1
|
Zatloukalova M, Hanyk J, Papouskova B, Kabelac M, Vostalova J, Vacek J. Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes. Free Radic Biol Med 2024; 223:212-223. [PMID: 39067626 DOI: 10.1016/j.freeradbiomed.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.
Collapse
Affiliation(s)
- Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Jiri Hanyk
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Barbora Papouskova
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Biedermann D, Hurtová M, Biedermannová L, Valentová K, Křen V. Flavonolignans from silymarin do not intercalate into DNA: Rebuttal of data published in the paper J. Mol. Recognit. e2812 (2019). J Mol Recognit 2021; 34:e2888. [PMID: 33624887 DOI: 10.1002/jmr.2888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022]
Affiliation(s)
- David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Hurtová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Lada Biedermannová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology - BIOCEV, Czech Academy of Sciences, Vestec, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
|
4
|
Chiorcea-Paquim AM, Enache TA, De Souza Gil E, Oliveira-Brett AM. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr Rev Food Sci Food Saf 2020; 19:1680-1726. [PMID: 33337087 DOI: 10.1111/1541-4337.12566] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/27/2022]
Abstract
Natural phenolic compounds are abundant in the vegetable kingdom, occurring mainly as secondary metabolites in a wide variety of chemical structures. Around 10,000 different plant phenolic derivatives have been isolated and identified. This review provides an exhaustive overview concerning the electron transfer reactions in natural polyphenols, from the point of view of their in vitro antioxidant and/or pro-oxidant mode of action, as well as their identification in highly complex matrixes, for example, fruits, vegetables, wine, food supplements, relevant for food quality control, nutrition, and health research. The accurate assessment of polyphenols' redox behavior is essential, and the application of the electrochemical methods in routine quality control of natural products and foods, where the polyphenols antioxidant activity needs to be quantified in vitro, is of the utmost importance. The phenol moiety oxidation pathways and the effect of substituents and experimental conditions on their electrochemical behavior will be reviewed. The fundamental principles concerning the redox behavior of natural polyphenols, specifically flavonoids and other benzopyran derivatives, phenolic acids and ester derivatives, quinones, lignins, tannins, lignans, essential oils, stilbenes, curcuminoids, and chalcones, will be described. The final sections will focus on the electroanalysis of phenolic antioxidants in natural products and the electroanalytical evaluation of in vitro total antioxidant capacity.
Collapse
Affiliation(s)
| | - Teodor Adrian Enache
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Eric De Souza Gil
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal.,Faculdade de Farmácia, Universidade Federal de Goiás, Setor Universitário, Goiânia, Goiás, Brasil
| | | |
Collapse
|
5
|
Çelik HH, Özcan S, Mülazımoğlu AD, Yılmaz E, Mercimek B, Çukurovalı A, Yılmaz İ, Solak AO, Mülazımoğlu İE. The synthesis of a novel DDPHC diazonium salt: Investigation of its usability in the determination of phenol and chlorophenols using CV, SWV and DPV techniques. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Heřmánková E, Zatloukalová M, Biler M, Sokolová R, Bancířová M, Tzakos AG, Křen V, Kuzma M, Trouillas P, Vacek J. Redox properties of individual quercetin moieties. Free Radic Biol Med 2019; 143:240-251. [PMID: 31381971 DOI: 10.1016/j.freeradbiomed.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
Quercetin is one of the most prominent and widely studied flavonoids. Its oxidation has been previously investigated only indirectly by comparative analyses of structurally analogous compounds, e.g. dihydroquercetin (taxifolin). To provide direct evidence about the mechanism of quercetin oxidation, we employed selective alkylation procedures for the step-by-step blocking of individual redox active sites, i.e. the catechol, resorcinol and enol C-3 hydroxyls, as represented by newly prepared quercetin derivatives 1-3. Based on the structure-activity relationship (SAR), electrochemical, and computational (density functional theory) studies, we can clearly confirm that quercetin is oxidized in the following steps: the catechol moiety is oxidized first, forming the benzofuranone derivative via intramolecular rearrangement mechanism; therefore the quercetin C-3 hydroxy group cannot be involved in further oxidation reactions or other biochemical processes. The benzofuranone is oxidized subsequently, followed by oxidation of the resorcinol motif to complete the electrochemical cascade of reactions. Derivatization of individual quercetin hydroxyls has a significant effect on its redox behavior, and, importantly, on its antiradical and stability properties, as shown in DPPH/ABTS radical scavenging assays and UV-Vis spectrophotometry, respectively. The SAR data reported here are instrumental for future studies on the oxidation of biologically or technologically important flavonoids and other polyphenols or polyhydroxy substituted aromatics. This is the first complete and direct study mapping redox properties of individual moieties in quercetin structure.
