1
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Meglič SH, Pavlin M. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. Biomed Eng Online 2021; 20:85. [PMID: 34419072 PMCID: PMC8379608 DOI: 10.1186/s12938-021-00922-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene electrotransfer is an established method that enables transfer of DNA into cells with electric pulses. Several studies analyzed and optimized different parameters of gene electrotransfer, however, one of main obstacles toward efficient electrotransfection in vivo is relatively poor DNA mobility in tissues. Our aim was to analyze the effect of impaired mobility on gene electrotransfer efficiency experimentally and theoretically. We applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. In order to analyze the effect of impaired mobility on gene electrotransfer efficiency, we applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. Results We obtained the highest transfection in plated cells, while transfection efficiency of embedded cells in 3D model was lowest, similarly as in in vivo. To further analyze DNA diffusion in 3D model, we applied DNA on top or injected it into 3D model and showed, that for the former gene electrotransfer efficiency was similarly as in in vivo. The experimental results are explained with theoretical analysis of DNA diffusion and electromobility. Conclusion We show, empirically and theoretically that DNA has impaired electromobility and especially diffusion in collagen environment, where the latter crucially limits electrotransfection. Our model enables optimization of gene electrotransfer in in vitro conditions.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. .,Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Dermol-Černe J, Pirc E, Miklavčič D. Mechanistic view of skin electroporation - models and dosimetry for successful applications: an expert review. Expert Opin Drug Deliv 2020; 17:689-704. [PMID: 32192364 DOI: 10.1080/17425247.2020.1745772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Skin electroporation is a promising treatment for transdermal drug delivery, gene electrotransfer, skin rejuvenation, electrochemotherapy, and wound disinfection. Although a considerable amount of in vitro and in vivo studies exists, the translation to clinics is not as fast as one would hope. We hypothesize the reason lies in the inadequate dosimetry, i.e. electrode configurations, pulse parameters, and pulse generators used. We suggest adequate dosimetry can be determined by mathematical modeling which would allow comparison of protocols and facilitate translation into clinics.Areas covered: We introduce the mechanisms and applications of skin electroporation, present existing mathematical models and compare the influence of different model parameters. We review electrodes and pulse generators, prototypes, as well as commercially available models.Expert opinion: The reasons for slow translation of skin electroporation treatments into clinics lie in uncontrolled and inadequate dosimetry, poor reporting rendering comparisons between studies difficult, and significant differences in animal and human skin morphology often dismissed in reports. Mathematical models enable comparison of studies, however, when the parameters of the pulses and electrode configuration are not adequately reported, as is often the case, comparisons are difficult, if not impossible. For each skin electroporation treatment, systematic studies determining optimal parameters should be performed and treatment parameters standardized.
Collapse
Affiliation(s)
- Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Mao M, Wang L, Chang CC, Rothenberg KE, Huang J, Wang Y, Hoffman BD, Liton PB, Yuan F. Involvement of a Rac1-Dependent Macropinocytosis Pathway in Plasmid DNA Delivery by Electrotransfection. Mol Ther 2017; 25:803-815. [PMID: 28129959 PMCID: PMC5363188 DOI: 10.1016/j.ymthe.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
Electrotransfection is a widely used method for delivering genes into cells with electric pulses. Although different hypotheses have been proposed, the mechanism of electrotransfection remains controversial. Previous studies have indicated that uptake and intracellular trafficking of plasmid DNA (pDNA) are mediated by endocytic pathways, but it is still unclear which pathways are directly involved in the delivery. To this end, the present study investigated the dependence of electrotransfection on macropinocytosis. Data from the study demonstrated that electric pulses induced cell membrane ruffling and actin cytoskeleton remodeling. Using fluorescently labeled pDNA and a macropinocytosis marker (i.e., dextran), the study showed that electrotransfected pDNA co-localized with dextran in intracellular vesicles. Furthermore, electrotransfection efficiency could be decreased significantly by reducing temperature or treatment of cells with a pharmacological inhibitor of Rac1 and could be altered by changing Rac1 activity. Taken together, the findings suggested that electrotransfection of pDNA involved Rac1-dependent macropinocytosis.
