off membranes in patients requiring renal replacement therapy: a systematic review and meta-analysis. Chin Med J (Engl) 2023; 136:34-44. [PMID: 36848147 PMCID: PMC10106154 DOI: 10.1097/cm9.0000000000002150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Whether high cut-off (HCO) membranes are more effective than high-flux (HF) membranes in patients requiring renal replacement therapy (RRT) remains controversial. The aim of this systematic review was to investigate the efficacy of HCO membranes regarding the clearance of inflammation-related mediators, β2-microglobulin and urea; albumin loss; and all-cause mortality in patients requiring RRT. METHODS We searched all relevant studies on PubMed, Embase, Web of Science, the Cochrane Library, and China National Knowledge Infrastructure, with no language or publication year restrictions. Two reviewers independently selected studies and extracted data using a prespecified extraction instrument. Only randomized controlled trials (RCTs) were included. Summary estimates of standardized mean differences (SMDs) or weighted mean differences (WMDs) and risk ratios (RRs) were obtained by fixed-effects or random-effects models. Sensitivity analyses and subgroup analyses were performed to determine the source of heterogeneity. RESULTS Nineteen RCTs involving 710 participants were included in this systematic review. Compared with HF membranes, HCO membranes were more effective in reducing the plasma level of interleukin-6 (IL-6) (SMD -0.25, 95% confidence interval (CI) -0.48 to -0.01, P = 0.04, I2 = 63.8%); however, no difference was observed in the clearance of tumor necrosis factor-α (TNF-α) (SMD 0.03, 95% CI -0.27 to 0.33, P = 0.84, I2 = 4.3%), IL-10 (SMD 0.22, 95% CI -0.12 to 0.55, P = 0.21, I2 = 0.0%), or urea (WMD -0.27, 95% CI -2.77 to 2.23, P = 0.83, I2 = 19.6%). In addition, a more significant reduction ratio of β 2 -microglobulin (WMD 14.8, 95% CI 3.78 to 25.82, P = 0.01, I2 = 88.3%) and a more obvious loss of albumin (WMD -0.25, 95% CI -0.35 to -0.16, P < 0.01, I2 = 40.8%) could be observed with the treatment of HCO membranes. For all-cause mortality, there was no difference between the two groups (risk ratio [RR] 1.10, 95% CI 0.87 to 1.40, P = 0.43, I2 = 0.0%). CONCLUSIONS Compared with HF membranes, HCO membranes might have additional benefits on the clearance of IL-6 and β 2-microglobulin but not on TNF-α, IL-10, and urea. Albumin loss is more serious with the treatment of HCO membranes. There was no difference in all-cause mortality between HCO and HF membranes. Further larger high-quality RCTs are needed to strengthen the effects of HCO membranes.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Huang Kuang
- Division of Nephrology, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
| | - Fang Wang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Liu
- Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Zhang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Liabeuf S, Drueke T, Massy Z. Rôle des toxines urémiques dans la genèse des complications de la maladie rénale chronique. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Shi Y, Wang Y, Shen Y, Zhu Q, Ding F. Superior Dialytic Removal of Bilirubin and Bile Acids by Free Fatty Acid Displacement and Its Synergy With Albumin-Based Dialysis. ASAIO J 2023; 69:127-135. [PMID: 35412475 DOI: 10.1097/mat.0000000000001720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One of the cardinal features of any liver replacement therapy is the ability to remove accumulated metabolites. However, an unsolved problem is the low dialyzability of lipophilic toxins. This study aimed to explore whether bilirubin and bile acids removal can be increased by free fatty acid (FFA) displacement and its synergy with albumin dialysis. First, we found that the protein binding of both bilirubin and bile acids decreased significantly with increasing FFA concentrations when co-incubated directly. Then, in vitro dialysis showed that fatty acid mixtures infusion prefilter effectively increased the fractional removals of bilirubin and bile acids, showing higher efficiency compared with albumin-based hemodialysis (HD); in vivo dialysis in liver failure rats showed that lipid emulsion administration resulted in higher reduction ratios and more total solute removals for bilirubin and bile acids after 4 h HD compared with control, which were also superior to albumin-based HD. Finally, the highest dialysis efficacy was always observed by their synergy whether in vitro or in vivo . These findings highlight that FFA displacement-based HD could efficiently improve the dialytic removal of bilirubin and bile acids, which might even be more efficient than albumin-based HD. Their synergy may represent a promising strategy to maximize the removal of circulating bilirubin and bile acids accumulated in liver failure.