Collapse
Affiliation(s)
- Eva Heřmánková
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Michal Biler
- INSERM U1248, Univ. Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Romana Sokolová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague 8, Czech Republic
| | - Martina Bancířová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Marek Kuzma
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Patrick Trouillas
- INSERM U1248, Univ. Limoges, 2 rue du Docteur Marcland, 87025, Limoges, France; RCPTM, Palacký University, 17. listopadu 1192/12, Olomouc, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
7
|
Pawar SK, Jaldappagari S. Intercalation of a flavonoid, silibinin into DNA base pairs: Experimental and theoretical approach. J Mol Recognit 2019; 33:e2812. [DOI: 10.1002/jmr.2812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Suma K. Pawar
- Department of ChemistryKarnatak University Dharwad India
| | | |
Collapse
|
8
|
Tvrdý V, Catapano MC, Rawlik T, Karlíčková J, Biedermann D, Křen V, Mladěnka P, Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J Inorg Biochem 2018; 189:115-123. [PMID: 30245273 DOI: 10.1016/j.jinorgbio.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Silymarin, the standardized extract from the milk thistle (Silybum marianum), is composed mostly of flavonolignans and is approved in the EU for the adjuvant therapy of alcoholic liver disease. It is also used for other purported effects in miscellaneous nutraceuticals. Due to polyhydroxylated structures and low systemic bioavailability, these flavonolignans are likely to interact with transition metals in the gastrointestinal tract. The aim of this study was to analyze the interactions of pure silymarin flavonolignans with copper and iron. Both competitive and non-competitive methods at various physiologically relevant pH levels ranging from 4.5 to 7.5 were tested. Only 2,3‑dehydrosilybin was found to be a potent or moderately active iron and copper chelator. Silybin A, silybin B and silychristin A were less potent or inactive chelators. Both 2,3‑dehydrosilybin enantiomers (A and B) were equally active iron and copper chelators, and the preferred stoichiometries were mainly 2:1 and 3:1 (2,3‑dehydrosilybin:metal). Additional experiments showed that silychristin was the most potent iron and copper reductant. Comparison with their structural precursors taxifolin and quercetin is included as well. Based on these results, silymarin administration most probably affects the kinetics of copper and iron in the gastrointestinal tract, however, due to the different interactions of individual components of silymarin with these transition metals, the biological effects need to be evaluated in the future in a much more complex study.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Maria Carmen Catapano
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tomasz Rawlik
- Department of Analytical Chemistry, Faculty of Mathematics, Physics and Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-003 Katowice, Poland
| | - Jana Karlíčková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
9
|
Wen YJ, Zhou ZY, Zhang GL, Lu XX. Metal coordination protocol for the synthesis of-2,3-dehydrosilybin and 19-O-demethyl-2,3-dehydrosilybin from silybin and their antitumor activities. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Sokolová R, Kocábová J, Marhol P, Fiedler J, Biedermann D, Vacek J, Křen V. Oxidation of Natural Bioactive Flavonolignan 2,3-Dehydrosilybin: An Electrochemical and Spectral Study. J Phys Chem B 2017; 121:6841-6846. [DOI: 10.1021/acs.jpcb.7b04651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romana Sokolová
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jana Kocábová
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petr Marhol
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jan Fiedler
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - David Biedermann
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jan Vacek
- Faculty
of Medicine and Dentistry, Palacký University, Hněvotínská
