1
|
Sudaarsan ASK, Ghosh AR. Appraisal of postbiotics in cancer therapy. Front Pharmacol 2024; 15:1436021. [PMID: 39372197 PMCID: PMC11449718 DOI: 10.3389/fphar.2024.1436021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a multifactorial disease with an increased mortality rate around the world for the past several decades. Despite advancements in treatment strategies, lower survival rates, drug-associated side effects, and drug resistance create a need for novel anticancer agents. Ample evidence shows that imbalances in the gut microbiota are associated with the formation of cancer and its progression. Altering the gut microbiota via probiotics and their metabolites has gained attention among the research community as an alternative therapy to treat cancer. Probiotics exhibit health benefits as well as modulate the immunological and cellular responses in the host. Apart from probiotics, their secreted products like bacteriocins, exopolysaccharides, short-chain fatty acids, conjugated linoleic acid, peptidoglycan, and other metabolites are found to possess anticancer activity. The beneficiary role of these postbiotic compounds is widely studied for characterizing their mechanism and mode of action that reduces cancer growth. The present review mainly focuses on the postbiotic components that are employed against cancer with their reported mechanism of action. It also describes recent research works carried out so far with specific strain and anticancer activity of derived compounds both in vitro and in vivo, validating that the probiotic approach would pave an alternative way to reduce the burden of cancer.
Collapse
|
2
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
3
|
Mohammadi A, Kazemipour N, Ghorbankhani GA, Morovati S, Hashempour Sadeghian M. Glycated nisin enhances nisin's cytotoxic effects on breast cancer cells. Sci Rep 2024; 14:17808. [PMID: 39090195 PMCID: PMC11294603 DOI: 10.1038/s41598-024-68765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Antimicrobial peptides, such as nisin, are proposed as promising agents for cancer treatment. While glycation has been recognized as an effective method for enhancing various physicochemical properties of nisin, its anticancer effects remain unexplored. Therefore, we aimed to assess the anticancer potential of glycated nisin against MDA-MB-231 cells. The MDA-MB cells were treated with increasing concentrations of nisin and glycated nisin for 24, 48, and 72 h. The IC50 values for nisin were higher than those for glycated nisin. Glycated nisin at concentrations of 20 and 40 µg/mL decreased cell viability more than nisin at the same concentrations. The rate of apoptosis in the group treated with 20 µg/mL of nisin was lower compared to other treatment groups, and no significant difference in apoptosis rates was observed at different time points (p > 0.05). However, in the glycated nisin groups with concentrations of 10, 20, and 40 µg/mL, the level of apoptosis was very high after 24 h (73-81% of cells undergoing apoptosis). Overall, our study suggests that glycated nisin exhibits stronger cytotoxic effects on MDA-MB-231 cells, primarily involving the induction of apoptosis. This indicates its potential utilization as an alternative approach to address the issue of drug resistance in cancer cells.
Collapse
Affiliation(s)
- Ali Mohammadi
- Division of Virology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Gholam Abbas Ghorbankhani
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
4
|
Wang Y, Wang Y, Sun T, Xu J. Bacteriocins in Cancer Treatment: Mechanisms and Clinical Potentials. Biomolecules 2024; 14:831. [PMID: 39062544 PMCID: PMC11274894 DOI: 10.3390/biom14070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a severe threat to human health. Although conventional chemotherapy remains a cornerstone of cancer treatment, its significant side effects and the growing issue of drug resistance necessitate the urgent search for more efficient and less toxic anticancer drugs. In recent years, bacteriocins, antimicrobial peptides of microbial origin, have garnered significant attention due to their targeted antitumor activity. This unique activity is mainly attributed to their cationic and amphiphilic nature, which enables bacteriocins to specifically kill tumor cells without harming normal cells. When involving non-membrane-disrupting mechanisms, such as apoptosis induction, cell cycle blockade, and metastasis inhibition, the core mechanism of action is achieved by disrupting cell membranes, which endows bacteriocins with low drug resistance and high selectivity. However, the susceptibility of bacteriocins to hydrolysis and hemolysis in vivo limits their clinical application. To overcome these challenges, structural optimization of bacteriocins or their combination with nanotechnology is proposed for future development. This review aims to study the mechanism of action and current research status of bacteriocins as anticancer treatments, thus providing new insights for their clinical development and application.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
5
|
da Silva Oliveira W, Teixeira CRV, Mantovani HC, Dolabella SS, Jain S, Barbosa AAT. Nisin variants: What makes them different and unique? Peptides 2024; 177:171220. [PMID: 38636811 DOI: 10.1016/j.peptides.2024.171220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nisin A is a lantibiotic bacteriocin typically produced by strains of Lactococcus lactis. This bacteriocin has been approved as a natural food preservative since the late 1980 s and shows antimicrobial activity against a range of food-borne spoilage and pathogenic microorganisms. The therapeutic potential of nisin A has also been explored increasingly both in human and veterinary medicine. Nisin has been shown to be effective in treating bovine mastitis, dental caries, cancer, and skin infections. Recently, it was demonstrated that nisin has an affinity for the same receptor used by SARS-CoV-2 to enter human cells and was proposed as a blocker of the viral infection. Several nisin variants produced by distinct bacterial strains or modified by bioengineering have been described since the discovery of nisin A. These variants present modifications in the peptide structure, biosynthesis, mode of action, and spectrum of activity. Given the importance of nisin for industrial and therapeutic applications, the objective of this study was to describe the characteristics of the nisin variants, highlighting the main differences between these molecules and their potential applications. This review will be useful to researchers interested in studying the specifics of nisin A and its variants.
Collapse
Affiliation(s)
| | | | | | - Silvio Santana Dolabella
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Sona Jain
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana Andréa Teixeira Barbosa
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
6
|
Lewies A, Botes L, van den Heever JJ, Dohmen PM, Smit FE. Monomeric glutaraldehyde fixation and amino acid detoxification of decellularized bovine pericardium for production of biocompatible tissue with tissue-guided regenerative potential. Heliyon 2023; 9:e19712. [PMID: 37809671 PMCID: PMC10559009 DOI: 10.1016/j.heliyon.2023.e19712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
The effect of monomeric glutaraldehyde fixation and amino acid detoxification on biocompatibility and tissue-guided regenerative potential of decellularized bovine pericardium was evaluated. The degree of cross-linking, porosity, enzymatic degradation, alpha-galactosyl content, the efficacy of detoxification, and cytotoxicity towards human epithelial cells were assessed. Tissue was subcutaneously implanted for eight weeks in male juvenile Sprague-Dawley rats, and mechanical properties, host cell infiltration, and calcification were evaluated. Three groups were compared i) decellularized tissue, ii) decellularized, monomeric glutaraldehyde fixed and amino acid detoxified tissue, and iii) commercial glutaraldehyde fixed non-decellularized tissue (Glycar®) (n = 6 rats per group). The fixation process gave a high degree of cross-linking (>85%), and was resistant to enzymatic degradation, with no significant effect on porosity. The detoxification process was effective, and the tissue was not toxic to mammalian cells in vitro. Tissue from both decellularized groups had significantly higher (p < 0.05) porosity and host cell infiltration in vivo. The process mitigated calcification. A non-significant decrease in the alpha-galactosyl content was observed, which increased when including the alpha-galactosidase enzyme. Mechanical properties were maintained. The fixation and detoxification process adequately removes free aldehyde groups and reduces toxicity, preventing enzymatic degradation and allowing for host cell infiltration while mitigating calcification and retaining the mechanical properties of the tissue. This process can be considered for processing decellularized bovine pericardium with tissue-guided regeneration potential for use in cardiovascular bioprostheses; however, methods of further reducing antigenicity, such as the use of enzymes, should be investigated.