Collapse
Affiliation(s)
- Yuanyuan Shi
- From the Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China.,Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Assessment of alteration in antiviral plasma concentration across dialysis days: computational and analytical study. Bioanalysis 2022; 14:1563-1581. [PMID: 36846891 DOI: 10.4155/bio-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: Protein-bound uremic toxins (PBUTs) may displace drugs from the plasma proteins and render them more liable to clearance. This study aims to investigate the possible interplay between PBUTs and directly acting antivirals (DAAs). Methods: PBUT plasma protein binding was compared to those of paritaprevir (PRT), ombitasivir (OMB) and ritonavir (RTV) in silico to assess the possible competitive displacement. The three drugs were LC-MS/MS determined in seven patients across dialysis and non-dialysis days and results were compared. Results & conclusion: Results showed that the PBUT exhibited a lower binding than DAA reducing the liability of their competitive displacement. This was echoed by an unaltered plasma concentration across dialysis days. Results may indicate that PBUT accumulation may have limited effect on disposition of DAA.
Collapse
|
11
|
van Ham WB, Cornelissen CM, van Veen TAB. Uremic toxins in chronic kidney disease highlight a fundamental gap in understanding their detrimental effects on cardiac electrophysiology and arrhythmogenesis. Acta Physiol (Oxf) 2022; 236:e13888. [PMID: 36148604 PMCID: PMC9787632 DOI: 10.1111/apha.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have an estimated 700-800 and 523 million cases worldwide, respectively, with CVD being the leading cause of death in CKD patients. The pathophysiological interplay between the heart and kidneys is defined as the cardiorenal syndrome (CRS), in which worsening of kidney function is represented by increased plasma concentrations of uremic toxins (UTs), culminating in dialysis patients. As there is a high incidence of CVD in CKD patients, accompanied by arrhythmias and sudden cardiac death, knowledge on electrophysiological remodeling would be instrumental for understanding the CRS. While the interplay between both organs is clearly of importance in CRS, the involvement of UTs in pro-arrhythmic remodeling is only poorly investigated, especially regarding the mechanistic background. Currently, the clinical approach against potential arrhythmic events is mainly restricted to symptom treatment, stressing the need for fundamental research on UT in relation to electrophysiology. This review addresses the existing knowledge of UTs and cardiac electrophysiology, and the experimental research gap between fundamental research and clinical research of the CRS. Clinically, mainly absorbents like ibuprofen and AST-120 are studied, which show limited safe and efficient usability. Experimental research shows disturbances in cardiac electrical activation and conduction after inducing CKD or exposure to UTs, but are scarcely present or focus solely on already well-investigated UTs. Based on UTs data derived from CKD patient cohort studies, a clinically relevant overview of physiological and pathological UTs concentrations is created. Using this, future experimental research is stimulated to involve electrophysiologically translatable animals, such as rabbits, or in vitro engineered heart tissues.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlijn M. Cornelissen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
12
|
Daneshamouz S, Saadati S, Abdelrasoul A. Molecular docking study of biocompatible enzyme interactions for removal of indoxyl sulfate (IS), indole-3-acetic acid (IAA), and p-cresyl sulfate (PCS) protein bound uremic toxins. Struct Chem 2022. [DOI: 10.1007/s11224-022-01905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Liabeuf S, Pepin M, Franssen CFM, Viggiano D, Carriazo S, Gansevoort RT, Gesualdo L, Hafez G, Malyszko J, Mayer C, Nitsch D, Ortiz A, Pešić V, Wiecek A, Massy ZA. Chronic kidney disease and neurological disorders: are uraemic toxins the missing piece of the puzzle? Nephrol Dial Transplant 2021; 37:ii33-ii44. [PMID: 34718753 PMCID: PMC8713157 DOI: 10.1093/ndt/gfab223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) perturbs the crosstalk with others organs, with the interaction between the kidneys and the heart having been studied most intensively. However, a growing body of data indicates that there is an association between kidney dysfunction and disorders of the central nervous system. In epidemiological studies, CKD is associated with a high prevalence of neurological complications, such as cerebrovascular disorders, movement disorders, cognitive impairment and depression. Along with traditional cardiovascular risk factors (such as diabetes, inflammation, hypertension and dyslipidaemia), non-traditional risk factors related to kidney damage (such as uraemic toxins) may predispose patients with CKD to neurological disorders. There is increasing evidence to show that uraemic toxins, for example indoxyl sulphate, have a neurotoxic effect. A better understanding of factors responsible for the elevated prevalence of neurological disorders among patients with CKD might facilitate the development of novel treatments. Here, we review (i) the potential clinical impact of CKD on cerebrovascular and neurological complications, (ii) the mechanisms underlying the uraemic toxins' putative action (based on pre-clinical and clinical research) and (iii) the potential impact of these findings on patient care.