3, 77515 Olomouc, Czech Republic
| | - Vladimír Křen
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
11
|
Reina M, Martínez A. Silybin interacting with Cu 4 , Ag 4 and Au 4 clusters: Do these constitute antioxidant materials? COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 2017; 105:223-240. [DOI: 10.1016/j.fct.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
|
13
|
|
14
|
Vavříková E, Křen V, Jezova-Kalachova L, Biler M, Chantemargue B, Pyszková M, Riva S, Kuzma M, Valentová K, Ulrichová J, Vrba J, Trouillas P, Vacek J. Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization. Eur J Med Chem 2017; 127:263-274. [DOI: 10.1016/j.ejmech.2016.12.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 01/24/2023]
|
15
|
Reina M, Martínez A. How the presence of metal atoms and clusters can modify the properties of Silybin? A computational prediction. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2016.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Zatloukalová M, Vavříková E, Pontinha ADR, Coufal J, Křen V, Fojta M, Ulrichová J, Oliveira-Brett AM, Vacek J. Flavonolignan Conjugates as DNA-binding Ligands and Topoisomerase I Inhibitors: Electrochemical and Electrophoretic Approaches. ELECTROANAL 2016. [DOI: 10.1002/elan.201600146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
- Department of Chemistry; Faculty of Science and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Eva Vavříková
- Institute of Microbiology; Laboratory of Biotransformation; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague Czech Republic
| | - Ana Dora Rodrigues Pontinha
- Department of Chemistry; Faculty of Science and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Jan Coufal
- Institute of Biophysics; Department of Biophysical Chemistry and Molecular Oncology; Czech Academy of Sciences; Královopolská 135 612 65 Brno Czech Republic
| | - Vladimír Křen
- Institute of Microbiology; Laboratory of Biotransformation; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics; Department of Biophysical Chemistry and Molecular Oncology; Czech Academy of Sciences; Královopolská 135 612 65 Brno Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Ana Maria Oliveira-Brett
- Department of Chemistry; Faculty of Science and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| |
Collapse
|
17
|
Oxidation of the Flavonolignan Silybin. In situ EPR Evidence of the Spin-Trapped Silybin Radical. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Karas D, Gažák R, Valentová K, Chambers CS, Pivodová V, Biedermann D, Křenková A, Oborná I, Kuzma M, Cvačka J, Ulrichová J, Křen V. Effects of 2,3-Dehydrosilybin and Its Galloyl Ester and Methyl Ether Derivatives on Human Umbilical Vein Endothelial Cells. JOURNAL OF NATURAL PRODUCTS 2016; 79:812-820. [PMID: 27015547 DOI: 10.1021/acs.jnatprod.5b00905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects in vitro of 2,3-dehydrosilybin and several galloyl esters and methyl ethers on the viability, proliferation, and migration of human umbilical vein endothelial cells (HUVECs) were evaluated. The monogalloyl esters were synthesized by a chemoselective esterification method or by Steglich esterification of suitably protected 2,3-dehydrosilybin (1) with protected gallic acid. 2,3-Dehydrosilybin (1) displayed more potent cytotoxic, antiproliferative, and antimigratory activities (IC50 12.0, 5.4, and 12.2 μM, respectively) than silybin. The methylated derivatives were less active, with the least potent being 3,7-di-O-methyl-2,3-dehydrosilybin (6). On the other hand, galloylation at C-7 OH and C-23 OH markedly increased the cytotoxicity and the effects on the proliferation and migration of HUVECs. The most active derivative was 7-O-galloyl-2,3-dehydrosilybin (13; IC50 value of 3.4, 1.6, and 4.7 μM in the cytotoxicity, inhibition of proliferation, and antimigratory assays, respectively). Overall, this preliminary structure-activity relationship study demonstrated the importance of a 2,3-double bond, a C-7 OH group, and a galloyl moiety in enhancing the activity of flavonolignans toward HUVECs.