Collapse
Affiliation(s)
- Angélique Lewies
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Lezelle Botes
- Department of Health Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | | | - Pascal Maria Dohmen
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Cardiac Surgery, Heart Centre Rostock, University of Rostock, Germany
| | - Francis Edwin Smit
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
7
|
Fandiño-Devia E, Santa-González GA, Klaiss-Luna MC, Guevara-Lora I, Tamayo V, Manrique-Moreno M. ΔM4: Membrane-Active Peptide with Antitumoral Potential against Human Skin Cancer Cells. MEMBRANES 2023; 13:671. [PMID: 37505037 PMCID: PMC10385147 DOI: 10.3390/membranes13070671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Peptides have become attractive potential agents due to their affinity to cancer cells. In this work, the biological activity of the peptide ΔM4 against melanoma cancer cell line A375, epidermoid carcinoma cell line A431, and non-tumoral HaCaT cells was evaluated. The cytotoxic MTT assay demonstrates that ΔM4 show five times more activity against cancer than non-cancer cells. The potential membrane effect of ΔM4 was evaluated through lactate dehydrogenase release and Sytox uptake experiments. The results show a higher membrane activity of ΔM4 against A431 in comparison with the A375 cell line at a level of 12.5 µM. The Sytox experiments show that ΔM4 has a direct effect on the permeability of cancer cells in comparison with control cells. Infrared spectroscopy was used to study the affinity of the peptide to membranes resembling the composition of tumoral and non-tumoral cells. The results show that ΔM4 induces a fluidization effect on the tumoral lipid system over 5% molar concentration. Finally, to determine the appearance of phosphatidylserine on the surface of the cell, flow cytometry analyses were performed employing an annexin V-PE conjugate. The results suggest that 12.5 µM of ΔM4 induces phosphatidylserine translocation in A375 and A431 cancer cells. The findings of this study support the potential of ΔM4 as a selective agent for targeting cancer cells. Its mechanism of action demonstrated selectivity, membrane-disrupting effects, and induction of phosphatidylserine translocation.
Collapse
Affiliation(s)
- Estefanía Fandiño-Devia
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Gloria A Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, A.A. 54959, Medellín 050010, Colombia
| | - Maria C Klaiss-Luna
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Verónica Tamayo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| |
Collapse
|
8
|
Patil SM, Barji DS, Aziz S, McChesney DA, Bagde S, Muttil P, Kunda NK. Pulmonary delivery of spray-dried Nisin ZP antimicrobial peptide for non-small cell lung cancer (NSCLC) treatment. Int J Pharm 2023; 634:122641. [PMID: 36709012 DOI: 10.1016/j.ijpharm.2023.122641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Nisin ZP is an antimicrobial peptide (AMP) produced by the bacterium Lactococcus lactis, and we have previously demonstrated anticancer activity in NSCLC (A549) cells. In this study, we formulated a nisin ZP dry powder (NZSD) using a spray dryer to facilitate inhaled delivery for the treatment of NSCLC. Nisin ZP was spray-dried with mannitol, l-leucine, and trehalose in a ratio of 75:15:10 using Büchi mini spray-dryer B-290 in different drug loadings (10, 20, and 30% w/w). NZSD powder revealed a good powder yield of >55% w/w with ≤3 % w/w moisture content and high nisin ZP drug loading for all the peptide ratios. The NZSD powder particles were irregularly shaped with corrugated morphology. The presence of an endothermic peak in DSC thermograms and attenuated crystalline peaks in PXRD diffractograms confirmed the semi-crystalline powder nature of NZSD. The anticancer activity of nisin ZP was maintained after fabricating it into NZSD powder and showed a similar inhibitory concentration to free nisin ZP. Stability studies indicated that NZSD powders were stable for three months at 4 and 25 ℃ with more than 90% drug content and semi-crystalline nature, as confirmed by DSC and PXRD. Aerosolization studies performed using NGI indicated an aerodynamic diameter (MMAD) within the desired range (1-5 µm) and a high fine particle fraction (FPF > 75%) for all peptide ratios, suggesting powder deposition in the lung's respiratory airways. In conclusion, a dry powder of nisin ZP was formulated using a spray dryer with enhanced storage stability and suitable for inhaled delivery.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Sophia Aziz
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - David A McChesney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shapali Bagde
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
9
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
10
|
Nisin delivery by nanosponges increases its anticancer activity against in-vivo melanoma model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Chernyshova DN, Tyulin AA, Ostroumova OS, Efimova SS. Discovery of the Potentiator of the Pore-Forming Ability of Lantibiotic Nisin: Perspectives for Anticancer Therapy. MEMBRANES 2022; 12:membranes12111166. [PMID: 36422158 PMCID: PMC9694817 DOI: 10.3390/membranes12111166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 05/12/2023]
Abstract
This study was focused on the action of lantibiotic nisin on the phospholipid membranes. Nisin did not produce ion-permeable pores in the membranes composed of DOPC or DOPE. The introduction of DOPS into bilayer lipid composition led to a decrease in the threshold detergent concentration of nisin. An addition of nisin to DOPG- and TOCL-enriched bilayers caused the formation of well-defined ion pores of various conductances. The transmembrane macroscopic current increased with the second power of the lantibiotic aqueous concentration, suggesting that the dimer of nisin was at least involved in the formation of conductive subunit. The pore-forming ability of lantibiotic decreased in the series: DOPC/TOCL ≈ DOPE/TOCL >> DOPC/DOPG ≥ DOPE/DOPG. The preferential interaction of nisin to cardiolipin-enriched bilayers might explain its antitumor activity by pore-formation in mitochondrial membranes. Small natural molecules, phloretin and capsaicin, were found to potentiate the membrane activity of nisin in the TOCL-containing membranes. The effect was referred to as changes in the membrane boundary potential at the adsorption of small molecules. We concluded that the compounds diminishing the membrane boundary potential should be considered as the potentiator of the nisin pore-forming ability that can be used to develop innovative formulations for anticancer therapy.