Collapse
Affiliation(s)
- Mao Mao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Jianyong Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Ophthalmology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
5
|
S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments. Bioelectrochemistry 2015; 103:92-7. [DOI: 10.1016/j.bioelechem.2014.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
|
6
|
Pavlin M, Kandušer M. New insights into the mechanisms of gene electrotransfer--experimental and theoretical analysis. Sci Rep 2015; 5:9132. [PMID: 25778848 PMCID: PMC5390920 DOI: 10.1038/srep09132] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/11/2015] [Indexed: 01/14/2023] Open
Abstract
Gene electrotransfer is a promising non-viral method of gene delivery. In our in vitro study we addressed open questions about this multistep process: how electropermeabilization is related to electrotransfer efficiency; the role of DNA electrophoresis for contact and transfer across the membrane; visualization and theoretical analysis of DNA-membrane interaction and its relation to final transfection efficiency; and the differences between plated and suspended cells. Combinations of high-voltage and low-voltage pulses were used. We obtained that electrophoresis is required for the insertion of DNA into the permeabilized membrane. The inserted DNA is slowly transferred into the cytosol, and nuclear entry is a limiting factor for optimal transfection. The quantification and theoretical analysis of the crucial parameters reveals that DNA-membrane interaction (NDNA) increases with higher DNA concentration or with the addition of electrophoretic LV pulses while transfection efficiency reaches saturation. We explain the differences between the transfection of cell suspensions and plated cells due to the more homogeneous size, shape and movement of suspended cells. Our results suggest that DNA is either translocated through the stable electropores or enters by electo-stimulated endocytosis, possibly dependent on pulse parameters. Understanding of the mechanisms enables the selection of optimal electric protocols for specific applications.
Collapse
Affiliation(s)
- Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Maša Kandušer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Abstract
Membrane electropermeabilization is the observation that the permeability of a cell membrane can be transiently increased when a micro-millisecond external electric field pulse is applied on a cell suspension or on a tissue. Applicative aspects for the transfer of foreign molecules (macromolecules) into the cytoplasm are routinely used. But only a limited knowledge about what is really occurring in the cell and its membranes at the molecular levels is available. This chapter is a critical attempt to report the present state of the art and to point out some of the still open problems. The experimental facts associated to membrane electropermeabilization are firstly reported. They are valid on biological and model systems. Secondly, soft matter approaches give access to the bioelectrochemical description of the thermodynamical constraints supporting the destabilization of simplified models of the biological membrane. It is indeed described as a thin dielectric leaflet, where a molecular transport takes place by electrophoresis and then diffusion. This naïve approach is due to the lack of details on the structural aspects affecting the living systems as shown in a third part. Membranes are part of the cell machinery. The critical property of cells as being an open system from the thermodynamical point of view is almost never present. Computer simulations are now contributing to our knowledge on electropermeabilization. The last part of this chapter is a (very) critical report of all the efforts that have been performed. The final conclusion remains that we still do not know all the details on the reversible structural and dynamical alterations of the cell membrane (and cytoplasm) supporting its electropermeabilization. We have a long way in basic and translational researches to reach a pertinent description.
Collapse
Affiliation(s)
- Justin Teissie
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| |
Collapse
|
8
|
Markelc B, Bellard E, Sersa G, Pelofy S, Teissie J, Coer A, Golzio M, Cemazar M. In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J Membr Biol 2012; 245:545-54. [PMID: 22644389 PMCID: PMC3464392 DOI: 10.1007/s00232-012-9435-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
Abstract
Electropermeabilization/electroporation (EP) is a physical method that by application of electric pulses to cells increases cell membrane permeability and enables the introduction of molecules into the cells. One of the uses of EP in vivo is plasmid DNA electrotransfer to the skin for DNA vaccination. EP of tissues induces reduction of blood flow and, in combination with plasmid DNA, induction of an immune response. One of the EP protocols for plasmid DNA electrotransfer to the skin is a combination of high-voltage (HV) and low-voltage (LV) pulses. However, the effects of this pulse combination on skin-vessel blood flow are not known. Therefore, using intravital microscopy in a dorsal window chamber in mice and fluorescently labeled dextrans, the effects of one HV and eight LV pulses on skin vasculature were investigated. In addition, a detailed histological analysis was performed. Image analysis of fluorescence intensity changes demonstrated that EP induces a transient constriction and increased permeability of blood vessels as well as a “vascular lock.” Histological analysis revealed rounding up of endothelial cells and stacking up of erythrocytes at 1 h after EP. In addition, extravasation of erythrocytes and leukocyte infiltration accompanied by edema were determined up to 24 h after EP. In conclusion, our results show that blood flow modifying effects of EP in skin contribute to the infiltration of immune cells in the exposed area. When combined with plasmid DNA for vaccination, this could enable the initial and prolonged contact of immune cells with encoded therapeutic proteins.