Collapse
Affiliation(s)
- Sophie Liabeuf
- Department of Pharmacology, Amiens University Medical Center, Amiens, France
- MP3CV Laboratory, EA7517, University of Picardie Jules Verne, Amiens, France
| | - Marion Pepin
- Université Paris-Saclay, UVSQ, Inserm, Clinical Epidemiology Team, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Villejuif, France
- Department of Geriatrics, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt, France
| | - Casper F M Franssen
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Davide Viggiano
- Department of Nephrology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Christopher Mayer
- Center for Health and Bioresources, Biomedical Systems, AIT Austrian Institute of Technology, Vienna, Austria
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Vesna Pešić
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, in Katowice, Katowice, Poland
| | - Ziad A Massy
- Université Paris-Saclay, UVSQ, Inserm, Clinical Epidemiology Team, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Villejuif, France
- Department of Nephrology, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt/Paris, France
| |
Collapse
|
14
|
The Prescription of Drugs That Inhibit Organic Anion Transporters 1 or 3 Is Associated with the Plasma Accumulation of Uremic Toxins in Kidney Transplant Recipients. Toxins (Basel) 2021; 14:toxins14010015. [PMID: 35050992 PMCID: PMC8780284 DOI: 10.3390/toxins14010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
The renal elimination of uremic toxins (UTs) can be potentially altered by drugs that inhibit organic anion transporters 1/3 (OAT1/OAT3). The objective of the present study was to determine whether the prescription of at least one OAT1/OAT3 inhibitor was associated with the plasma accumulation of certain UTs in kidney transplant recipients. We included 403 kidney transplant recipients. For each patient, we recorded all prescription drugs known to inhibit OAT1/OAT3. Plasma levels of four UTs (trimethylamine N-oxide (TMAO), indole acetic acid (IAA), para-cresylsulfate (pCS), and indoxylsulfate (IxS) were assayed using liquid chromatography-tandem mass spectrometry. Plasma UT levels were significantly higher among patients prescribed at least one OAT inhibitor (n = 311) than among patients not prescribed any OAT inhibitors (n = 92). Multivariate analysis revealed that after adjustment for age, estimated glomerular filtration rate (eGFR), plasma level of albumin and time since transplantation, prescription of an OAT1/OAT3 inhibitor was independently associated with the plasma accumulation of pCS (adjusted odds ratio (95% confidence interval): 2.11 (1.26; 3.61]). Our results emphasize the importance of understanding the interactions between drugs and UTs and those involving UT transporters in particular.
Collapse
|
15
|
Shi Y, Tian H, Wang Y, Shen Y, Zhu Q, Ding F. Improved Dialysis Removal of Protein-Bound Uraemic Toxins with a Combined Displacement and Adsorption Technique. Blood Purif 2021; 51:548-558. [PMID: 34515053 DOI: 10.1159/000518065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/04/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Protein-bound uraemic toxins (PBUTs) are poorly removed by conventional dialytic techniques, given their high plasma protein binding, and thus low, free (dialysable) plasma concentration. Here, we evaluated and compared PBUTs removal among conventional haemodialysis (HD), adsorption-based HD, displacement-based HD, and their 2 combinations both in vitro and in vivo. METHODS The removal of PBUTs, including 3-carboxy-4-methyl-5-propyl-2-furan-propanoic acid (CMPF), p-cresyl sulphate (PCS), indoxyl sulphate (IS), indole-3-acetic acid (3-IAA), and hippuric acid, was first evaluated in an in vitro single-pass HD model. Adsorption consisted of adding 40 g/L bovine serum albumin (Alb) to the dialysate and displacement involved infusing fatty acid (FA) mixtures predialyser. Then, uraemic rats were treated with either conventional HD, Alb-based HD, lipid emulsion infusion-based HD or their combination to calculate the reduction ratio (RR), and the total solute removal (TSR) of solutes after 4 h of therapy. RESULTS In vitro dialysis revealed that FAs infusion prefilter increased the removal of PCS, IS, and 3-IAA 3.23-fold, 3.01-fold, and 2.24-fold, respectively, compared with baseline and increased the fractional removal of CMPF from undetectable at baseline to 14.33 ± 0.24%, with a dialysis efficacy markedly superior to Alb dialysis. In vivo dialysis showed that ω-6 soybean oil-based lipid emulsion administration resulted in higher RRs and more TSRs for PCS, IS, and 3-IAA after 4-h HD than the control, and the corresponding TSR values for PCS and IS were also significantly increased compared to that of Alb dialysis. Finally, the highest dialysis efficacy for highly bound solute removal was always observed with their combination both in vitro and in vivo. CONCLUSIONS The concept of combined displacement- and adsorption-based dialysis may open up new avenues and possibilities in the field of dialysis to further enhance PBUTs removal in end-stage renal disease.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, .,Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,