Collapse
|
12
|
Thanjavur N, Sangubotla R, Lakshmi BA, Rayi R, Mekala CD, Reddy AS, Viswanath B. Evaluating the antimicrobial and apoptogenic properties of bacteriocin (nisin) produced by Lactococcus lactis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Balcik-Ercin P, Sever B. An investigation of bacteriocin nisin anti-cancer effects and FZD7 protein interactions in liver cancer cells. Chem Biol Interact 2022; 366:110152. [PMID: 36084725 DOI: 10.1016/j.cbi.2022.110152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022]
Abstract
The bacteriocin, nisin, produced by Lactococcus and Streptococcus species during fermentation, is widely used for bio preservatives in a wide variety of foods. Liver cancer has a high mortality rate and is the fourth leading cause of cancer-related deaths worldwide. Recently, researchers have shown the anti-cancer effects of nisin through in vitro and in vivo studies. This study aimed to investigate the effect of nisin on liver cancer cell lines, which represented two subgroups of the disease model. Nisin exhibited significant growth inhibition and apoptosis in both cell lines, HuH-7, and SNU182. Drug resistance is the main problem in liver cancer and the epithelial-to-mesenchymal transition has a role in the development of drug resistance in hepatocellular carcinoma. The expression of EMT transcription factors ZEB1, SNAI1, and TWIST1 were analyzed depending on nisin treatment, TWIST1 expression was down-regulated after nisin treatment compared to the untreated SNU182 and HuH-7 cell lines. Besides, due to the reported correlation between the overexpression of Frizzled (FZD) proteins, specifically FZD7, in primary hepatocellular carcinomas (HCCs), molecular docking was assessed for Nisin A in the binding site of FZD7. Results confirmed that Nisin A was able to form important hydrogen bonding with key residues. This research not only determined the role of nisin in different liver cancer cell models but it also provided the first result of FZD7 and nisin interaction.
Collapse
Affiliation(s)
- Pelin Balcik-Ercin
- Department of Biology, Faculty of Science, Dokuz Eylul University, Izmir, 35390, Turkey.
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, 26470, Turkey
| |
Collapse
|
14
|
Anticancer activity of D-LAK-120A, an antimicrobial peptide, in non-small cell lung cancer (NSCLC). Biochimie 2022; 201:7-17. [PMID: 35764196 DOI: 10.1016/j.biochi.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 12/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of global cancer mortalities and accounts for approximately 80-85% of reported lung cancer cases. Conventional chemotherapeutics show limited application because of poor tumor selectivity and acquired drug resistance. Antimicrobial peptides (AMPs) have gained much attention as potential anticancer therapeutics owing to their high potency and high target selectivity and specificity with limited scope for drug resistance. In this study, D-LAK (D-LAK-120A), a cationic AMP, was evaluated for its anticancer efficacy in various NSCLC cell lines. D-LAK peptide demonstrated enhanced cytotoxicity in A549, H358, H1975, and HCC827 cell lines with inhibitory concentrations between 4.0 and 5.5 μM. An increase in the lactate dehydrogenase (LDH) levels and propidium iodide (PI) uptake across compromised membrane suggested membranolytic activity as an inhibition pathway. In addition, we found D-LAK induced lung cancer cell apoptosis and arrested cells in the S phase (DNA synthesis) of cell cycle. Moreover, a decreased mitochondrial membrane potential and elevated ROS levels were observed after D-LAK treatment, suggesting induction of mitochondria-mediated apoptosis. Additionally, D-LAK inhibited single cell proliferation and cancer cell migration in vitro. The tumor reduction observed in the 3D spheroid assay further suggests the potential use of D-LAK as an anticancer agent for NSCLC treatment. Our results postulate innovative insights on the anticancer mechanism of D-LAK, which may contribute to its further development into preclinical studies and a potential therapeutic.
Collapse
|
15
|
Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Nisin and nisin-loaded nanoparticles: a cytotoxicity investigation. Drug Dev Ind Pharm 2022; 48:310-321. [PMID: 35938875 DOI: 10.1080/03639045.2022.2111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Nisin is an antibacterial peptide with anticancer properties, but the main drawback is its rapid enzymatic degradation and limited permeation across the cell membrane. This research aims to to overcome these drawbacks by developing nisin-loaded nanoparticles with improved cytotoxic effects. SIGNIFICANCE PLGA nanoparticles are one of the most effective biodegradable and biocompatible drug delivery carriers. In the present study, nisin-loaded nanoparticles showed enhanced anticancer effects. METHODS NPN was prepared by a double emulsion solvent evaporation method and characterized for different parameters. The cytotoxic investigation of NPN was carried out on various cell lines, including A549, SW-620, HT-29, PC-3, MDA-MB-231, MCF-7, MiaPaca-2, and fR2 by sulforhodamine B (SRB) assay. Mechanistic investigation of cellular cytotoxicity was performed by using bright-field microscopy, DAPI staining, intracellular reactive oxygen species (ROS), changes in mitochondrial membrane potential (ΔΨm), and western blotting. A comparative cytotoxicity study of nisin and NPN was performed on normal breast epithelial cells (fR-2). RESULTS NPN showed spherical shape, 289.09 ± 3.63 nm particle size, and 63.37 ± 3.12% entrapment efficiency. NPN was more cytotoxic to the MDA-MB-231 cell line, showing higher nuclear fragmentation, ROS generation, and depletion of ΔΨm like apoptosis signs compared to nisin and with no cytotoxicity on normal cells. CONCLUSIONS The findings suggest that nisin delivery via PLGA nanoparticles can be used to treat cancer without significant effects on healthy cells.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| | - Chittaranjan Behera
- Formulation & Drug Delivery Division CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, India-180001
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prem N Gupta
- Formulation & Drug Delivery Division CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, India-180001
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| |
Collapse
|
16
|
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022; 12:819563. [PMID: 35280755 PMCID: PMC8904739 DOI: 10.3389/fonc.2022.819563] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted global health issue and one of the leading causes of death worldwide. In recent years, medical science has achieved great advances in the diagnosis and treatment of cancer. Despite the numerous advantages of conventional cancer therapies, there are major drawbacks including severe side effects, toxicities, and drug resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. In this review, we present the structure, biological function, and underlying mechanisms of AMPs. The recent experimental studies and clinical trials on anticancer peptides in different cancer types as well as the challenges of their clinical application have also been discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amirhesam Babajani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
A Comprehensive Review on the Anticancer Potential of Bacteriocin: Preclinical and Clinical Studies. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10386-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Patil SM, Kunda NK. Nisin ZP, an Antimicrobial Peptide, Induces Cell Death and Inhibits Non-Small Cell Lung Cancer (NSCLC) Progression in vitro in 2D and 3D Cell Culture. Pharm Res 2022; 39:2859-2870. [PMID: 35246758 DOI: 10.1007/s11095-022-03220-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022]
Abstract
