1
|
Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids 2025; 213:109529. [PMID: 39532224 DOI: 10.1016/j.steroids.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The family of 17β-hydroxysteroid dehydrogenases (17β-HSDs) occupies a prominent place due to its number of isoforms, which carry out a bidirectional transformation (reduction of a steroid carbonyl to alcohol and oxidation of a steroid alcohol to ketone) depending on the nature of the cofactor present. Involved in the activation or inactivation of key estrogens and androgens, 17β-HSDs are therefore therapeutic targets whose selective inhibition would make it possible to be considered for the treatment of several diseases, such as breast cancer, prostate cancer, endometriosis, Alzheimer's disease and osteoporosis. This review article is a continuation of those having reported the great diversity of inhibitors developed over the last years but focusses on inhibitors recently developed. Work to obtain more effective inhibitors that target the first known isoforms (types 1, 2, 3, 5 and 7) has continued, among others, but new inhibitors that target the isoforms more recently reported in the literature (types 10, 12, 13 and 14) are now being reported. Dual inhibitors of two enzymes (17β-HSD1 and steroid sulfatase) were also reported. These inhibitors were grouped according to the 17β-HSD type inhibited and their backbone (steroidal or non-steroidal) when necessary. They were also reported in chronological order and according to the research group.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Opazo R, Dos Santos GRC, Parente TE. RNAseq analysis of whole zebrafish (Danio rerio) larvae revealed the main cellular biological effects of geosmin and microcystin exposure at environmentally relevant concentrations. Toxicon 2024; 250:108074. [PMID: 39154758 DOI: 10.1016/j.toxicon.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Cyanobacterial blooms are common events that releases secondary metabolites into water posing considerable threats to the environment, wildlife, and public health. Some of these metabolites, such as microcystin, have been extensively studied and associated with harmful effects in mammals and aquatic organisms, while the biological effects of others, like geosmin, remain much less investigated. Enhancing our understanding of cyanotoxins effects on organisms is especially relevant facing the complex scenarios projected due to global warming. The aim of this study was to assess the transcriptional modulation in whole zebrafish (Danio rerio) larvae (n = 9) in response to a 7-days immersion exposure to 3 μg L-1 MCLR or 5 μg L-1 geosmin. No mortality or differences in length gain were observed in zebrafish larvae exposed to environmentally realistic doses of both cyanotoxins. The exposure to MCLR and to geosmin caused the differential expression of 164 and 172 genes respectively, being 23 upregulated by MCLR and 98 upregulated by geosmin. Among the upregulated genes, 16 were shared, while 42 were shared among the downregulated genes. Over-representation analysis identified three enriched GO terms only among the genes upregulated by geosmin: organic hydroxy compound metabolic process (1901615), small molecule biosynthetic process (0044283), and lipid metabolic process (0006629). In fact, the expression of 12 of the 13 genes directly involved in the synthesis of cholesterol from acetyl-CoA was upregulated by geosmin. A chronic upregulation of cholesterol biosynthetic pathway is linked to several diseases and metabolic disorders, including alterations in sex-related hormones. Moreover, our results indicate that geosmin and MCLR acts through different mechanisms. Geosmin does not appear to provoke short-term adverse effects as MCLR but could disrupt the endocrine system by altering the lipid and steroid metabolism.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratory of Biotechnology, INTA University of Chile, Chile; Laboratory of Applied Genomics and Bioinnovations, IOC, Fiocruz, Brazil
| | | | | |
Collapse
|
3
|