| | - Huajun Tian
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
16
|
Ludwig J, Smith J, Pfaendtner J. Analyzing the Long Time-Scale Dynamics of Uremic Toxins Bound to Sudlow Site II in Human Serum Albumin. J Phys Chem B 2021; 125:2910-2920. [PMID: 33715376 DOI: 10.1021/acs.jpcb.1c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein bound uremic toxins (PBUTs), a series of chemicals that remain a challenge for removal strategies used on patients suffering with chronic kidney disease, could be strong candidates for MD study in order to better understand the interactions and time scales associated with binding mode transitions. Currently, traditional dialysis methods cannot satisfactorily remove PBUTs from the bloodstream. This is at least partly due to these toxin's high level of affinity for protein binding sites, particularly the prominent human serum albumin (HSA) and two of its drug binding sites (Sudlow site I and II). We investigate the dynamics of binding site transitions and interactions by MD simulations targeting four well-known toxins: indoxyl sulfate (IS), p-cresyl sulfate (PCS), indole-3-acetic acid (IAA), and hippurate acid (HIP). Long-time scale dynamics are obtained by the use of time-structure independent component analysis (tICA) for dimensionality reduction followed by spectral analysis of a Markov state model (MSM) scored using the generalized matrix Rayleigh quotient (GMRQ). Our results add new insights to prior findings related to the key role of charge-pairing in governing toxin-protein interactions. We find that IAA, the bulkiest hydrophobic toxin studied, observes the slowest process of at least 3 times slower than the smaller, less hydrophobic toxins. In general, we find that the processes slower than 15 ns are correlated with a transition from dominantly hydrophobic interactions deep in the binding pocket to a gain in hydrogen bonding partners near the mouth of the pocket. Our results indicate that aromatic residues such as PHE play a part in a type of toxin stabilization akin to π-stacking. In conclusion, this work presents mechanistic descriptions of interactions/transitions for a set of important PBUTs that bind Sudlow site II on time scales relevant to the underlying binding kinetics of most interest.
Collapse
Affiliation(s)
- James Ludwig
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Josh Smith
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Jim Pfaendtner
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| |
Collapse
|
17
|
Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease. Transl Res 2021; 229:115-134. [PMID: 32891787 DOI: 10.1016/j.trsl.2020.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic kidney disease (CKD) in the worldwide population is currently estimated between 11% and 13%. Adequate renal clearance is compromised in these patients and the accumulation of a large number of uremic retention solutes results in an irreversible worsening of renal function which can lead to end stage renal disease (ESRD). Approximately three million ESRD patients currently receive renal replacement therapies (RRTs), such as hemodialysis, which only partially restore kidney function, as they are only efficient in removing mainly small, unbound solutes from the circulation while leaving larger and protein-bound uremic toxins (PBUTs) untouched. The accumulation of PBUTs in patients highly increases the risk of cardiovascular events and is associated with higher mortality and morbidity in CKD and ESRD. In this review, we address several strategies currently being explored toward reducing PBUT concentrations, including clinical and medical approaches, therapeutic techniques, and recent developments in RRT technology. These include preservation of renal function, limitation of colon derived PBUTs, oral sorbents, adsorbent RRT technology, and use of albumin displacers. Despite the promising results of the different approaches to promote enhanced removal of a small percentage of the more than 30 identified PBUTs, on their own, none of them provide a treatment with the required efficiency, safety and cost-effectiveness to prevent CKD-related complications and decrease mortality and morbidity in ESRD.