Lung cancer is the leading cause of cancer deaths globally with most of the reported cases (> 85%) associated with non-small cell lung cancer (NSCLC). Current therapies have enhanced the overall survival rate of patients but treatment-related adverse effects and increase in drug-resistance limit the success of these treatment options. Antimicrobial peptides (AMPs) have gained interest as anticancer agents as they selectively target cancer cells and decrease the possibility of resistance. Nisin ZP is a polycyclic antimicrobial peptide produced by the Gram-positive bacterium, Lactococcus lactis and is commonly used as a food preservative. Nisin ZP has recently demonstrated anticancer activity in melanoma, head and neck squamous cell carcinoma, hepatic, colon, and blood cancer. In this study, we evaluated the anticancer potential of nisin ZP and assessed the underlying mechanisms in NSCLC cells. The results revealed that nisin ZP induced selective toxicity in cancer (A549 and H1299) cells compared to healthy (HEK293) cells after 48 h of treatment. Nisin ZP exposure induced apoptosis and cell cycle arrest (G0/G1 phase) in NSCLC cells irrespective of tumor protein p53 expression. The cancer cell proliferation was inhibited via non-membranolytic pathways by mitochondrial membrane depolarization and elevation in reactive oxygen species (ROS) generation. Furthermore, nisin ZP decreased cancer cells' clonal expansion and migration, demonstrating potential use against highly metastatic NSCLC. The 3D spheroid growth and cell viability of the A549 cells were significantly inhibited by nisin ZP compared to control. Overall, the results suggest an excellent antitumor potential in vitro and, thus, can further be developed as a novel therapeutic for NSCLC.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
19
|
Zheng Z, Li M, Jiang P, Sun N, Lin S. Peptides derived from sea cucumber accelerate cells proliferation and migration for wound healing by promoting energy metabolism and upregulating the ERK/AKT pathway. Eur J Pharmacol 2022; 921:174885. [DOI: 10.1016/j.ejphar.2022.174885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
20
|
Khazaei Monfared Y, Mahmoudian M, Cecone C, Caldera F, Zakeri-Milani P, Matencio A, Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers (Basel) 2022; 14:polym14030594. [PMID: 35160583 PMCID: PMC8840141 DOI: 10.3390/polym14030594] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
The great variability of cancer types demands novel drugs with broad spectrum, this is the case of Nisin, a polycyclic antibacterial peptide that recently has been considered for prevention of cancer cells growth. As an accepted food additive, this drug would be very useful for intestinal cancers, but the peptide nature would make easier its degradation by digestion procedures. For that reason, the aim of present study to investigate the protective effect of two different β-cyclodextrin-based nanosponges (carbonyl diimidazole and pyromellitic dianhydride) and their anti-cancer enhancement effect of Nisin-Z encapsulated with against colon cancer cells (HT-29). To extend its possible use, a comparison with breast (MCF-7) cancer cell was carried out. The physicochemical properties, loading efficiency, and release kinetics of Nisin complex with nanosponges were studied. Then, tricin-SDS-PAGE electrophoresis was used to understand the effect of NSs on stability of Nisin-Z in the presence of gastric peptidase pepsin. In addition, the cytotoxicity and cell membrane damage of Nisin Z were evaluated by using the MTT and LDH assay, which was complemented via Annexin-V/ Propidium Iodide (PI) by using flowcytometry. CD-NS are able to complex Nisin-Z with an encapsulation efficiency around 90%. A protective effect of Nisin-Z complexed with CD-NSs was observed in presence of pepsin. An increase in the percentage of apoptotic cells was observed when the cancer cells were exposed to Nisin Z complexed with nanosponges. Interestingly, Nisin Z free and loaded on PMDA/CDI-NSs is more selectively toxic towards HT-29 cells than MCF-7 cancer cells. These results indicated that nanosponges might be good candidates to protect peptides and deliver drugs against intestinal cancers.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran;
| | - Claudio Cecone
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Fabrizio Caldera
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Centre and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Adrián Matencio
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Francesco Trotta
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| |
Collapse
|
21
|
Sadri H, Aghaei M, Akbari V. Nisin induces apoptosis in cervical cancer cells via reactive oxygen species generation and mitochondrial membrane potential changes. Biochem Cell Biol 2022; 100:136-141. [PMID: 34986025 DOI: 10.1139/bcb-2021-0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nisin, an antimicrobial peptide produced by Lactococcus lactis, is widely used as a safe food preservative and has been recently attracting the attention of many researchers as a potential anticancer agent. The cytotoxicity of nisin against HeLa, OVCAR-3, SK-OV-3, and HUVEC cells was evaluated using MTT assay. The apoptotic effect of nisin was identified by Annexin-V/propidium iodide assay, and then it was further confirmed by western blotting analysis, mitochondrial membrane potential (ΔΨm) analysis, and reactive oxygen species (ROS) assay. The MTT assay showed concentration-dependent cytotoxicity of nisin towards cancer cell lines, with the IC50 values of 11.5-23 µM, but less toxicity against normal endothelial cells. Furthermore, treatment of cervical cancer cells with 12 µM nisin significantly (P<0.05) increased the Bax/Bcl-2 ratio (4.9-fold), reduced ΔΨm (70%), and elevated ROS levels (1.7-fold). These findings indicated that nisin might have anticancer and apoptogenic activities through mitochondrial dysfunction and oxidative stress damage in cervical cancer cells.
Collapse
Affiliation(s)
- Houri Sadri
- Isfahan University of Medical Sciences, 48455, Department of Pharmaceutical Biotechnology, Isfahan, Iran (the Islamic Republic of);
| | - Mahmoud Aghaei
- Isfahan University of Medical Sciences, 48455, Isfahan, Isfahan, Iran (the Islamic Republic of);
| | - Vajihe Akbari
- Isfahan University of Medical Sciences, 48455, Department of Pharmaceutical Biotechnology, Isfahan, Iran (the Islamic Republic of);
| |
Collapse
|
22
|
Zainodini N, Hajizadeh MR, Mirzaei MR. Evaluation of Apoptotic Gene Expression in Hepatoma Cell Line (HepG2) Following Nisin Treatment. Asian Pac J Cancer Prev 2021; 22:1413-1419. [PMID: 34048169 PMCID: PMC8408378 DOI: 10.31557/apjcp.2021.22.5.1413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
Objective: The present study aims to examine the effects of nisin on the survival and apoptosis of the hepatoma cell line HepG2 and to investigate possible apoptosis pathways activated by nisin. Materials and Methods: For this purpose, viability and apoptosis of the cells were accomplished by the nisin treatment using the MTT assay and Annexin-V-fluorescein/propidium iodide (PI) double staining, respectively. Additionally, the human apoptosis PCR array was performed to determine pathways or genes activated by nisin during possible apoptosis. Results: The results of the present study showed that nisin was able to decrease cell viability (IC50 ~ 40 µg/ml) in a dose-dependent manner and could induce apoptosis in HepG2 cells. PCR data indicated a considerable increase in the expression of genes, such as caspase and BCL2 families, involved in the induction of apoptosis. Conclusions: The data from this study showed that overexpression of genes involved in the intrinsic pathway of apoptosis, especially caspase-9 and BID, increased apoptosis in HepG2 cells treated by nisin, compared to the control group.