Collapse
Affiliation(s)
- Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Belfiore LA, Floren ML, Belfiore CJ. Electric-field-enhanced nutrient consumption in dielectric biomaterials that contain anchorage-dependent cells. Biophys Chem 2011; 161:8-16. [PMID: 22196748 DOI: 10.1016/j.bpc.2011.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/19/2011] [Accepted: 10/28/2011] [Indexed: 11/25/2022]
Abstract
This research contribution addresses electric-field stimulation of intra-tissue mass transfer and cell proliferation in viscoelastic biomaterials. The unsteady state reaction-diffusion equation is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration occur in response to harmonic electric potential differences across a parallel-plate capacitor in a dielectric-sandwich configuration. The partial differential mass balance with diffusion and electro-kinetic consumption contains the Damköhler (Λ(2)) and Deborah (De) numbers. Zero-field and electric-field-sensitive Damköhler numbers affect nutrient boundary layer growth. Diagonal elements of the 2nd-rank diffusion tensor are enhanced in the presence of weak electric fields, in agreement with the formalism of equilibrium and nonequilibrium thermodynamics. Induced dipole polarization density within viscoelastic biomaterials is calculated via the real and imaginary components of the complex dielectric constant, according to the Debye equation, to quantify electro-kinetic stimulation. Rates of nutrient consumption under zero-field conditions are described by third-order kinetics that include local mass densities of nutrients, oxygen, and attached cells. Thinner nutrient boundary layers are stabilized at shorter dimensionless diffusion times when the zero-field intra-tissue Damköhler number increases above its initial-condition-sensitive critical value [i.e., {Λ(2)(zero-field)}(critical)≥53, see Eq. (23)], such that the biomaterial core is starved of essential ingredients required for successful proliferation. When tissue regeneration occurs above the critical electric-field-sensitive intra-tissue Damköhler number, the electro-kinetic contribution to nutrient consumption cannot be neglected. The critical electric-field-sensitive intra-tissue Damköhler number is proportional to the Deborah number.
Collapse
Affiliation(s)
- Laurence A Belfiore
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
10
|
Wu M, Yuan F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS One 2011; 6:e20923. [PMID: 21695134 PMCID: PMC3113837 DOI: 10.1371/journal.pone.0020923] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
Abstract
Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.
Collapse
Affiliation(s)
- Mina Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
11
|
Enhancement of electric field-mediated gene delivery through pretreatment of tumors with a hyperosmotic mannitol solution. Cancer Gene Ther 2010; 18:26-33. [PMID: 20847751 PMCID: PMC3005142 DOI: 10.1038/cgt.2010.51] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pulsed electric fields can enhance interstitial transport of plasmid DNA (pDNA) in solid tumors. However, the extent of enhancement is still limited. To this end, effects of cellular resistance to electric field-mediated gene delivery were investigated. The investigation used two tumor cell lines (4T1 and B16.F10) either in suspensions or implanted in two in vivo models (dorsal skin-fold chamber (DSC) and hind leg). The volume fraction of cells was altered by pretreatment with a hyperosmotic mannitol solution (1 M). It was observed that the pretreatment reduced the volumes of 4T1 and B16.F10 cells, suspended in an agarose gel, by 50% and 46%, respectively, over a 20-min period but did not cause significant changes ex vivo in volumes of hind leg tumor tissues grown from the same cells in mice. The mannitol pretreatment in vivo improved electric field-mediated gene delivery in the hind leg tumor models, in terms of reporter gene expression, but resulted in minimal enhancement in pDNA electrophoresis over a few micron distance in the DSC tumor models. These data demonstrated that hyperosmotic mannitol solution could effectively improve electric field-mediated gene delivery around individual cells in vivo through increasing the extracellular space.