Collapse
|
18
|
Yadav SPS, Sandoval RM, Zhao J, Huang Y, Wang E, Kumar S, Campos-Bilderback SB, Rhodes G, Mechref Y, Molitoris BA, Wagner MC. Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance. Am J Physiol Renal Physiol 2021; 320:F114-F129. [PMID: 33283642 PMCID: PMC7847050 DOI: 10.1152/ajprenal.00428.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid
- Disease Models, Animal
- Glomerular Filtration Rate
- Histocompatibility Antigens Class I/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiopathology
- Liver/metabolism
- Lysine
- Male
- Microscopy, Fluorescence, Multiphoton
- Protein Binding
- Protein Carbamylation
- Rats, Inbred Strains
- Rats, Sprague-Dawley
- Receptors, Cell Surface/metabolism
- Receptors, Fc/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Scattering, Small Angle
- Serum Albumin/metabolism
- Tandem Mass Spectrometry
- Time Factors
- X-Ray Diffraction
- Rats
Collapse
Affiliation(s)
- Shiv Pratap S Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Exing Wang
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Sudhanshu Kumar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Silvia B Campos-Bilderback
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Rhodes
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark C Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
19
|
Daneshamouz S, Eduok U, Abdelrasoul A, Shoker A. Protein-bound uremic toxins (PBUTs) in chronic kidney disease (CKD) patients: Production pathway, challenges and recent advances in renal PBUTs clearance. NANOIMPACT 2021; 21:100299. [PMID: 35559786 DOI: 10.1016/j.impact.2021.100299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 06/15/2023]
Abstract
Uremic toxins, a group of uremic retention solutes with high concentration which their accumulation on the body makes several biological problems, have recently gained a large interest. The importance of this issue more targets patients with compromised kidney function since the presence of these toxins in their bodies contributes to serious illness and death. It is reported that around 14% of people are subjected of CKD's problems. Among different classifications of uremic toxins, protein bound uremic toxins are poorly removed from the body as they tightly bind to proteins like serum albumin. A deeper and closer understanding of methods for removing protein bound uremic toxins and their efficiency is of paramount importance. This article discussed the most critical protein bound uremic toxins from different points of view including their chemistry, binding sites, interactions, and their biological impacts. Concerning the toxicity and high concentration, p-cresyl sulfate (PCS), Indoxyl sulfate (IS), 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), and Indole- 3-acetic acid (IAA) was chosen to study in this article. Results offered that the functional groups of mentioned PBUTs and the way that they interact with the adsorbent play an important role in finding substances for removal of them. Furthermore, the development of nanoparticle (NPs) for promising biomedical purposes has been explored. However, there is still a need for further investigation to find biocompatible substances focusing on the removal of PBUTs. PBUTs are a unique class of uremic toxins whose renal clearance mechanisms and role in uremic pathophysiology are still unclear. This review outlines the biochemical aspects of PBUT/protein binding in a view to explaining their renal formation to elimination mechanisms; some examples are drawn from routes involving albumin-binding with indoxyl sulphate, p-cresyl sulfate, p-cresyl glucuronide and hippuric acid. We have also highlighted the kinetic behaviors during dialytic removal of PBUTs to address future concerns regarding dialytic therapy.
Collapse
Affiliation(s)
- Sana Daneshamouz
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Ubong Eduok
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada; Department of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada.
| | - Ahmed Shoker
- Nephrology Division, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada; Saskatchewan Transplant Program, St. Paul's Hospital, 1702 20th Street West Saskatoon Saskatchewan S7M 0Z9, Canada
| |
Collapse
|
20
|
Ma YR, Xin MY, Li K, Wang H, Rao Z, Liu TX, Wu XA. An LC-MS/MS analytical method for the determination of uremic toxins in patients with end-stage renal disease. J Pharm Biomed Anal 2020; 191:113551. [PMID: 32889350 DOI: 10.1016/j.jpba.2020.113551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
End-stage renal disease (ESRD) is the last stage of chronic kidney disease, characterized by the progressive accumulation of uremic toxins (UTs). Hemodialysis is the standard approach to remove UTs from the body. Creatinine and urea levels are important indices of hemodialysis effectiveness, but the utility of those markers to estimate the removal of UTs, especially protein-binding UTs is limited. We developed an LC-MS/MS method for the quantification of UTs and to provide markers for evaluating hemodialysis effectiveness. These substances were extracted from serum samples after acetonitrile precipitation of protein and then separated on a HILIC column. The flow rate was 0.6 mL/min with a run time of 8.0 min for the negative ion mode and positive ion mode each. In this study 26 UTs were determined in normal subjects and in patients with ESRD before and after hemodialysis; serum levels were significantly higher in patients with ESRD than in subjects with normal renal function. A significant decrease in a variety of serum UTs were observed in patients after dialysis treatment, but no change in the levels of orotic acid, CMPF, kynurenic acid, p-cresol sulfate, phenyl-β-d-glucuronide, 4-ethylphenyl sulfate and 3-indolyl-β-d-glucopyranoside was found. These results show that some UTs could not be completely removed by hemodialysis. In addition, some biomarkers of different types of UTs are proposed for evaluating hemodialysis effectiveness.