Carleton N, Lee S, Li R, Zou J, Brown DD, Hooda J, Chang A, Kumar R, Klei LR, Rigatti LH, Newsome J, John Mary DJS, Atkinson JM, West RE, Nolin TD, Oberly PJ, Huang Z, Poirier D, Diego EJ, Lucas PC, Tseng G, Lotze MT, McAuliffe PF, Zervantonakis IK, Oesterreich S, Lee AV. Systemic and local chronic inflammation and hormone disposition promote a tumor-permissive environment for breast cancer in older women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.616978. [PMID: 39484485 PMCID: PMC11526964 DOI: 10.1101/2024.10.18.616978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common subtype of breast cancer and is an age-related disease. The peak incidence of diagnosis occurs around age 70, even though these post-menopausal patients have low circulating levels of estradiol (E2). Despite the hormone sensitivity of age-related tumors, we have a limited understanding of the interplay between systemic and local hormones, chronic inflammation, and immune changes that contribute to the growth and development of these tumors. Here, we show that aged F344 rats treated with the dimethylbenz(a)anthracene / medroxyprogestrone acetate (DMBA/MPA) carcinogen develop more tumors at faster rates than their younger counterparts, suggesting that the aged environment promotes tumor initiation and impacts growth. Single-nuclei RNA-seq (snRNA-seq) of the tumors showed broad local immune dysfunction that was associated with circulating chronic inflammation. Across a broad cohort of specimens from patients with ER+ breast cancer and age-matched donors of normal breast tissue, we observe that even with an estrone (E1)-predominant estrogen disposition in the systemic circulation, tumors in older patients increase HSD17B7 expression to convert E1 to E2 in the tumor microenvironment (TME) and have local E2 levels similar to pre-menopausal patients. Concurrently, trackable increases in several chemokines, defined most notably by CCL2, promote a chronically inflamed but immune dysfunctional TME. This unique milieu in the aged TME, characterized by high local E2 and chemokine-enriched chronic inflammation, promotes both accumulation of tumor-associated macrophages (TAMs), which serve as signaling hubs, as well as polarization of TAMs towards a CD206+/PD-L1+, immunosuppressive phenotype. Pharmacologic targeting of estrogen signaling (either by HSD17B7 inhibition or with fulvestrant) and chemokine inflammation both decrease local E2 and prevent macrophage polarization. Overall, these findings suggest that chronic inflammation and hormonal disposition are critical contributors to the age-related nature of ER+ breast cancer development and growth and offer potential therapeutic insight to treat these patients. Translational Summary We uncover the unique underpinnings establishing how the systemic host environment contributes to the aged breast tumor microenvironment, characterized by high local estradiol and chronic inflammation with immune dysregulation, and show that targeting avenues of estrogen conversion and chronic inflammation work to restore anti-tumor immunity.
Collapse
|
4
|
Sancéau JY, Maltais R, Zhou M, Lin SX, Poirier D. Synthesis and characterization of targeted 17β-hydroxysteroid dehydrogenase type 7 inhibitors. J Steroid Biochem Mol Biol 2024; 242:106544. [PMID: 38754521 DOI: 10.1016/j.jsbmb.2024.106544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17β-HSD7 inhibitors of novel carbamate derivatives 3 and 4 are described. Like previous 17β-HSD7 inhibitors 1 and 2, compounds 3 and 4 bear a hydrophobic nonyl side chain at the C-17β position of a 4-aza-5α-androstane nucleus, but compound 3 has an oxygen atom replacing the CH2 in the steroid A-ring C-2 position, while compound 4 has a C17-spiranic E-ring containing a carbamate function. They both inhibited the in vitro transformation of estrone (E1) into E2 by 17β-HSD7, but the introduction of a (17 R)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound 4 (IC50 = 63 nM) is an inhibitor 14 times more powerful than compound 3 (IC50 = 900 nM). Furthermore, when compared to the reference inhibitor 1 (IC50 = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.