Collapse
|
12
|
Raffa V, Ciofani G, Vittorio O, Pensabene V, Cuschieri A. Carbon nanotube-enhanced cell electropermeabilisation. Bioelectrochemistry 2010; 79:136-41. [DOI: 10.1016/j.bioelechem.2009.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 11/25/2022]
|
13
|
The role of electrophoresis in gene electrotransfer. J Membr Biol 2010; 236:75-9. [PMID: 20640850 DOI: 10.1007/s00232-010-9276-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase the permeability of a cell membrane and enables transfer of genes. Poor plasmid mobility in tissues is one of the major barriers for the successful use of gene electrotransfer in gene therapy. Therefore, we analyzed the effect of electrophoresis on increasing gene electrotransfer efficiency using different combinations of high-voltage (HV) and low-voltage (LV) pulses in vitro on CHO cells. We designed a special prototype of electroporator, which enabled us to use only HV pulses or combinations of LV + HV and HV + LV pulses. We used optimal plasmid concentrations used in in vitro conditions as well as lower suboptimal concentrations in order to mimic in vivo conditions. Only for the lowest plasmid concentration did the electrophoretic force of the LV pulse added to the HV pulse increase the transfection efficiency compared to using only HV. The effect of the LV pulse was more pronounced for HV + LV, while for the reversed sequence, LV + HV, there was only a minor effect of the LV pulse. For the highest plasmid concentrations no added effect of LV pulses were observed. Our results suggest that there are different contributing effects of LV pulses: electrophoretically increased contact of DNA with the membrane and increased insertion of DNA into permeabilized cell membrane and/or translocation due to electrophoretic force, which appears to be the dominant effect.
Collapse
|
14
|
Golzio M, Mazeres S, Teissie J. Electrodes for in vivo localised subcutaneous electropulsation and associated drug and nucleic acid delivery. Expert Opin Drug Deliv 2010; 6:1323-31. [PMID: 19860535 DOI: 10.1517/17425240903294043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Drug and nucleic acids can be delivered in vivo by an injection of the product followed by the application of a train of electric pulses. OBJECTIVE The success of the method is linked to the proper distribution of the electric field in the target tissue. This is under the control of the design of the electrodes. METHODS The field distribution can be obtained by computer simulation mainly by using numerical methods and simplifying hypothesis. The conclusions are validated by comparing the computed current and its experimental values on phantoms. A good agreement is obtained. RESULTS/CONCLUSION Targeting the delivery to the skin can be obtained by using an array of very short needle electrodes, by pinching the skin between two parallel plate electrodes, or by using contact wire electrodes.
Collapse
Affiliation(s)
- M Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France
| | | | | |
Collapse
|
15
|
Tang L, Yao C, Sun C. Apoptosis induction with electric pulses - a new approach to cancer therapy with drug free. Biochem Biophys Res Commun 2009; 390:1098-101. [PMID: 19853584 DOI: 10.1016/j.bbrc.2009.10.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 02/03/2023]
Abstract
Electrical pulses have been widely used in biomedical fields, whose applications depend on the parameters such as durations and electric intensity. Conventional electroporation (0.1-1kV/cm, 100micros) has been used in cell fusion, transfection and electrochemotherapy. Recent studies with high-intensity (MV/cm) electric field applications with durations of several tens of nanoseconds can affect intracellular signal transduction and intracellular structures with plasma intact, resulting in an application of intracellular manipulation. The most recent development is the finding that parameters between those two ranges could be used to induce apoptosis of cancer cells. Proposal of apoptosis induction and tumor inhibition has advantages to pursue the treatment of cancer free of cytotoxic drugs.