Collapse
Affiliation(s)
- Yan-Rong Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China
| | - Ming-Yan Xin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Kan Li
- Department of Nephrology, the First Hospital of Lanzhou University, Lanzhou 730000 China
| | - Huan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi Rao
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China
| | - Tian-Xi Liu
- Department of Nephrology, the First Hospital of Lanzhou University, Lanzhou 730000 China.
| | - Xin-An Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000 China.
| |
Collapse
|
21
|
Mihaila SM, Faria J, Stefens MFJ, Stamatialis D, Verhaar MC, Gerritsen KGF, Masereeuw R. Drugs Commonly Applied to Kidney Patients May Compromise Renal Tubular Uremic Toxins Excretion. Toxins (Basel) 2020; 12:toxins12060391. [PMID: 32545617 PMCID: PMC7354492 DOI: 10.3390/toxins12060391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD), the secretion of uremic toxins is compromised leading to their accumulation in blood, which contributes to uremic complications, in particular cardiovascular disease. Organic anion transporters (OATs) are involved in the tubular secretion of protein-bound uremic toxins (PBUTs). However, OATs also handle a wide range of drugs, including those used for treatment of cardiovascular complications and their interaction with PBUTs is unknown. The aim of this study was to investigate the interaction between commonly prescribed drugs in CKD and endogenous PBUTs with respect to OAT1-mediated uptake. We exposed a unique conditionally immortalized proximal tubule cell line (ciPTEC) equipped with OAT1 to a panel of selected drugs, including angiotensin-converting enzyme inhibitors (ACEIs: captopril, enalaprilate, lisinopril), angiotensin receptor blockers (ARBs: losartan and valsartan), furosemide and statins (pravastatin and simvastatin), and evaluated the drug-interactions using an OAT1-mediated fluorescein assay. We show that selected ARBs and furosemide significantly reduced fluorescein uptake, with the highest potency for ARBs. This was exaggerated in presence of some PBUTs. Selected ACEIs and statins had either no or a slight effect at supratherapeutic concentrations on OAT1-mediated fluorescein uptake. In conclusion, we demonstrate that PBUTs may compete with co-administrated drugs commonly used in CKD management for renal OAT1 mediated secretion, thus potentially compromising the residual renal function.
Collapse
Affiliation(s)
- Silvia M. Mihaila
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - João Faria
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - Maurice F. J. Stefens
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - Dimitrios Stamatialis
- (Bio)artificial Organs, Department of Biomaterials Science and Technology, University of Twente, 7522 LW Enschede, The Netherlands;
| | - Marianne C. Verhaar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
| | - Karin G. F. Gerritsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
| | - Rosalinde Masereeuw
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
- Correspondence:
| |
Collapse
|
22
|
Ondrussek-Sekac M, Navas-Carrillo D, Orenes-Piñero E. Intestinal microbiota alterations in chronic kidney disease and the influence of dietary components. Crit Rev Food Sci Nutr 2020; 61:1490-1502. [PMID: 32393049 DOI: 10.1080/10408398.2020.1761771] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In chronic kidney disease, as in many other diseases, dysbiosis of intestinal microbiota has been reported as a disturbance or imbalance of the normal microbiome content that could disrupt the symbiotic relationship between the host and associated microbes, a disruption that can result in diseases. The disruption of gut barrier function allows the translocation of endotoxins and bacterial metabolites to the organism, thus contributing to uremic toxicity, inflammation and progression of chronic kidney disease. Increased intake of some nutrients and different nutritional strategies have been proposed to modulate gut microbiota, thus offering the opportunity for therapeutic interventions modifying the diet, decreasing uremic toxins production, increasing toxin excretion and finally modifying the normal microbiome content. The use of probiotics, prebiotics and low protein diets, among other approaches, could also improve this imbalance and/or decrease permeability of the intestinal barrier. In this review, the link between nutrients, microbiota and uremic toxins with chronic kidney disease progression has been studied thoroughly. Furthermore, this review outlines potential mechanisms of action and efficacy of probiotics, prebiotics and low protein diets as a new chronic kidney disease management tool.