Collapse
Affiliation(s)
- Jean-Yves Sancéau
- Organic Synthesis Service, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada
| | - René Maltais
- Organic Synthesis Service, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada
| | - Ming Zhou
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Donald Poirier
- Organic Synthesis Service, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
Yu J, Hu Q, Liu J, Luo J, Liu L, Peng X. Metabolites of gut microbiota fermenting Poria cocos polysaccharide alleviates chronic nonbacterial prostatitis in rats. Int J Biol Macromol 2022; 209:1593-1604. [PMID: 35398386 DOI: 10.1016/j.ijbiomac.2022.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022]
Abstract
Chronic nonbacterial prostatitis (CNP) is a common urology disease. Our previous research found Poria cocos polysaccharides (PPs) alleviated CNP and suggested the effect was related to gut bacteria. We investigated the crucial bacteria and their metabolites responsible for the anti-CNP effect to discover possible mechanisms. The results showed that after the fermentation of PPs by human fecal microbiota, Parabacteroides, Fusicatenibacter, and Parasutterella were significantly enriched. Haloperidol glucuronide and 7-ketodeoxycholic acid generated by these bacteria could be responsible for the increased expression of Alox15 and Pla2g2f and the reduced expression of Cyp1a1 and Hsd17b7 in colon epithelium. The ratio of dihydrotestosterone to estradiol in serum was regulated, and CNP was alleviated. Our results suggested that Parabacteroides, Fusicatenibacter, and Parasutterella could be the essential bacteria in CNP alleviation and their metabolites of PPs 7-ketodeoxycholic acid and haloperidol glucuronide could be the signal molecules of the "gut-prostate axis".
Collapse
Affiliation(s)
- Juntong Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Qing Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Junsheng Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Pleshinger MJ, Friedrich RM, Hubler Z, Rivera-León AM, Gao F, Yan D, Sax JL, Srinivasan R, Bederman I, Shick HE, Tesar PJ, Adams DJ. Inhibition of SC4MOL and HSD17B7 shifts cellular sterol composition and promotes oligodendrocyte formation. RSC Chem Biol 2022; 3:56-68. [PMID: 35128409 PMCID: PMC8729178 DOI: 10.1039/d1cb00145k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
While the cholesterol biosynthesis pathway has been extensively studied, recent work has forged new links between inhibition of specific sterol pathway enzymes, accumulation of their unique sterol substrates, and biological areas as diverse as cancer, immunology, and neurodegenerative disease. We recently reported that dozens of small molecules enhance formation of oligodendrocytes, a glial cell type lost in multiple sclerosis, by inhibiting CYP51, Sterol 14-reductase, or EBP and inducing cellular accumulation of their 8,9-unsaturated sterol substrates. Several adjacent pathway enzymes also have 8,9-unsaturated sterol substrates but have not yet been evaluated as potential targets for oligodendrocyte formation or in many other biological contexts, in part due to a lack of available small-molecule probes. Here, we show that genetic suppression of SC4MOL or HSD17B7 increases the formation of oligodendrocytes. Additionally, we have identified and optimized multiple potent new series of SC4MOL and HSD17B7 inhibitors and shown that these small molecules enhance oligodendrocyte formation. SC4MOL inhibitor CW4142 induced accumulation of SC4MOL's sterol substrates in mouse brain and represents an in vivo probe of SC4MOL activity. Mechanistically, the cellular accumulation of these 8,9-unsaturated sterols represents a central driver of enhanced oligodendrocyte formation, as exogenous addition of purified SC4MOL and HSD17B7 substrates but not their 8,9-saturated analogs promotes OPC differentiation. Our work validates SC4MOL and HSD17B7 as novel targets for promoting oligodendrocyte formation, underlines a broad role for 8,9-unsaturated sterols as enhancers of oligodendrocyte formation, and establishes the first high-quality small molecules targeting SC4MOL and HSD17B7 as novel tools for probing diverse areas of biology.