Collapse
Affiliation(s)
- Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
23
|
Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, Zhang J, Zhong J. Bacteriocins: Potential for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5518825. [PMID: 33936381 PMCID: PMC8055394 DOI: 10.1155/2021/5518825] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yanhong Cao
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
24
|
Heymich ML, Nißl L, Hahn D, Noll M, Pischetsrieder M. Antioxidative, Antifungal and Additive Activity of the Antimicrobial Peptides Leg1 and Leg2 from Chickpea. Foods 2021; 10:foods10030585. [PMID: 33799496 PMCID: PMC7998185 DOI: 10.3390/foods10030585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/29/2023] Open
Abstract
The fight against food waste benefits from novel agents inhibiting spoilage. The present study investigated the preservative potential of the antimicrobial peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) recently identified in chickpea legumin hydrolysates. Checkerboard assays revealed strong additive antimicrobial effects of Leg1/Leg2 with sodium benzoate against Escherichia coli and Bacillus subtilis with fractional inhibitory concentrations of 0.625 and 0.75. Additionally, Leg1/Leg2 displayed antifungal activity with minimum inhibitory concentrations of 500/250 µM against Saccharomyces cerevisiae and 250/125 µM against Zygosaccharomyces bailii. In contrast, no cytotoxic effects were observed against human Caco-2 cells at concentrations below 2000 µM (Leg1) and 1000 µM (Leg2). Particularly Leg2 showed antioxidative activity by radical scavenging and reducing mechanisms (maximally 91.5/86.3% compared to 91.2/94.7% for the control ascorbic acid). The present results demonstrate that Leg1/Leg2 have the potential to be applied as preservatives protecting food and other products against bacterial, fungal and oxidative spoilage.
Collapse
Affiliation(s)
- Marie-Louise Heymich
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
| | - Laura Nißl
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany; (L.N.); (M.N.)
| | - Dominik Hahn
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany; (L.N.); (M.N.)
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
- Correspondence:
| |
Collapse
|
25
|
Chauhan S, Dhawan DK, Saini A, Preet S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol Res 2021; 167:105529. [PMID: 33675962 DOI: 10.1016/j.phrs.2021.105529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022]
Abstract
Despite recent advances in the treatment of colorectal cancer (CRC), low patient survival rate due to emergence of drug resistant cancer cells, metastasis and multiple deleterious side effects of chemotherapy, is a cause of public concern globally. To negate these clinical conundrums, search for effective and harmless novel molecular entities for the treatment of CRC is an urgent necessity. Since antimicrobial peptides (AMPs) are part of innate immunity of living beings, it is quite imperative to look for essential attributes of these peptides which may contribute to their effectiveness against carcinogenesis. Once identified, those characteristics can be suitably modified using several synthetic and computational techniques to further enhance their selectivity and pharmacokinetic profiles. Hence, this review analyses scientific reports describing the antiproliferative action of AMPs derived from several sources, particularly focusing on various colon cancer in vitro/in vivo investigations. On perusal of the literature, it appears that AMPs based therapeutics would definitely find special place in CRC therapy in future either alone or as an adjunct to chemotherapy provided some necessary alterations are made in their natural structures to make them more compatible with modern clinical practice. In this context, further in-depth research is warranted in adequate in vivo models.
Collapse
Affiliation(s)
- Sonia Chauhan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Avneet Saini
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
26
|
Mohammadi P, Zangeneh M, Mohammadi-Motlagh HR, Khademi F. The Antimicrobial Peptide, Nisin, Synergistically Enhances the Cytotoxic and Apoptotic Effects of Rituximab Treatment on Human Burkitt's Lymphoma Cell Lines. Rep Biochem Mol Biol 2021; 9:250-256. [PMID: 33649717 DOI: 10.29252/rbmb.9.3.250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Non-Hodgkin's lymphomas comprise the most common hematological cancers worldwide and consist of a heterogenous group of malignancies affecting the lymphoid system. Treatment of non-Hodgkin's lymphoma has been significantly enhanced with the addition of Rituximab to the standard chemotherapy regimen. However, even with the advancement of treatment patients continue to relapse and develop resistance to Rituximab, rendering subsequent treatments unsuccessful. The use of novel drugs with unique antitumor mechanisms has gained considerable attention. In this study, we explored the in vitro anti-cancer effects of the combined therapy of Rituximab and Nisin on human Burkitt's lymphoma cells. Methods The human Burkitt's lymphoma cells lines, Raji and Daudi, were treated with Nisin, Rituximab, or a combination of the two agents at various concentrations. Cytotoxicity following treatment was determined using cell viability assay. The degree of apoptosis was verified via flow cytometric analysis using FITC annexin V/PI staining. Results Our findings show that the combined treatment of Rituximab and Nisin results in a more significant reduction in the survival of Raji and Daudi Burkitt's lymphoma cells, compared to Nisin or Rituximab treatment alone. Additionally, our results indicate that Nisin can induce a significant degree of apoptosis in the Burkitt's lymphoma cells compared to the negative controls. However, the addition of Nisin to the Rituximab treatment synergistically enhances the apoptotic antitumor effect. Conclusion This study demonstrates the synergistic antitumor effect of Nisin treatment in vitro to enhance tumor cell apoptosis and the potential value of Nisin as an adjunct therapy in the treatment of lymphoma.
Collapse
Affiliation(s)
- Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mina Zangeneh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
27
|
Vitale I, Yamazaki T, Wennerberg E, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. Targeting Cancer Heterogeneity with Immune Responses Driven by Oncolytic Peptides. Trends Cancer 2021; 7:557-572. [PMID: 33446447 DOI: 10.1016/j.trecan.2020.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Accumulating preclinical and clinical evidence indicates that high degrees of heterogeneity among malignant cells constitute a considerable obstacle to the success of cancer therapy. This calls for the development of approaches that operate - or enable established treatments to operate - despite such intratumoral heterogeneity (ITH). In this context, oncolytic peptides stand out as promising therapeutic tools based on their ability to drive immunogenic cell death associated with robust anticancer immune responses independently of ITH. We review the main molecular and immunological pathways engaged by oncolytic peptides, and discuss potential approaches to combine these agents with modern immunotherapeutics in support of superior tumor-targeting immunity and efficacy in patients with cancer.
