1
|
Sözer EB, Semenov I, Thomas Vernier P. Dihydroethidium-derived fluorescence in electrically stressed cells indicates intracellular microenvironment modifications independent of ROS. Bioelectrochemistry 2024; 160:108751. [PMID: 38851174 DOI: 10.1016/j.bioelechem.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Intracellular reactive oxygen species (ROS) generation is widely suggested as a trigger for biological consequences of electric field exposures, such as those in electroporation applications. ROS are linked with membrane barrier function degradation, genetic damage, and complex events like immunological cell death. Dihydroethidium (DHE) is commonly used to monitor ROS in cells. DHE is linked to intracellular ROS by a primary oxidation product, Ethidium (Eth+), that shows increased fluorescence upon binding to polynucleotides. We observed changes in DHE-derived fluorescence in Chinese hamster ovary (CHO) cells post 300-ns electric pulse exposures, comparing them to tert-butyl-hydroperoxide (t-BHP) induced oxidative stress. Immediate intracellular fluorescence changes were noted in both cases, but with distinct localization patterns. After electrical stress, cytosolic DHE-derived fluorescence intensity decreases, and nucleolar intensity increases. Conversely, t-BHP exposure increases DHE-derived fluorescence uniformly across the cell. Surprisingly, fluorescence patterns after electrical stress in Eth+-loaded cells is identical to those in DHE-loaded cells, in kinetics and localization patterns. These findings indicate that DHE-derived fluorescence changes after pulsed electric field stress are not due to intracellular ROS generation leading to DHE oxidation, but rather indicate stress-induced intracellular microenvironment alterations affecting Eth+ fluorescence.
Collapse
Affiliation(s)
- Esin B Sözer
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Norfolk, VA, USA.
| | - Iurii Semenov
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Norfolk, VA, USA
| | - P Thomas Vernier
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Norfolk, VA, USA.
| |
Collapse
|
2
|
Expression of voltage-gated calcium channels augments cell susceptibility to membrane disruption by nanosecond pulsed electric field. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2175-2183. [PMID: 30409513 DOI: 10.1016/j.bbamem.2018.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022]
Abstract
We compared membrane permeabilization by nanosecond pulsed electric field (nsPEF) in HEK293 cells with and without assembled CaV1.3 L-type voltage-gated calcium channel (VGCC). Individual cells were subjected to one 300-ns pulse at 0 (sham exposure); 1.4; 1.8; or 2.3 kV/cm, and membrane permeabilization was evaluated by measuring whole-cell currents and by optical monitoring of cytosolic Ca2+. nsPEF had either no effect (0 and 1.4 kV/cm), or caused a lasting (>80 s) increase in the membrane conductance in about 50% of cells (1.8 kV/cm), or in all cells (2.3 kV/cm). The conductance pathway opened by nsPEF showed strong inward rectification, with maximum conductance increase for the inward current at the most negative membrane potentials. Although these potentials were below the depolarization threshold for VGCC activation, the increase in conductance in cells which expressed VGCC (VGCC+ cells) was about twofold greater than in cells which did not (VGCC- cells). Among VGCC+ cells, the nsPEF-induced increase in membrane conductance showed a positive correlation with the amplitude of VGCC current measured in the same cells prior to nsPEF exposure. These findings demonstrate that the expression of VGCC makes cells more susceptible to membrane permeabilization by nsPEF. Time-lapse imaging of nsPEF-induced Ca2+ transients confirmed permeabilization by a single 300-ns pulse at 1.8 or 2.3 kV/cm, but not at 1.4 kV/cm, and the transients were expectedly larger in VGCC+ cells. However, it remains to be established whether larger transients reflected additional Ca2+ entry through VGCC, or were a result of more severe electropermeabilization of VGCC+ cells.
Collapse
|
3
|
Yang L, Craviso GL, Vernier PT, Chatterjee I, Leblanc N. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells. PLoS One 2017; 12:e0181002. [PMID: 28700658 PMCID: PMC5507283 DOI: 10.1371/journal.pone.0181002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/23/2017] [Indexed: 11/18/2022] Open
Abstract
This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V) relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa), whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa), a Ca2+-activated K+ current (IK(Ca)), and a sustained voltage-dependent delayed rectifier K+ current (IKV). A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E)-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca) as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.
