1
|
Hess SS, Burns DA, Boudinot FG, Brown-Lima C, Corwin J, Foppert JD, Robinson GR, Rose KC, Schlesinger MD, Shuford RL, Bradshaw D, Stevens A. New York State Climate Impacts Assessment Chapter 05: Ecosystems. Ann N Y Acad Sci 2024; 1542:253-340. [PMID: 39652386 DOI: 10.1111/nyas.15203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The people of New York have long benefited from the state's diversity of ecosystems, which range from coastal shorelines and wetlands to extensive forests and mountaintop alpine habitat, and from lakes and rivers to greenspaces in heavily populated urban areas. These ecosystems provide key services such as food, water, forest products, flood prevention, carbon storage, climate moderation, recreational opportunities, and other cultural services. This chapter examines how changes in climatic conditions across the state are affecting different types of ecosystems and the services they provide, and considers likely future impacts of projected climate change. The chapter emphasizes how climate change is increasing the vulnerability of ecosystems to existing stressors, such as habitat fragmentation and invasive species, and highlights opportunities for New Yorkers to adapt and build resilience.
Collapse
Affiliation(s)
| | - Douglas A Burns
- New York Water Science Center, United States Geological Survey, Troy, New York, USA
| | - F Garrett Boudinot
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Carrie Brown-Lima
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Jason Corwin
- Department of Indigenous Studies, University at Buffalo, Buffalo, New York, USA
| | - John D Foppert
- Department of Forestry, Paul Smith's College, Paul Smiths, New York, USA
| | - George R Robinson
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, USA
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew D Schlesinger
- New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, Albany, New York, USA
| | | | - Drake Bradshaw
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
2
|
Zhu M, Zhao Y, Li W, Han X, Wang Z, Yang X, Dang C, Liu Y, Xu S. Impact of carbon neutralization policy on the suitable habitat distribution of the North China leopard. Sci Rep 2024; 14:18821. [PMID: 39138239 PMCID: PMC11322554 DOI: 10.1038/s41598-024-69889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
The Chinese government has introduced a carbon neutral policy to cope with the rapid changes in the global climate. It is not clear what impact this policy will have on wildlife. Therefore, this study analyzed the suitable habitat distribution of China's unique leopard subspecies in northern Shaanxi, and simulated the potential suitable habitat distribution under different carbon emission scenarios at two time points of future carbon peak and carbon neutralization. We found that in the future SSPs 126 scenario, the suitable habitat area and the number of suitable habitat patches of North China leopard will continue to increase. With the increase of carbon emissions, it is expected that the suitable habitat of North China leopard will continue to be fragmented and shifted. When the annual average temperature is lower than 8 °C, the precipitation seasonality is 80-90 mm and the precipitation of the warmest quarter is greater than 260 mm, the probability of occurrence of North China leopard is higher. The increase in carbon emissions will lead to the reduction, migration, and fragmentation of the suitable habitat distribution of the North China leopard. Carbon neutrality policies can protect suitable wild habitats. In the future, the impact of carbon neutrality policies on future wildlife habitat protection should be carried out in depth to effectively promote the construction of wildlife protection projects.
Collapse
Affiliation(s)
- Mengyan Zhu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China.
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China.
- College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China.
| | - Yue Zhao
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Weiqiang Li
- Yan'an Laoshan State-Owned Forest Administration, Yan'an, 716000, China
| | - Xinghua Han
- Shaanxi Yan'an Huanglong Mountain Brown Eared Pheasant National Nature Reserve Management Bureau, Yan'an, 716000, China
| | - Zhen Wang
- Yan'an Laoshan State-Owned Forest Administration, Yan'an, 716000, China
| | - Xiaomei Yang
- Shaanxi Yan'an Huanglong Mountain Brown Eared Pheasant National Nature Reserve Management Bureau, Yan'an, 716000, China
| | - Cuiying Dang
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yaoguo Liu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Shicai Xu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an, 716000, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| |
Collapse
|
3
|
Otte PJ, Cromsigt JPGM, Smit C, Hofmeester TR. Snow cover-related camouflage mismatch increases detection by predators. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:327-337. [PMID: 38247310 DOI: 10.1002/jez.2784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Camouflage expressed by animals is an adaptation to local environments that certain animals express to maximize survival and fitness. Animals at higher latitudes change their coat color according to a seasonally changing environment, expressing a white coat in winter and a darker coat in summer. The timing of molting is tightly linked to the appearance and disappearance of snow and is mainly regulated by photoperiod. However, due to climate change, an increasing mismatch is observed between the coat color of these species and their environment. Here, we conducted an experiment in northern Sweden, with white and brown decoys to study how camouflage (mis)-match influenced (1) predator attraction to decoys, and (2) predation events. Using camera trap data, we showed that mismatching decoys attracted more predators and experienced a higher likelihood of predation events in comparison to matching decoys, suggesting that camouflage mismatched animals experience increased detection by predators. These results provide insight into the function of a seasonal color coat and the need for this adaptation to maximize fitness in an environment that is exposed to high seasonality. Thus, our results suggest that, with increasing climate change and reduced snow cover, animals expressing a seasonal color coat will experience a decrease in survival.