Collapse
Affiliation(s)
- Liling Tang
- State Key Laboratory of Power Transmission Equipment & System and New Technology, Chongqing University, Chongqing 400044, China.
| | | | | |
Collapse
|
16
|
Cemazar M, Golzio M, Sersa G, Hojman P, Kranjc S, Mesojednik S, Rols MP, Teissie J. Control by pulse parameters of DNA electrotransfer into solid tumors in mice. Gene Ther 2009; 16:635-44. [DOI: 10.1038/gt.2009.10] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Mechanisms involved in gene electrotransfer using high- and low-voltage pulses — An in vitro study. Bioelectrochemistry 2009; 74:265-71. [DOI: 10.1016/j.bioelechem.2008.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
|
18
|
Henshaw J, Mossop B, Yuan F. Relaxin treatment of solid tumors: effects on electric field-mediated gene delivery. Mol Cancer Ther 2008; 7:2566-73. [PMID: 18723501 DOI: 10.1158/1535-7163.mct-08-0435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulsed electric fields have been shown to enhance interstitial transport of plasmid DNA (pDNA) in solid tumors in vivo. However, the extent of enhancement is still limited partly due to the collagen component in extracellular matrix. To this end, effects of collagen remodeling on interstitial electrophoresis were investigated by pretreatment of tumor-bearing mice with a recombinant human relaxin (rh-Rlx). In the study, two tumor lines (4T1 and B16.F10) were examined and implanted s.c. to establish two murine models: dorsal skin-fold chamber (DSC) and hind leg. Effects of rh-Rlx on pDNA electrophoresis were measured either directly in the DSC model or indirectly in the hind leg model via reporter gene expression. It was observed that rh-Rlx treatment reduced collagen levels in the hind leg tumors but not in the DSC tumors. The observation correlated with the results from electromobility experiments, where rh-Rlx treatment enhanced transgene expression in 4T1 hind leg tumors but did not increase the electromobility of pDNA in the DSC tumors. In addition, it was observed that pDNA binding to collagen could block its diffusion in collagen gel in vitro. These observations showed that effects of rh-Rlx on the collagen content depended on microenvironment in solid tumors and that rh-Rlx treatment would enhance electric field-mediated gene delivery only if it could effectively reduce the collagen content in collagen-rich tumors.
Collapse
Affiliation(s)
- Joshua Henshaw
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
19
|
Zaharoff DA, Henshaw JW, Mossop B, Yuan F. Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med (Maywood) 2008; 233:94-105. [PMID: 18156311 DOI: 10.3181/0704-rm-113] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulsed electric field has been widely used as a nonviral gene delivery platform. The delivery efficiency can be improved through quantitative analysis of pore dynamics and intracellular transport of plasmid DNA. To this end, we investigated mechanisms of cellular uptake of macromolecules during electroporation. In the study, fluorescein isothiocyanate-labeled dextran (FD) with molecular weight of 4,000 (FD-4) or 2,000,000 (FD-2000) was added into suspensions of a murine mammary carcinoma cell (4T1) either before or at different time points (ie, 1, 2, or 10 sec) after the application of different pulsed electric fields (in high-voltage mode: 1.2-2.0 kV in amplitude, 99 microsec in duration, and 1-5 pulses; in low-voltage mode: 100-300 V in amplitude, 5-20 msec in duration, and 1-5 pulses). The intracellular concentrations of FD were quantified using a confocal microscopy technique. To understand transport mechanisms, a mathematical model was developed for numerical simulation of cellular uptake. We observed that the maximum intracellular concentration of FD-2000 was less than 3% of that in the pulsing medium. The intracellular concentrations increased linearly with pulse number and amplitude. In addition, the intracellular concentration of FD-2000 was approximately 40% lower than that of FD-4 under identical pulsing conditions. The numerical simulations predicted that the pores larger than FD-4 lasted <10 msec after the application of pulsed fields if the simulated concentrations were on the same order of magnitude as the experimental data. In addition, the simulation results indicated that diffusion was negligible for cellular uptake of FD molecules. Taken together, the data suggested that large pores induced in the membrane by pulsed electric fields disappeared rapidly after pulse application and convection was likely to be the dominant mode of transport for cellular uptake of uncharged macromolecules.
Collapse
Affiliation(s)
- David A Zaharoff
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|