Collapse
Affiliation(s)
- Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Gale L. Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - P. Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States of America
| | - Indira Chatterjee
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, NV, United States of America
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- * E-mail:
| |
Collapse
|
4
|
Stecker MM, Patterson T, Netherton BL. Mechanisms of Electrode Induced Injury. Part 1: Theory. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/1086508x.2006.11079592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mark M. Stecker
- Department of Neurology Geisinger Medical Center Danville, Pennsylvania
| | - Terry Patterson
- Department of Neurosurgery Penn State Medical Center Hershey, Pennsylvania
| | | |
Collapse
|
5
|
Huang F, Fang Z, Mast J, Chen W. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations. Bioelectromagnetics 2013; 34:253-63. [DOI: 10.1002/bem.21773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/23/2012] [Indexed: 01/18/2023]
|
6
|
Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaitė-Riševičienė R, Saulis G, Xiao S, Pakhomov AG. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys 2012; 527:55-64. [PMID: 22910297 PMCID: PMC3459148 DOI: 10.1016/j.abb.2012.08.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 02/03/2023]
Abstract
Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1-13 kV/cm) was assessed by oxidation of 2',7'-dichlorodihydrofluoresein (H(2)DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H(2)DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2',7'-dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat cells, but remained stable in nsPEF-resistant U937 cells. In cell-free media, nsPEF facilitated the conversion of H(2)DCF into DCF. This effect was not related to heating and was reduced by catalase, but not by mannitol or superoxide dismutase. Formation of H(2)O(2) in nsPEF-treated media was confirmed by increased oxidation of Amplex Red. ROS increase within individual cells exposed to nsPEF was visualized by oxidation of DHE. We conclude that nsPEF can generate both extracellular (electrochemical) and intracellular ROS, including H(2)O(2) and possibly other species. Therefore, bioeffects of nsPEF are not limited to electropermeabilization; concurrent ROS formation may lead to cell stimulation and/or oxidative cell damage.
Collapse
Affiliation(s)
- Olga N. Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Vera A. Khorokhorina
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Angela M. Bowman
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | | | - Gintautas Saulis
- Department of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
- Dept. of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| |
Collapse
|
7
|
Nesin V, Pakhomov AG. Inhibition of voltage-gated Na(+) current by nanosecond pulsed electric field (nsPEF) is not mediated by Na(+) influx or Ca(2+) signaling. Bioelectromagnetics 2012; 33:443-51. [PMID: 22234846 DOI: 10.1002/bem.21703] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/12/2011] [Indexed: 11/10/2022]
Abstract
In earlier studies, we found that permeabilization of mammalian cells with nsPEF was accompanied by prolonged inhibition of voltage-gated (VG) currents through the plasma membrane. This study explored if the inhibition of VG Na(+) current (I(Na)) resulted from (i) reduction of the transmembrane Na(+) gradient due to its influx via nsPEF-opened pores, and/or (ii) downregulation of the VG channels by a Ca(2+)-dependent mechanism. We found that a single 300 ns electric pulse at 1.6-5.3 kV/cm triggered sustained Na(+) influx in exposed NG108 cells and in primary chromaffin cells, as detected by increased fluorescence of a Sodium Green Dye. In the whole-cell patch clamp configuration, this influx was efficiently buffered by the pipette solution so that the increase in the intracellular concentration of Na(+) ([Na](i)) did not exceed 2-3 mM. [Na](i) increased uniformly over the cell volume and showed no additional peaks immediately below the plasma membrane. Concurrently, nsPEF reduced VG I(Na) by 30-60% (at 4 and 5.3 kV/cm). In control experiments, even a greater increase of the pipette [Na(+)] (by 5 mM) did not attenuate VG I(Na), thereby indicating that the nsPEF-induced Na(+) influx was not the cause of VG I(Na) inhibition. Similarly, adding 20 mM of a fast Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the pipette solution did not prevent or attenuate the inhibition of the VG I(Na) by nsPEF. These findings point to possible Ca(2+)-independent downregulation of the VG Na(+) channels (e.g., caused by alteration of the lipid bilayer) or the direct effect of nsPEF on the channel.
Collapse
Affiliation(s)
- Vasyl Nesin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | |
Collapse
|
8
|
Nesin V, Bowman AM, Xiao S, Pakhomov AG. Cell permeabilization and inhibition of voltage-gated Ca(2+) and Na(+) channel currents by nanosecond pulsed electric field. Bioelectromagnetics 2011; 33:394-404. [PMID: 22213081 DOI: 10.1002/bem.21696] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/16/2011] [Indexed: 11/09/2022]
Abstract
Previous studies have found that nanosecond pulsed electric field (nsPEF) exposure causes long-term permeabilization of the cell plasma membrane. In this study, we utilized the whole-cell patch-clamp method to study the nsPEF effect on currents of voltage-gated (VG) Ca(2+) and Na(+) channels (I(Ca) and I(Na)) in cultured GH3 and NG108 cells. We found that a single 300 or 600 ns pulse at or above 1.5-2 kV/cm caused prolonged inhibition of I(Ca) and I(Na). Concurrently, nsPEF increased a non-inactivating "leak" current (I(leak)), presumably due to the formation of nanoelectropores or larger pores in the plasma membrane. The nsPEF effects were similar in cells that were exposed intact and subsequently brought into the whole-cell recording configuration, and in cells that were first brought into the whole-cell configuration and then exposed. Although both I(leak) and the inhibition of VG currents were enhanced at higher E-field levels, these two nsPEF effects showed relatively weak correlation with each other. In some cells, I(leak) increased 10-fold or more while VG currents remained unchanged. At longer time intervals after exposure (5-15 min), I(Ca) and I(Na) could remain inhibited although I(leak) had largely recovered. The causal relation of nsPEF inhibitory effects on VG currents and permeabilization of the plasma membrane is discussed.