Collapse
Affiliation(s)
- Pieter J Otte
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joris P G M Cromsigt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
| | - Christian Smit
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Tim R Hofmeester
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
4
|
Peltier TR, Shiratsuru S, Zuckerberg B, Romanski M, Potvin L, Edwards A, Gilbert JH, Aldred TR, Dassow A, Pauli JN. Phenotypic variation in the molt characteristics of a seasonal coat color-changing species reveals limited resilience to climate change. Oecologia 2023; 202:69-82. [PMID: 37165146 DOI: 10.1007/s00442-023-05371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
The snowshoe hare (Lepus americanus) possesses a broad suite of adaptations to winter, including a seasonal coat color molt. Recently, climate change has been implicated in the range contraction of snowshoe hares along the southern range boundary. With shortening snow season duration, snowshoe hares are experiencing increased camouflage mismatch with their environment reducing survival. Phenological variation of hare molt at regional scales could facilitate local adaptation in the face of climate change, but the level of variation, especially along the southern range boundary, is unknown. Using a network of trail cameras and historical museum specimens, we (1) developed contemporary and historical molt phenology curves in the Upper Great Lakes region, USA, (2) calculated molt rate and variability in and among populations, and (3) quantified the relationship of molt characteristics to environmental conditions for snowshoe hares across North America. We found that snowshoe hares across the region exhibited similar fall and spring molt phenologies, rates and variation. Yet, an insular island population of hares on Isle Royale National Park, MI, completed their molt a week earlier in the fall and initiated molt almost 2 weeks later in the spring as well as exhibited slower rates of molting in the fall season compared to the mainland. Over the last 100 years, snowshoe hares across the region have not shifted in fall molt timing; though contemporary spring molt appears to have advanced by 17 days (~ 4 days per decade) compared to historical molt phenology. Our research indicates that some variation in molt phenology exists for snowshoe hares in the Upper Great Lakes region, but whether this variation is enough to offset the consequences of climate change remains to be seen.
Collapse
Affiliation(s)
- Taylor R Peltier
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA.
| | - Shotaro Shiratsuru
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA
| | - Mark Romanski
- National Park Service, Isle Royale National Park, Houghton, MI, 49931, USA
| | - Lynette Potvin
- National Park Service, Isle Royale National Park, Houghton, MI, 49931, USA
| | - Andrew Edwards
- Red Cliff Band of Lake Superior Chippewa, Bayfield, WI, 54814, USA
| | | | - Tanya R Aldred
- Great Lakes Indian Fish and Wildlife Commission, Odanah, WI, 54861, USA
| | - Ann Dassow
- United States Forest Service, Medford, WI, 54451, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Ferreira MS, Thurman TJ, Jones MR, Farelo L, Kumar AV, Mortimer SME, Demboski JR, Mills LS, Alves PC, Melo-Ferreira J, Good JM. The evolution of white-tailed jackrabbit camouflage in response to past and future seasonal climates. Science 2023; 379:1238-1242. [PMID: 36952420 DOI: 10.1126/science.ade3984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The genetic basis of adaptive traits has rarely been used to predict future vulnerability of populations to climate change. We show that light versus dark seasonal pelage in white-tailed jackrabbits (Lepus townsendii) tracks snow cover and is primarily determined by genetic variation at endothelin receptor type B (EDNRB), corin serine peptidase (CORIN), and agouti signaling protein (ASIP). Winter color variation was associated with deeply divergent alleles at these genes, reflecting selection on both ancestral and introgressed variation. Forecasted reductions in snow cover are likely to induce widespread camouflage mismatch. However, simulated populations with variation for darker winter pelage are predicted to adapt rapidly, providing a trait-based genetic framework to facilitate evolutionary rescue. These discoveries demonstrate how the genetic basis of climate change adaptation can inform conservation.
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Timothy J Thurman
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alexander V Kumar
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- US Fish and Wildlife Service, Fort Collins, CO, USA
| | | | - John R Demboski
- Zoology Department, Denver Museum of Nature & Science, Denver, CO, USA
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- Office of Research and Creative Scholarship, University of Montana, Missoula, MT, USA
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| |
Collapse
|
6
|
Rudolf MF, Wilson EC, Pauli JN. Anomalous snow events increase mortality for a winter-adapted species. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Winter is a costly time for animals, requiring individuals to adapt to increased energetic costs, and reduced resources. Porcupines (Erethizon dorsatum Linnaeus, 1758) confront winter by storing and catabolizing somatic stores. Increasing temperatures and attenuated snow conditions due to climate change increase porcupine survival, but impacts of greater weather variability has not been explored. In April of 2018, an anomalously heavy and late snowstorm occurred at our long-term study site in central Wisconsin followed by multiple mortalities among adult porcupines. We assessed cause of mortality and determined nutritional condition by extracting bone marrow, and quantifying lipid content. Porcupines that died following the snow event had lower fat stores than the fall 2019 group, and likely died of starvation. We estimated survival of female porcupines during the winters 2012 & 2015-2018 to assess the effects of snow conditions and nutritional condition on survival. Survival declined with increased snow depth but increased with improved nutritional condition. The mass starvation event we observed in 2018 appeared to have resulted from deep snow increasing locomotive costs and reducing nutritional condition. As climate change increases the frequency of extreme weather events, including extreme snowfalls, we predict that the frequency of such clustered mortalities will increase.
Collapse
Affiliation(s)
- Michaela Floren Rudolf
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, Wisconsin, United States
| | - Evan Costello Wilson
- University of Wisconsin-Madison, Department of Forest & Wildlife Ecology, Madison, Wisconsin, United States
- University of Michigan, 1259, School of Environment and Sustainability, Ann Arbor, Michigan, United States,
| | - Jonathan N Pauli
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, Wisconsin, United States
| |
Collapse
|
7
|
Wilson EC, Zuckerberg B, Peery MZ, Pauli JN. Experimental repatriation of snowshoe hares along a southern range boundary reveals historical community interactions. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Evan C. Wilson
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - M. Zachariah Peery
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| |
Collapse
|