1
|
Khaleafi R, Bar-On Y. Nature is the best designer: A novel variant of oncolytic reovirus. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200865. [PMID: 39297072 PMCID: PMC11408134 DOI: 10.1016/j.omton.2024.200865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Affiliation(s)
- Raghad Khaleafi
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| |
Collapse
|
2
|
Yan Z, Zhang Z, Chen Y, Xu J, Wang J, Wang Z. Enhancing cancer therapy: the integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int 2024; 24:242. [PMID: 38992667 PMCID: PMC11238399 DOI: 10.1186/s12935-024-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
As one of the significant challenges to human health, cancer has long been a focal point in medical treatment. With ongoing advancements in the field of medicine, numerous methodologies for cancer therapy have emerged, among which oncolytic virus therapy has gained considerable attention. However, oncolytic viruses still exhibit limitations. Combining them with various therapies can further enhance the efficacy of cancer treatment, offering renewed hope for patients. In recent research, scientists have recognized the promising prospect of amalgamating oncolytic virus therapy with diverse treatments, potentially surmounting the restrictions of singular approaches. The central concept of this combined therapy revolves around leveraging oncolytic virus to incite localized tumor inflammation, augmenting the immune response for immunotherapeutic efficacy. Through this approach, the patient's immune system can better recognize and eliminate cancer cells, simultaneously reducing tumor evasion mechanisms against the immune system. This review delves deeply into the latest research progress concerning the integration of oncolytic virus with diverse treatments and its role in various types of cancer therapy. We aim to analyze the mechanisms, advantages, potential challenges, and future research directions of this combination therapy. By extensively exploring this field, we aim to instill renewed hope in the fight against cancer.
Collapse
Affiliation(s)
- Zhuo Yan
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Zhengbo Zhang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
| | - Yanan Chen
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jianghua Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jilong Wang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Zhangquan Wang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| |
Collapse
|
3
|
Mazar J, Brooks JK, Peloquin M, Rosario R, Sutton E, Longo M, Drehner D, Westmoreland TJ. The Oncolytic Activity of Zika Viral Therapy in Human Neuroblastoma In Vivo Models Confers a Major Survival Advantage in a CD24-dependent Manner. CANCER RESEARCH COMMUNICATIONS 2024; 4:65-80. [PMID: 38214542 PMCID: PMC10775766 DOI: 10.1158/2767-9764.crc-23-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/14/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Neuroblastoma is the most common extracranial tumor, accounting for 15% of all childhood cancer-related deaths. The long-term survival of patients with high-risk tumors is less than 40%, and MYCN amplification is one of the most common indicators of poor outcomes. Zika virus (ZIKV) is a mosquito-borne flavivirus associated with mild constitutional symptoms outside the fetal period. Our published data showed that high-risk and recurrent neuroblastoma cells are permissive to ZIKV infection, resulting in cell type-specific lysis. In this study, we assessed the efficacy of ZIKV as an oncolytic treatment for high-risk neuroblastoma using in vivo tumor models. Utilizing both MYCN-amplified and non-amplified models, we demonstrated that the application of ZIKV had a rapid tumoricidal effect. This led to a nearly total loss of the tumor mass without evidence of recurrence, offering a robust survival advantage to the host. Detection of the viral NS1 protein within the tumors confirmed that a permissive infection preceded tissue necrosis. Despite robust titers within the tumor, viral shedding to the host was poor and diminished rapidly, correlating with no detectable side effects to the murine host. Assessments from both primary pretreatment and recurrent posttreatment isolates confirmed that permissive sensitivity to ZIKV killing was dependent on the expression of CD24, which was highly expressed in neuroblastomas and conferred a proliferative advantage to tumor growth. Exploiting this viral sensitivity to CD24 offers the possibility of its use as a prognostic target for a broad population of expressing cancers, many of which have shown resistance to current clinical therapies. SIGNIFICANCE Sensitivity to the tumoricidal effect of ZIKV on high-risk neuroblastoma tumors is dependent on CD24 expression, offering a prognostic marker for this oncolytic therapy in an extensive array of CD24-expressing cancers.
Collapse
Affiliation(s)
- Joseph Mazar
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
- Burnett School of Biological Sciences, The University of Central Florida College of Medicine, Orlando, Florida
| | | | | | - Rosa Rosario
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
| | - Emma Sutton
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
| | - Matthew Longo
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
- Burnett School of Biological Sciences, The University of Central Florida College of Medicine, Orlando, Florida
| | - Dennis Drehner
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
| | - Tamarah J. Westmoreland
- Nemours Children's Hospital, Nemours Parkway, Orlando, Florida
- Burnett School of Biological Sciences, The University of Central Florida College of Medicine, Orlando, Florida
| |
Collapse
|