1
|
Mandal S, Ganesh KN, Maiti PK. Dynamics of terminal fraying-peeling and hydrogen bonds dictates the sequential vs. cooperative melting pathways of nanoscale DNA and PNA triplexes. NANOSCALE 2024; 16:13029-13040. [PMID: 38904319 DOI: 10.1039/d4nr01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Peptide nucleic acids (PNAs) are charge-neutral synthetic DNA/RNA analogues. In many aspects of biology and biotechnology, the details of DNA and PNA melting reaction coordinates are crucial, and their associative/dissociative details remain inadequately understood. In the current study, we have attempted to gain insights into comparative melting pathways and binding affinity of iso-sequences of an 18-mer PNA-DNA-PNA triplex and the analogous DNA-DNA-DNA triplex, and DNA-DNA and PNA-DNA duplexes. It is intriguing that while the DNA-DNA-DNA triplex melts in two sequential steps, the PNA-DNA-PNA triplex melts in a single step and the mechanistic aspects for this difference are still not clear. We report an all-atom molecular dynamics simulation of both complexes in the temperature range of 300 to 500 K with 20 K intervals. Based on the trajectory analysis, we provide evidence that the association and dissociation are dictated by the differences in fraying-peeling effects from either terminus to the center in a zipper pattern among the PNA-DNA-PNA triplex and DNA-DNA-DNA triplexes. These are shown to be governed by the different characteristics of H-bonding, RMSD, and Free Energy Landscape (FEL) as analyzed by PCA, leading to the DNA-DNA-DNA triplex exhibiting sequential melting, while the PNA-DNA-PNA triplex shows cooperative melting of the whole fragment in a single-step. The PNA-DNA-PNA triplex base pairs are thermodynamically more stable than the DNA-DNA-DNA triplex, with the binding affinity of PNA-TFO to the PNA : DNA duplex being higher than that of DNA-TFO to the DNA : DNA duplex. The investigation of the association/dissociation of PNA-TFO to the PNA-DNA duplex has relevance and importance in the emerging effective applications of oligonucleotide therapy.
Collapse
Affiliation(s)
- Sandip Mandal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Krishna N Ganesh
- Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Lei Y, Li C, Ji X, Sun H, Liu X, Mao Z, Chen W, Qing Z, Liu J. Lowering Entropic Barriers in Triplex DNA Switches Facilitating Biomedical Applications at Physiological pH. Angew Chem Int Ed Engl 2024; 63:e202402123. [PMID: 38453654 DOI: 10.1002/anie.202402123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Triplex DNA switches are attractive allosteric tools for engineering smart nanodevices, but their poor triplex-forming capacity at physiological conditions limited the practical applications. To address this challenge, we proposed a low-entropy barrier design to facilitate triplex formation by introducing a hairpin duplex linker into the triplex motif, and the resulting triplex switch was termed as CTNSds. Compared to the conventional clamp-like triplex switch, CTNSds increased the triplex-forming ratio from 30 % to 91 % at pH 7.4 and stabilized the triple-helix structure in FBS and cell lysate. CTNSds was also less sensitive to free-energy disturbances, such as lengthening linkers or mismatches in the triple-helix stem. The CTNSds design was utilized to reversibly isolate CTCs from whole blood, achieving high capture efficiencies (>86 %) at pH 7.4 and release efficiencies (>80 %) at pH 8.0. Our approach broadens the potential applications of DNA switches-based switchable nanodevices, showing great promise in biosensing and biomedicine.