Collapse
Affiliation(s)
- Matthew J Pleshinger
- Department of Pharmacology, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Ryan M Friedrich
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Zita Hubler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Adrianna M Rivera-León
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Farrah Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - David Yan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Joel L Sax
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Ramya Srinivasan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - H Elizabeth Shick
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| |
Collapse
|
7
|
Thériault JF, Poirier D, Lin SX. The multi-specific human 17 beta-hydroxysteroid dehydrogenase type 7: Non-competitive inhibitors can target different catalyses to facilitate breast cancer treatment. J Steroid Biochem Mol Biol 2021; 214:105963. [PMID: 34400276 DOI: 10.1016/j.jsbmb.2021.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Human 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7), a special multifunctional enzyme, activates the estrogen estrone while inactivating the potent androgen dihydrotestosterone. Thus, this enzyme has become an ideal target for hormone-dependent breast cancer treatment, as its inhibition leads to estradiol reduction and dihydrotestosterone restoration. However, a particular concern has arisen related to an additional role in cholesterol biosynthesis, as inhibition of the enzyme may lead to undesirable side effects. Our findings demonstrate that the available enzyme inhibitors are non-competitive. Among these, many such as INH81, are specific toward sex-hormone conversion, whereas others represented by 4-bromo-ethynylestradiol, are more specific for zymosterone reduction occurring during cholesterol biosynthesis. The binding of non-competitive inhibitors does not affect the substrate binding on the enzyme. This is the first demonstration of non-competitive inhibitors acting selectively on different catalyses, thereby facilitating inhibitor uses for breast cancer treatment. We aim to quickly communicate the novel results.
Collapse
Affiliation(s)
- Jean-Francois Thériault
- Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), 2705 Boulevard Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, 1050 avenue de la Médecine, Québec City, Québec, G1V 0A6, Canada; Centre de recherche sur le cancer de l'Université Laval, 9, rue McMahon, Québec City, Québec, G1R 3S3, Canada
| | - Donald Poirier
- Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), 2705 Boulevard Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, 1050 avenue de la Médecine, Québec City, Québec, G1V 0A6, Canada; Centre de recherche sur le cancer de l'Université Laval, 9, rue McMahon, Québec City, Québec, G1R 3S3, Canada
| | - Sheng-Xiang Lin
- Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), 2705 Boulevard Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, 1050 avenue de la Médecine, Québec City, Québec, G1V 0A6, Canada; Centre de recherche sur le cancer de l'Université Laval, 9, rue McMahon, Québec City, Québec, G1R 3S3, Canada.
| |
Collapse
|
8
|
Xu X, Tassone B, Ostano P, Katarkar A, Proust T, Joseph JM, Riganti C, Chiorino G, Kutalik Z, Lefort K, Dotto GP. HSD17B7 gene in self-renewal and oncogenicity of keratinocytes from Black versus White populations. EMBO Mol Med 2021; 13:e14133. [PMID: 34185380 PMCID: PMC8261506 DOI: 10.15252/emmm.202114133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Human populations of Black African ancestry have a relatively high risk of aggressive cancer types, including keratinocyte-derived squamous cell carcinomas (SCCs). We show that primary keratinocytes (HKCs) from Black African (Black) versus White Caucasian (White) individuals have on average higher oncogenic and self-renewal potential, which are inversely related to mitochondrial electron transfer chain activity and ATP and ROS production. HSD17B7 is the top-ranked differentially expressed gene in HKCs and Head/Neck SCCs from individuals of Black African versus Caucasian ancestries, with several ancestry-specific eQTLs linked to its expression. Mirroring the differences between Black and White HKCs, modulation of the gene, coding for an enzyme involved in sex steroid and cholesterol biosynthesis, determines HKC and SCC cell proliferation and oncogenicity as well as mitochondrial OXPHOS activity. Overall, the findings point to a targetable determinant of cancer susceptibility among different human populations, amenable to prevention and management of the disease.
Collapse
Affiliation(s)
- Xiaoying Xu
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Beatrice Tassone
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tatiana Proust
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Jean-Marc Joseph
- Division of Pediatric Surgery, Women-Mother-Child Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Zoltan Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Karine Lefort
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Gian Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|