Collapse
Affiliation(s)
- Vasyl Nesin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | | | | | |
Collapse
|
9
|
Wegner LH, Flickinger B, Eing C, Berghöfer T, Hohenberger P, Frey W, Nick P. A patch clamp study on the electro-permeabilization of higher plant cells: Supra-physiological voltages induce a high-conductance, K+ selective state of the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:1728-36. [PMID: 21296050 DOI: 10.1016/j.bbamem.2011.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 11/30/2022]
Abstract
Permeabilization of biological membranes by pulsed electric fields ("electroporation") is frequently used as a tool in biotechnology. However, the electrical properties of cellular membranes at supra-physiological voltages are still a topic of intensive research efforts. Here, the patch clamp technique in the whole cell and the outside out configuration was employed to monitor current-voltage relations of protoplasts derived from the tobacco culture cell line "Bright yellow-2". Cells were exposed to a sequence of voltage pulses including supra-physiological voltages. A transition from a low-conductance (~0.1 nS/pF) to a high-conductance state (~5 nS/pF) was observed when the membrane was either hyperpolarized or depolarized beyond threshold values of around -250 to -300 mV and +200 to +250 mV, respectively. Current-voltage curves obtained with ramp protocols revealed that the electro-permeabilized membrane was 5-10 times more permeable to K+ than to gluconate. The K+ channel blocker tetraethylammonium (25 mM) did not affect currents elicited by 10 ms-pulses, suggesting that the electro-permeabilization was not caused by a non-physiological activation of K+ channels. Supra-physiological voltage pulses even reduced "regular" K+ channel activity, probably due to an increase of cytosolic Ca2+ that is known to inhibit outward-rectifying K+ channels in Bright yellow-2 cells. Our data are consistent with a reversible formation of aqueous membrane pores at supra-physiological voltages.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Campus North, 76344 Eggenstein-Leopoldshafen, Germany; Karlsruhe Institute of Technology, Botanical Institute I-Molecular Cell Biology, Campus South, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Meyer JF, Wolf B, Gross GW. Magnetic stimulation and depression of mammalian networks in primary neuronal cell cultures. IEEE Trans Biomed Eng 2009; 56:1512-23. [PMID: 19203881 DOI: 10.1109/tbme.2009.2013961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For transcranial magnetic stimulation (TMS), the coupling of induced electric fields with neurons in gray matter is not well understood. There is little information on optimal stimulation parameters and on basic cellular mechanisms. For this reason, magnetic stimulation of spontaneously active neuronal networks, grown on microelectrode arrays in culture, was employed as a test environment. This allowed use of smaller coils and the continual monitoring of network action potential (AP) activity before, during, and for long periods after stimulation. Biphasic, rectangular, and 500 micros long pulses were used at mean pulse frequencies (MPFs) ranging from 3 to 100 Hz on both spinal cord (SC) and frontal cortex (FC) cultures. Contrary to stimulation of organized fiber bundles, APs were not elicited directly. Responses were predominantly inhibitory, dose dependent, with onset times between 10 s and several minutes. Spinal networks showed a greater sensitivity to activity suppression. Under pharmacological disinhibition, some excitation was seen at low pulse frequencies. FC cultures showed greater excitatory responses than SC networks. The observed primary inhibitory responses imply interference with synaptic exocytosis mechanisms. With 20,000 pulses at 10 Hz, 40% inhibition was maintained for over 30 min with full recovery, suggesting possible application to nonchemical, noninvasive pain management.