Collapse
Affiliation(s)
- Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-IRCCS, Candiolo, Italy
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Baldur Sveinbjørnsson
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
28
|
Miller HC, Louw R, Mereis M, Venter G, Boshoff JD, Mienie L, van Reenen M, Venter M, Lindeque JZ, Domínguez-Martínez A, Quintana A, van der Westhuizen FH. Metallothionein 1 Overexpression Does Not Protect Against Mitochondrial Disease Pathology in Ndufs4 Knockout Mice. Mol Neurobiol 2021; 58:243-262. [PMID: 32918239 DOI: 10.1007/s12035-020-02121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 01/24/2023]
Abstract
Mitochondrial diseases (MD), such as Leigh syndrome (LS), present with severe neurological and muscular phenotypes in patients, but have no known cure and limited treatment options. Based on their neuroprotective effects against other neurodegenerative diseases in vivo and their positive impact as an antioxidant against complex I deficiency in vitro, we investigated the potential protective effect of metallothioneins (MTs) in an Ndufs4 knockout mouse model (with a very similar phenotype to LS) crossed with an Mt1 overexpressing mouse model (TgMt1). Despite subtle reductions in the expression of neuroinflammatory markers GFAP and IBA1 in the vestibular nucleus and hippocampus, we found no improvement in survival, growth, locomotor activity, balance, or motor coordination in the Mt1 overexpressing Ndufs4-/- mice. Furthermore, at a cellular level, no differences were detected in the metabolomics profile or gene expression of selected one-carbon metabolism and oxidative stress genes, performed in the brain and quadriceps, nor in the ROS levels of macrophages derived from these mice. Considering these outcomes, we conclude that MT1, in general, does not protect against the impaired motor activity or improve survival in these complex I-deficient mice. The unexpected absence of increased oxidative stress and metabolic redox imbalance in this MD model may explain these observations. However, tissue-specific observations such as the mildly reduced inflammation in the hippocampus and vestibular nucleus, as well as differential MT1 expression in these tissues, may yet reveal a tissue- or cell-specific role for MTs in these mice.
Collapse
Affiliation(s)
- Hayley Christy Miller
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Michelle Mereis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Gerda Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - John-Drew Boshoff
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Liesel Mienie
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Marianne Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Adán Domínguez-Martínez
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Quintana
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francois Hendrikus van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
29
|
Wanyan Y, Xu X, Liu K, Zhang H, Zhen J, Zhang R, Wen J, Liu P, Chen Y. 2-Deoxy-d-glucose Promotes Buforin IIb-Induced Cytotoxicity in Prostate Cancer DU145 Cells and Xenograft Tumors. Molecules 2020; 25:E5778. [PMID: 33297583 PMCID: PMC7730206 DOI: 10.3390/molecules25235778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023] Open
Abstract
Inhibition of the glycolytic pathway is a critical strategy in anticancer therapy because of the role of aerobic glycolysis in cancer cells. The glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) has shown potential in combination with other anticancer agents. Buforin IIb is an effective antimicrobial peptide (AMP) with broad-spectrum anticancer activity and selectivity. The efficacy of combination treatment with 2-DG and buforin IIb in prostate cancer remains unknown. Here, we tested the efficacy of buforin IIb as a mitochondria-targeting AMP in the androgen-independent human prostate cancer cell line DU145. Combining 2-DG with buforin IIb had a synergistic toxic effect on DU145 cells and mouse xenograft tumors. Combination treatment with 2-DG and buforin IIb caused stronger proliferation inhibition, greater G1 cell cycle arrest, and higher apoptosis than either treatment alone. Combination treatment dramatically decreased L-lactate production and intracellular ATP levels, indicating severe inhibition of glycolysis and ATP production. Flow cytometry and confocal laser scanning microscopy results indicate that 2-DG may increase buforin IIb uptake by DU145 cells, thereby increasing the mitochondria-targeting capacity of buforin IIb. This may partly explain the effect of combination treatment on enhancing buforin IIb-induced apoptosis. Consistently, 2-DG increased mitochondrial dysfunction and upregulated Bax/Bcl-2, promoting cytochrome c release to initiate procaspase 3 cleavage induced by buforin IIb. These results suggest that 2-DG sensitizes prostate cancer DU145 cells to buforin IIb. Moreover, combination treatment caused minimal hemolysis and cytotoxicity to normal WPMY-1 cells. Collectively, the current study demonstrates that dual targeting of glycolysis and mitochondria by 2-DG and buforin IIb may be an effective anticancer strategy for the treatment of some advanced prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210000, China; (Y.W.); (X.X.); (K.L.); (H.Z.); (J.Z.); (R.Z.); (J.W.); (P.L.)
| |
Collapse
|
30
|
Synthetic Peptide ΔM4-Induced Cell Death Associated with Cytoplasmic Membrane Disruption, Mitochondrial Dysfunction and Cell Cycle Arrest in Human Melanoma Cells. Molecules 2020; 25:molecules25235684. [PMID: 33276536 PMCID: PMC7730669 DOI: 10.3390/molecules25235684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Melanoma is the most dangerous and lethal form of skin cancer, due to its ability to spread to different organs if it is not treated at an early stage. Conventional chemotherapeutics are failing as a result of drug resistance and weak tumor selectivity. Therefore, efforts to evaluate novel molecules for the treatment of skin cancer are necessary. Antimicrobial peptides have become attractive anticancer agents because they execute their biological activity with features such as a high potency of action, a wide range of targets, and high target specificity and selectivity. In the present study, the antiproliferative activity of the synthetic peptide ΔM4 on A375 human melanoma cells and spontaneously immortalized HaCaT human keratinocytes was investigated. The cytotoxic effect of ΔM4 treatment was evaluated through propidium iodide uptake by flow cytometry. The results indicated selective toxicity in A375 cells and, in order to further investigate the mode of action, assays were carried out to evaluate morphological changes, mitochondrial function, and cell cycle progression. The findings indicated that ΔM4 exerts its antitumoral effects by multitarget action, causing cell membrane disruption, a change in the mitochondrial transmembrane potential, an increase of reactive oxygen species, and cell cycle accumulation in S-phase. Further exploration of the peptide may be helpful in the design of novel anticancer peptides.
Collapse
|
31
|
Cascajosa-Lira A, Ai P, M P, A B, E V, A J, Cameán AM. Mutagenicity and genotoxicity assessment of a new biopreservative product rich in Enterocin AS-48. Food Chem Toxicol 2020; 146:111846. [PMID: 33166674 DOI: 10.1016/j.fct.2020.111846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
A biopreservative derived from the fermentation of a dairy byproduct by Enterococcus faecalis UGRA10 strains being developed. This product possesses a strong and wide antibacterial spectrum mainly due to the presence of Enterocin AS-48 in its composition. To assess its potential as food additive, the mutagenicicity and genotoxicity has been assayed by means of the bacterial reverse-mutation assay in Salmonella typhimurium TA97A, TA98, TA100, TA102, TA1535 strains (Ames test, OECD 471, 2020) and the micronucleus test (MN) (OECD 487, 2016) in L5178Y/Tk ± cells. The results in the Ames test after exposure to the byproduct (6.75-100 μg/plate) with absence and presence of the metabolic activation system from rat liver (S9 fraction), revealed not mutagenicity at the conditions tested. For the MN test, the exposition to five enterocin AS-48 concentrations (0.2-1 μg/μl) was tested in the absence and presence of S9 fraction, with no evidence of genotoxicity. Negative results in the mutagenicity and genotoxicity assays point out the good safety profile of the byproduct and support its use as additive. Further toxicological studies are required before its approval and commercial application.