Collapse
Affiliation(s)
- Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Chuangchuang Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Xinyue Ji
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Haiyan Sun
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Xiaowen Liu
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, 410083, China
| | - Zenghui Mao
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, 410083, China
| | - Weiju Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2 L 3G1, Canada
| |
Collapse
|
3
|
Zhu L, Li Q, Wan Y, Guo M, Yan L, Yin H, Shi Y. Short-Range Charge Transfer in DNA Base Triplets: Real-Time Tracking of Coherent Fluctuation Electron Transfer. Molecules 2023; 28:6802. [PMID: 37836645 PMCID: PMC10574627 DOI: 10.3390/molecules28196802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The short-range charge transfer of DNA base triplets has wide application prospects in bioelectronic devices for identifying DNA bases and clinical diagnostics, and the key to its development is to understand the mechanisms of short-range electron dynamics. However, tracing how electrons are transferred during the short-range charge transfer of DNA base triplets remains a great challenge. Here, by means of ab initio molecular dynamics and Ehrenfest dynamics, the nuclear-electron interaction in the thymine-adenine-thymine (TAT) charge transfer process is successfully simulated. The results show that the electron transfer of TAT has an oscillating phenomenon with a period of 10 fs. The charge density difference proves that the charge transfer proportion is as high as 59.817% at 50 fs. The peak position of the hydrogen bond fluctuates regularly between -0.040 and -0.056. The time-dependent Marcus-Levich-Jortner theory proves that the vibrational coupling between nucleus and electron induces coherent electron transfer in TAT. This work provides a real-time demonstration of the short-range coherent electron transfer of DNA base triplets and establishes a theoretical basis for the design and development of novel biological probe molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; (L.Z.); (Q.L.); (Y.W.); (M.G.); (L.Y.); (H.Y.)
| |
Collapse
|
4
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
5
|
Tsuruta M, Sugitani Y, Sugimoto N, Miyoshi D. Combined Effects of Methylated Cytosine and Molecular Crowding on the Thermodynamic Stability of DNA Duplexes. Int J Mol Sci 2021; 22:ijms22020947. [PMID: 33477917 PMCID: PMC7833394 DOI: 10.3390/ijms22020947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Methylated cytosine within CpG dinucleotides is a key factor for epigenetic gene regulation. It has been revealed that methylated cytosine decreases DNA backbone flexibility and increases the thermal stability of DNA. Although the molecular environment is an important factor for the structure, thermodynamics, and function of biomolecules, there are few reports on the effects of methylated cytosine under a cell-mimicking molecular environment. Here, we systematically investigated the effects of methylated cytosine on the thermodynamics of DNA duplexes under molecular crowding conditions, which is a critical difference between the molecular environment in cells and test tubes. Thermodynamic parameters quantitatively demonstrated that the methylation effect and molecular crowding effect on DNA duplexes are independent and additive, in which the degree of the stabilization is the sum of the methylation effect and molecular crowding effect. Furthermore, the effects of methylation and molecular crowding correlate with the hydration states of DNA duplexes. The stabilization effect of methylation was due to the favorable enthalpic contribution, suggesting that direct interactions of the methyl group with adjacent bases and adjacent methyl groups play a role in determining the flexibility and thermodynamics of DNA duplexes. These results are useful to predict the properties of DNA duplexes with methylation in cell-mimicking conditions.
Collapse
Affiliation(s)
- Mitsuki Tsuruta
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
| | - Yui Sugitani
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
| | - Naoki Sugimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
- Correspondence: ; Tel.: +81-(07)-8303-1426
| |
Collapse
|
6
|
Herbert A. Simple Repeats as Building Blocks for Genetic Computers. Trends Genet 2020; 36:739-750. [PMID: 32690316 DOI: 10.1016/j.tig.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Processing of RNA involves heterogeneous nuclear ribonucleoproteins. The simple sequence repeats (SSRs) they bind can also adopt alternative DNA structures, like Z DNA, triplexes, G quadruplexes, and I motifs. Those SSRs capable of switching conformation under physiological conditions (called flipons) are genetic elements that can encode alternative RNA processing by their effects on RNA processivity, most likely as DNA:RNA hybrids. Flipons are elements of a binary, instructive genetic code directing how genomic sequences are compiled into transcripts. The combinatorial nature of this code provides a rich set of options for creating genetic computers able to reproduce themselves and use a heritable and evolvable code to optimize survival. The underlying computational logic potentiates a diverse set of genetic programs that modify cis-mediated heritability and disease risk.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA.
| |
Collapse
|