Collapse
Affiliation(s)
- Jochen F Meyer
- Department of Medical Electronics, Technical University of Munich, Munich 80333, Germany.
| | | | | |
Collapse
|
11
|
Chen W, Zhang Z, Huang F. Synchronization of Na/K pump molecules by an oscillating electric field. J Bioenerg Biomembr 2008; 40:347-57. [DOI: 10.1007/s10863-008-9150-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
|
12
|
Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol Biol 2007; 8:56. [PMID: 17598924 PMCID: PMC1925113 DOI: 10.1186/1471-2199-8-56] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 06/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 mus) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1) electroporation, 2) DNA injection, and 3) time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis.Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in the muscles 2 weeks after DNA electrotransfer. CONCLUSION The small and transient changes found in the gene expression profiles are of great importance, as this demonstrates that DNA electrotransfer is safe with minor effects on the muscle host cells. These findings are essential for introducing the DNA electrotransfer to muscle for clinical use. Indeed the HV+LV pulse combination used has been optimised to ensure highly efficient and safe DNA electrotransfer.
Collapse
|
13
|
Abstract
We experimentally studied the Na/K pump currents evoked by a train of squared pulses whose pulse-duration is about the time course of Na-extrusion at physiological conditions. The magnitude of the measured pump current can be as much as three-fold of that induced by the traditional single pulse measurement. The increase in the pump current is directly dependent on the number of pre-pulses. The larger the number of the pre-pulses is, the higher the current magnitude can be obtained. At a particular number of pre-pulses, the pump current becomes saturated. These results suggest that a large number of pre-pulses may synchronize the pump molecules to work at the same pace. As a result, the pump molecules may extrude Na ions at the same time corresponding to the stimulation pulses, and pump in K ions at the same time during the pulse intervals. Therefore, the measured pump current is three-fold of that measured by a single pulse where the outward and inward pump currents are canceled each other.
Collapse
Affiliation(s)
- Wei Chen
- Center for Cellular and Molecular Biophysics, Department of Physics, University of South Florida, 4020 E. Fowler Ave., Tampa, FL 33620, USA.
| | | |
Collapse
|
14
|
Chen W, Wu WH. Electric field-induced changes in membrane proteins charge movement currents. Burns 2006; 32:833-41. [PMID: 17000052 DOI: 10.1016/j.burns.2006.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/06/2006] [Indexed: 11/18/2022]
Abstract
Our previous study showed that thermal effects induced by Joule heating did not play the pivotal role in damage of membrane proteins when cell membranes were shocked by a pulsed membrane potential up to 500 mV. Our analytical study of ion channel currents further indicated that a brief electric shock may cause protein conformational damage in the channel gating system, resulting in a reduction in the number of limiting gating charge particles. In this paper, we present the results of our study into electric shock-induced changes in the intramembrane charge movement currents. We found that a brief electric shock may significantly alter the characteristics of the charge movement currents of the membrane proteins, including reducing the magnitudes of two components Q(beta) and Q(gamma), broadening the hump shape of Q(gamma), and increasing its time delay. This study suggests that a brief intensive electric shock may cause proteins to structurally alter, reducing the amount of movable charge particles and therefore decreasing the protein functions. These results indicate that electro-coupled structural damage in membrane proteins is an important mechanism involved in electrical injury, especially in a field range not sufficient to cause thermal damage.
Collapse
Affiliation(s)
- Wei Chen
- Laboratory for Cellular and Molecular Biophysics, Department of Physics, The University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | | |
Collapse
|
15
|
Abstract
Because of high electrical impedance of cell membrane, when living cells are exposed to an external electric field, the field-induced voltage drops will mainly occur on the cell membrane. In addition to Joule heating damage and electroporation of the cell membrane, the electric field-induced supraphysiological transmembrane potential may inevitably damage the membrane proteins, especially the voltage-dependent membrane proteins. That is because the charged particles in the amino acid of the membrane proteins and, in particular, the voltage-sensors in the voltage-dependent membrane proteins are vulnerable to the membrane potential. An intensive, brief electric shock may induce electroconformational damage or denaturation in the membrane proteins. As a result, the cell functions are significantly reduced. This electric field-induced denaturation in the membrane proteins strongly suggests a new underlying mechanism involved in electrical injury.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
16
|
Chen W. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents. Bioelectrochemistry 2004; 63:333-5. [PMID: 15110298 DOI: 10.1016/j.bioelechem.2003.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 12/03/2003] [Accepted: 12/04/2003] [Indexed: 11/30/2022]
Abstract
Experimental results are presented to show that a pulsed, intensive membrane potential can reduce intra membrane, nonlinear charge movement currents, which are the voltage-sensors in the voltage-dependent membrane proteins and in the excitation-contraction coupling of skeletal muscle fibers. The results indicate a possible mechanism involved in electrical injury: dysfunctions of the voltage-dependent membrane proteins caused by electroconformational damages in their voltage-sensors.
Collapse
Affiliation(s)
- Wei Chen
- Cellular and Molecular Biophysics, Department of Physics, University of South Florida, 4202 E. Fowler Avenue, PHY 114 Tampa, FL 33620, USA.
| |
Collapse
|