Collapse
Affiliation(s)
- A Cascajosa-Lira
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| | - Prieto Ai
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain.
| | - Puerto M
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| | - Baños A
- Department of Microbiology, University of Granada, Fuente Nueva S/n, 19071, Granada, Spain
| | - Valdivia E
- Department of Microbiology, University of Granada, Fuente Nueva S/n, 19071, Granada, Spain
| | - Jos A
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| | - A M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| |
Collapse
|
32
|
Wong HN, Lewies A, Haigh M, Viljoen JM, Wentzel JF, Haynes RK, du Plessis LH. Anti-Melanoma Activities of Artemisone and Prenylated Amino-Artemisinins in Combination With Known Anticancer Drugs. Front Pharmacol 2020; 11:558894. [PMID: 33117161 PMCID: PMC7552967 DOI: 10.3389/fphar.2020.558894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
The most frequently occurring cancers are those of the skin, with melanoma being the leading cause of death due to skin cancer. Breakthroughs in chemotherapy have been achieved in certain cases, though only marginal advances have been made in treatment of metastatic melanoma. Strategies aimed at inducing redox dysregulation by use of reactive oxygen species (ROS) inducers present a promising approach to cancer chemotherapy. Here we use a rational combination of an oxidant drug combined with a redox or pro-oxidant drug to optimize the cytotoxic effect. Thus we demonstrate for the first time enhanced activity of the amino-artemisinin artemisone and novel prenylated piperazine derivatives derived from dihydroartemisinin as the oxidant component, and elesclomol-Cu(II) as the redox component, against human malignant melanoma cells A375 in vitro. The combinations caused a dose dependent decrease in cell numbers and increase in apoptosis. The results indicate that oxidant-redox drug combinations have considerable potential and warrant further investigation.
Collapse
Affiliation(s)
- Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Angélique Lewies
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Michaela Haigh
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Joe M Viljoen
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Johannes F Wentzel
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| |
Collapse
|
33
|
Niaz T, Shabbir S, Noor T, Abbasi R, Imran M. Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. Int J Biol Macromol 2020; 156:1366-1380. [DOI: 10.1016/j.ijbiomac.2019.11.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
|
34
|
Nguyen T, Brody H, Lin GH, Rangé H, Kuraji R, Ye C, Kamarajan P, Radaic A, Gao L, Kapila Y. Probiotics, including nisin-based probiotics, improve clinical and microbial outcomes relevant to oral and systemic diseases. Periodontol 2000 2020; 82:173-185. [PMID: 31850634 DOI: 10.1111/prd.12324] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of probiotic supplementation on systemic health and gastrointestinal diseases have been investigated in numerous studies. The aim of this review is to provide an overview of probiotics and their effects on periodontal health. Probiotics show beneficial effects as adjunctive therapeutics and as stand-alone agents in the treatment and prevention of gingivitis as well as specific clinical parameters of periodontitis. This review focuses on the clinical and microbiological aspects of probiotics in the context of health, gingivitis, and periodontitis. In addition, a special focus on nisin-producing probiotics and nisin itself showcase their significant potential for oral and systemic use.
Collapse
Affiliation(s)
- Trang Nguyen
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hanna Brody
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Guo-Hao Lin
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hélène Rangé
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Periodontology, UFR of Odontology, APHP, Rothschild Hospital, University of Paris Diderot, Paris, France.,Faculty of Dental Surgery, University of Paris Descartes, Montrouge, France
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, The University of Campinas, Campinas, Sao Paulo, Brazil
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Arunmanee W, Ecoy GAU, Khine HEE, Duangkaew M, Prompetchara E, Chanvorachote P, Chaotham C. Colicin N Mediates Apoptosis and Suppresses Integrin-Modulated Survival in Human Lung Cancer Cells. Molecules 2020; 25:E816. [PMID: 32069989 PMCID: PMC7070259 DOI: 10.3390/molecules25040816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023] Open
Abstract
The inherent limitations, including serious side-effects and drug resistance, of current chemotherapies necessitate the search for alternative treatments especially for lung cancer. Herein, the anticancer activity of colicin N, bacteria-produced antibiotic peptide, was investigated in various human lung cancer cells. After 24 h of treatment, colicin N at 5-15 µM selectively caused cytotoxicity detected by MTT assay in human lung cancer H460, H292 and H23 cells with no noticeable cell death in human dermal papilla DPCs cells. Flow cytometry analysis of annexin V-FITC/propidium iodide indicated that colicin N primarily induced apoptosis in human lung cancer cells. The activation of extrinsic apoptosis evidenced with the reduction of c-FLIP and caspase-8, as well as the modulation of intrinsic apoptosis signaling proteins including Bax and Mcl-1 were observed via Western blot analysis in lung cancer cells cultured with colicin N (10-15 µM) for 12 h. Moreover, 5-15 µM of colicin N down-regulated the expression of activated Akt (p-Akt) and its upstream survival molecules, integrin β1 and αV in human lung cancer cells. Taken together, colicin N exhibits selective anticancer activity associated with suppression of integrin-modulated survival which potentiate the development of a novel therapy with high safety profile for treatment of human lung cancer.
Collapse
Affiliation(s)
- Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Gea Abigail U. Ecoy
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Department of Pharmacy, School of Health Care Professions, University of San Carlos, Cebu 6000, Philippines
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
| | - Methawee Duangkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Eakachai Prompetchara
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Augmented therapeutic efficacy of 5-fluorouracil in conjunction with lantibiotic nisin against skin cancer. Biochem Biophys Res Commun 2019; 520:551-559. [PMID: 31615654 DOI: 10.1016/j.bbrc.2019.10.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 02/08/2023]
Abstract
Chemotherapy, a gold standard for treating most of the cancers, involves drastic side-effects and multidrug resistance. An attractive alternative is development of combination therapy employing antimicrobial peptides with chemotherapeutic drugs. In vivo studies: Anti-cancer therapeutic efficacy of 5-fluororuacil (5-FU) in conjunction with nisin (50 mg/kg body weight) was evaluated against murine skin cancer, in terms of tumor biostatistics, histopathology, electron microscopy, infrared spectroscopy and transcriptional studies. In vitro studies: Dose and time dependent cytotoxicity of agents were assessed against A431 cell line using MTT assay, LDH assay and acridine orange/ethidium bromide dual staining. Significant percentage decrease(s) in mean tumor volume and tumor burden were observed in nisin+ 5-FU combination treated groups as compared to alone treated groups. Histoarchitecture of treated skins demonstrated restoration towards normal skin tissue (being highest in the combination group). Modulation of apoptotic, angiogenic and proliferative genes were observed in treated groups. IC50 of combination was found to be 2 μg/ml as compared to nisin alone (32μg/ml) and 5-FU alone (16μg/ml) with combination index of 0.188. Dual staining showed that rate of induction of apoptosis was higher in the combination group as compared to single agents. Nisin and 5-FU in combination were found to be synergistic both in vivo and in vitro.