Collapse
Affiliation(s)
- Mateo Ondrussek-Sekac
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | | | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| |
Collapse
|
23
|
Smith J, Pfaendtner J. Elucidating the Molecular Interactions between Uremic Toxins and the Sudlow II Binding Site of Human Serum Albumin. J Phys Chem B 2020; 124:3922-3930. [DOI: 10.1021/acs.jpcb.0c02015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Josh Smith
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| |
Collapse
|
24
|
|
25
|
Shi Y, Zhang Y, Tian H, Wang Y, Shen Y, Zhu Q, Ding F. Improved dialytic removal of protein-bound uremic toxins by intravenous lipid emulsion in chronic kidney disease rats. Nephrol Dial Transplant 2020; 34:1842-1852. [PMID: 31071223 DOI: 10.1093/ndt/gfz079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/22/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein-bound uremic toxins (PBUTs) have received extensive attention, as their accumulation leads to pleiotropic toxic biological effects, while the removal of these solutes by conventional dialysis therapies is severely hampered. This study aimed to examine whether increased removal of PBUTs could be achieved with intravenous lipid emulsion (ILE). METHODS PBUTs such as 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), p-cresyl sulfate (PCS) and indoxyl sulfate (IS) were spiked with human serum albumin (HSA) solution and the inhibitory effects of free fatty acid (FFA) on the binding of CMPF, PCS and IS to HSA were examined separately in vitro by ultrafiltration. In vitro dialysis of albumin solution was then performed to investigate the effects of fatty acid (FAs) mixtures infusion on the fractional removal of PBUTs. Finally, the inhibitory effect of FFA on the binding of PBUTs to albumin was examined in uremic rats, and blood purification therapy was conducted to calculate the reduction ratio (RR) and the total solute removal (TSR) of solutes. RESULTS The percentage protein binding of CMPF, PCS and IS decreased significantly with increasing FFAs concentrations, and the inhibitory effect was more remarkable with the addition of oleic acid or linoleic acid than that of eicosapentaenoic acid and docosahexaenoic acid. In vitro infusion of FAs increased the fractional removal of CMPF to 14.40 ± 2.38%. PCS, IS and indole-3-acetic acid removal increased from 8.00 ± 2.43%, 11.68 ± 1.54% and 15.38 ± 3.97%, respectively, at baseline to 28.21 ± 5.99%, 35.42 ± 5.27% and 40.18 ± 5.05%, respectively, when FAs were present. In vivo, rat serum concentrations of free PBUTs were significantly higher in the ILE group than in the control group, and administration of ILE resulted in higher RRs and more TSR for PBUTs after 3 h of hemodialysis (HD) therapy compared with the control group. CONCLUSIONS Administration of ILE effectively increased the dialytic removal of PBUTs. This method could be applied to current HD therapy.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yumei Zhang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huajun Tian
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Serum Levels and Removal by Haemodialysis and Haemodiafiltration of Tryptophan-Derived Uremic Toxins in ESKD Patients. Int J Mol Sci 2020; 21:ijms21041522. [PMID: 32102247 PMCID: PMC7073230 DOI: 10.3390/ijms21041522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Tryptophan is an essential dietary amino acid that originates uremic toxins that contribute to end-stage kidney disease (ESKD) patient outcomes. We evaluated serum levels and removal during haemodialysis and haemodiafiltration of tryptophan and tryptophan-derived uremic toxins, indoxyl sulfate (IS) and indole acetic acid (IAA), in ESKD patients in different dialysis treatment settings. This prospective multicentre study in four European dialysis centres enrolled 78 patients with ESKD. Blood and spent dialysate samples obtained during dialysis were analysed with high-performance liquid chromatography to assess uremic solutes, their reduction ratio (RR) and total removed solute (TRS). Mean free serum tryptophan and IS concentrations increased, and concentration of IAA decreased over pre-dialysis levels (67%, 49%, −0.8%, respectively) during the first hour of dialysis. While mean serum total urea, IS and IAA concentrations decreased during dialysis (−72%, −39%, −43%, respectively), serum tryptophan levels increased, resulting in negative RR (−8%) towards the end of the dialysis session (p < 0.001), despite remarkable Trp losses in dialysate. RR and TRS values based on serum (total, free) and dialysate solute concentrations were lower for conventional low-flux dialysis (p < 0.001). High-efficiency haemodiafiltration resulted in 80% higher Trp losses than conventional low-flux dialysis, despite similar neutral Trp RR values. In conclusion, serum Trp concentrations and RR behave differently from uremic solutes IS, IAA and urea and Trp RR did not reflect dialysis Trp losses. Conventional low-flux dialysis may not adequately clear Trp-related uremic toxins while high efficiency haemodiafiltration increased Trp losses.
Collapse
|
27
|
Nerusu A, Vaikuntapu PR, Chinthapalli DK, Podile AR, Subramanyam R. Truncated domains of human serum albumin improves the binding efficiency of uremic toxins: A surface plasmon resonance and computational approach. Int J Biol Macromol 2019; 155:1216-1225. [PMID: 31734369 DOI: 10.1016/j.ijbiomac.2019.11.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/09/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
Abstract
Albumin binding is the major cause for the toxicity of protein bound uremic toxins (PBUTs) in uremic patients. Albumin binding property is exploited to address this issue, as some of the extracorporeal dialysis systems use albumin as dialysate. In this line, a detailed study about binding of PBUTs to human serum albumin (HSA) and its domains gives valuable information. The focus of this work emphasizes the mechanism of binding of HSA and its domains with a few selected PBUTs such as hippuric acid (HA), indole acetic acid (IAA) and melatonin. The HSA domains (D2, D3 and D2-3) were expressed in Pichia pastoris and purified by using Albupure matrix. The binding of the expressed domains and HSA, with PBUTs, was measured using surface plasmon resonance and analyzed. All the three domains have significant affinity towards PBUTs, while D3 had greater affinity for all the three selected PBUTs. Docking studies showed that the basic amino acid, lysine, was forming hydrogen bond with PUBTs inorder to stabile these complex. This study would be having therapeutic importance for preparing the extracorporeal dialysis systems, in combination of different domains of HSA to remove the PBUTs.
Collapse
Affiliation(s)
- Aparna Nerusu
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Papa Rao Vaikuntapu
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Dinesh Kumar Chinthapalli
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Appa Rao Podile
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|
28
|
Lin YT, Wu PH, Lee HH, Mubanga M, Chen CS, Kuo MC, Chiu YW, Kuo PL, Hwang SJ. Indole-3 acetic acid increased risk of impaired cognitive function in patients receiving hemodialysis. Neurotoxicology 2019; 73:85-91. [PMID: 30826344 DOI: 10.1016/j.neuro.2019.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/25/2019] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
Patients receiving hemodialysis (HD) have a higher risk of cognitive impairment and dementia than the general population. The accumulation of uremic toxins in the brain causes uremic encephalopathy, however, limited data exists to elucidate the effect of protein-bound uremic toxins on cognitive function. Here we investigate the effect of indole-3 acetic acid (IAA) and hippuric acid (HA), two different protein-bound uremic toxins from amino acid derivatives, on cognitive function by Silico and in a clinical study. Prevalent HD patients were enrolled in two independent hospitals. Serum IAA and HA were measured using mass spectrometry. Cognitive performance was measured using Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Cognitive Abilities Screening Instrument (CASI) by trained psychologists. Using silico data to predict the effect of blood-brain barrier penetration was performed. The silico data demonstrated that IAA and HA had positive blood-brain barrier penetration ability. Amongst the 230 HD patients, serum IAA was associated with poor MMSE score (β= -0.90, 95% CI -1.61 to -0.19) and poor CASI score (β= -3.29, 95% CI -5.69 to -0.88) in stepwise multiple linear regression analysis. In logistic regression model, Serum IAA was also associated with cognitive impairment based on MMSE definition (OR, 1.96, 95% CI 1.10, 3.5) and CASI definition (OR, 2.09, 95% CI 1.21, 3.61). There was no correlation between Serum HA levels and cognitive function status. In conclusion, IAA, not HA, was associated with cognitive impairment in HD patients. Further large scale and prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hei-Hwa Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mwenya Mubanga
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Cheng-Sheng Chen
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Institute of Population Sciences, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|