Collapse
|
37
|
Gold nanoparticles assisted co-delivery of nisin and doxorubicin against murine skin cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Erasmus M, du Plessis LH, Viljoen JM. In-vitro cytotoxicity of various Siphonochilus aethiopicus (Schweinf.) B.L. Burtt extracts in combination with selected tableting excipients. ACTA ACUST UNITED AC 2019; 71:1714-1724. [PMID: 31423597 DOI: 10.1111/jphp.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/28/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the cytotoxic potential of S. aethiopicus extracts in combination with chitosan and Pharmacel® 101, on two cell lines. METHODS Extracts were chemically characterised utilising UPLC-Q-TOF/MS, followed by determination of cell viability and membrane integrity. KEY FINDINGS Ethanol (EtOH) and diethyl ether (DiEt) extracts contained significant quantities of all chosen biomarker molecules; however, only two were scarcely quantifiable in aqueous extracts. Aqueous extracts did not induce any cytotoxic effects, whereas EtOH and DiEt extracts caused concentration-dependent decreases in cell viability and membrane integrity loss in both cell lines. Ensuing exposure to EtOH extracts at 50, 100 and 150 μg/ml, HepG2 cells were considered 15.5%, 12.5% and 32.8% apoptotic, whereas DiEt extracts caused 4.5%, 13.5% and 33.9% apoptotic cells. Exposure to EtOH and DiEt extracts at 50 μg/ml ensued in 20.2% and 21.3% apoptosis in Caco-2 cells; 100 μg/ml induced apoptosis in 19.9% and 10.3% of Caco-2 cells; whereas exposure to 150 μg/ml EtOH extracts caused 12.6% apoptosis compared to 11.7% induced by the DiEt extract. CONCLUSIONS None of the excipients caused any significantly altered cellular effects, indicating little chance for physicochemical interactions. Aqueous extracts did not possess any cytotoxic properties. However, it is clear that organic extracts caused apoptotic and necrotic cell death.
Collapse
Affiliation(s)
- Mandi Erasmus
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lissinda H du Plessis
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Joe M Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
39
|
Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; 69:249-267. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Cancer, being the most prevalent and resistant disease afflicting any gender, age or social status, is the ultimate challenge for the scientific community. The new generation therapeutics for cancer management has shifted the approach to personalized/precision medicine, making use of patient- and tumor-specific markers for specifying the targeted therapies for each patient. Peptides targeting these cancer-specific signatures hold enormous potential for cancer therapy and diagnosis. The rapid advancements in the combinatorial peptide libraries served as an impetus to the development of multifunctional peptide-based materials for targeted cancer therapy. The present review outlines benefits and shortcomings of peptides as cancer therapeutics and the potential of peptide modified nanomedicines for targeted delivery of anticancer agents.
Collapse
|
40
|
Prince A, Tiwari A, Ror P, Sandhu P, Roy J, Jha S, Mallick B, Akhter Y, Saleem M. Attenuation of neuroblastoma cell growth by nisin is mediated by modulation of phase behavior and enhanced cell membrane fluidity. Phys Chem Chem Phys 2019; 21:1980-1987. [DOI: 10.1039/c8cp06378h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptide mediated fluidization of cancer membrane reduces cancer cell growth.
Collapse
Affiliation(s)
- Ashutosh Prince
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Anuj Tiwari
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Pankaj Ror
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Padmani Sandhu
- Department of Biosciences & Bioengineering
- Indian Institute of Technology
- Bombay
- India
| | - Jyoti Roy
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Suman Jha
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Bibekanand Mallick
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| | - Yusuf Akhter
- Department of Biotechnology
- Babasaheb Bhimrao Ambedkar University (Central University)
- Lucknow
- India
| | - Mohammed Saleem
- Department of Life Sciences
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
41
|
Lewies A, Du Plessis LH, Wentzel JF. Antimicrobial Peptides: the Achilles’ Heel of Antibiotic Resistance? Probiotics Antimicrob Proteins 2018; 11:370-381. [DOI: 10.1007/s12602-018-9465-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Zainodini N, Hassanshahi G, Hajizadeh M, Khanamani Falahati-Pour S, Mahmoodi M, Mirzaei MR. Nisin Induces Cytotoxicity and Apoptosis in Human Asterocytoma Cell Line (SW1088). Asian Pac J Cancer Prev 2018; 19:2217-2222. [PMID: 30139228 PMCID: PMC6171389 DOI: 10.22034/apjcp.2018.19.8.2217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Nisin is a member of the group of anti-microbial peptides which are considered as bacteriocins,
but it possesses a vast range of activities. Astrocytoma is among the most prevalent types of brain tumor globally.
Considering all facts about this peptide, the aim of the present study was the evaluation of any impact of nisin on
proliferation and apoptosis of an astrocytoma cell line (SW1088). Methods: The SW1088 cell line was purchased from
the Pasteur Institute of Iran and treated with various concentrations of Nisin. Nisin-induced cell toxicity and apoptosis
were detected by both MTT assay and annexin V-FITC /propidium iodide (PI) staining. Result: In current study we
observed that the cell death and apoptosis were significantly increased following nisin treatment, as compared to the
control group. Conclusion: These results open a new window for establishment promising approaches with the concept
of anti-cancer therapy by nisin in the future.
Collapse
Affiliation(s)
- Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | | | | | | | | | | |
Collapse
|
43
|
Norouzi Z, Salimi A, Halabian R, Fahimi H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb Pathog 2018; 123:183-189. [PMID: 30017942 DOI: 10.1016/j.micpath.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the third most common cause of cancer-related death in the world which genetic and environmental agents are responsible for cancer. When cells detach from the tumor and invade surrounding tissues, the tumor is malignant and may form secondary tumors at other locations in a process called metastasis. Probiotics are the largest group of inhabitation bacteria in the colon. Gut microbiota has a central role in prevented the risk colon cancer. Probiotics are beneficial microorganisms, like Lactic acid bacteria and Lactobacilli bacteria which are using in the dairy industry. Probiotics nisin are having the most important category of safe usage. In this study LS180, SW48, HT29 and Caco2 was cultured and treated with different dose of nisin. Cell proliferation was assayed with MTT. The expression of CEA, CEAM6 and MMP2F genes was analyzed with Real-time PCR. Protein expression of CEA was evacuated with ELISA. Our result was shown that the 40-50 IU/mL nisin could suppress proliferation of LS180. Cell proliferation of SW48, HT29, Caco2 cells was decreased in 250-350 IU/mL concentration of nisin. The gene expression of CEA, CEAM6, MMP2F was significantly down-regulated with nisin treatment (p < 0.001, p < 0.01). Also, after cells treated with nisin, CEA protein expression was down regulated (p < 0.01). In conclusion, nisin could suppressed metastatic process via down-regulation of CEA, CEAM6, MMP2F, MMP9F genes. We suggested the new treatment strategies beyond Probiotics, which play a role in the prevention local tumor invasion, metastasis and recurrence.
Collapse
Affiliation(s)
- Zohreh Norouzi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hossein Fahimi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|