Collapse
Affiliation(s)
| | - Radek Gažák
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Christopher S Chambers
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | | | - David Biedermann
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Alena Křenková
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Ivana Oborná
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Palacký University and University Hospital , I.P. Pavlova 6, CZ-775 20 Olomouc, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | | | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| |
Collapse
|
19
|
Pyszková M, Biler M, Biedermann D, Valentová K, Kuzma M, Vrba J, Ulrichová J, Sokolová R, Mojović M, Popović-Bijelić A, Kubala M, Trouillas P, Křen V, Vacek J. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic Biol Med 2016; 90:114-25. [PMID: 26582372 DOI: 10.1016/j.freeradbiomed.2015.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
The protective constituents of silymarin, an extract from Silybum marianum fruits, have been extensively studied in terms of their antioxidant and hepatoprotective activities. Here, we explore the electron-donor properties of the major silymarin flavonolignans. Silybin (SB), silychristin (SCH), silydianin (SD) and their respective 2,3-dehydroderivatives (DHSB, DHSCH and DHSD) were oxidized electrochemically and their antiradical/antioxidant properties were investigated. Namely, Folin-Ciocalteau reduction, DPPH and ABTS(+) radical scavenging, inhibition of microsomal lipid peroxidation and cytoprotective effects against tert-butyl hydroperoxide-induced damage to a human hepatocellular carcinoma HepG2 cell line were evaluated. Due to the presence of the highly reactive C3-OH group and the C-2,3 double bond (ring C) allowing electron delocalization across the whole structure in the 2,3-dehydroderivatives, these compounds are much more easily oxidized than the corresponding flavonolignans SB, SCH and SD. This finding was unequivocally confirmed not only by experimental approaches, but also by density functional theory (DFT) calculations. The hierarchy in terms of ability to undergo electrochemical oxidation (DHSCH~DHSD>DHSB>>SCH/SD>SB) was consistent with their antiradical activities, mainly DPPH scavenging, as well as in vitro cytoprotection of HepG2 cells. The results are discussed in the context of the antioxidant vs. prooxidant activities of flavonolignans and molecular interactions in complex biological systems.
Collapse
Affiliation(s)
- Michaela Pyszková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Michal Biler
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic; INSERM UMR 850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, 87025 Limoges, France
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Romana Sokolová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Martin Kubala
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, 87025 Limoges, France; Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
20
|
Mirceski V, Smarzewska S, Guziejewski D. Measuring the Electrode Kinetics of Vitamin B2 at a Constant Time Window of a Square Wave Voltammetric Experiment. ELECTROANAL 2015. [DOI: 10.1002/elan.201500335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Experimental and theoretical investigation effect of flavonols antioxidants on DNA damage. Anal Chim Acta 2015; 887:82-91. [DOI: 10.1016/j.aca.2015.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 12/17/2022]
|
22
|
Roubalová L, Purchartová K, Papoušková B, Vacek J, Křen V, Ulrichová J, Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg Med Chem 2015; 23:5402-9. [PMID: 26260337 DOI: 10.1016/j.bmc.2015.07.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Quercetin 3'-O-sulfate is one of the main metabolites of the natural flavonoid quercetin in humans. This study was designed to prepare quercetin 3'-O-sulfate (1), isoquercitrin 4'-O-sulfate (2) and taxifolin 4'-O-sulfate (3) by the sulfation of quercetin, isoquercitrin (quercetin 3-O-glucoside) and taxifolin (2,3-dihydroquercetin) using the arylsulfate sulfotransferase from Desulfitobacterium hafniense, and to examine the effect of sulfation on selected biological properties of the flavonoids tested. We found that flavonoid sulfates 1-3 were weaker DPPH radical scavengers than the corresponding nonsulfated flavonoids, and that 1-3, unlike quercetin, did not induce the expression of either heme oxygenase-1 in RAW264.7 cells or cytochrome P450 1A1 in HepG2 cells. In both cell types, the cell uptake of compounds 1-3 was much lower than that of quercetin, but comparable to that of the glycoside isoquercitrin. Moreover, HPLC/MS metabolic profiling in HepG2 cells showed that flavonoid sulfates 1-3 were metabolized to a limited extent compared to the nonsulfated compounds. We conclude that sulfation of the tested flavonoids reduces their antiradical activity, and affects their cell uptake and biological activity in vitro.
Collapse
Affiliation(s)
- Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Kateřina Purchartová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 14220, Czech Republic
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17 listopadu 12, Olomouc 77146, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
23
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|
24
|
Guziejewski D, Mirceski V, Jadresko D. Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate. ELECTROANAL 2014. [DOI: 10.1002/elan.201400349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Chemo-enzymatic synthesis of silybin and 2,3-dehydrosilybin dimers. Molecules 2014; 19:4115-34. [PMID: 24699152 PMCID: PMC6271273 DOI: 10.3390/molecules19044115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/17/2022] Open
Abstract
Divalent or multivalent molecules often show enhanced biological activity relative to the simple monomeric units. Here we present enzymatically and chemically prepared dimers of the flavonolignans silybin and 2,3-dehydrosilybin. Their electrochemical behavior was studied by in situ and ex situ square wave voltammetry. The oxidation of monomers and dimers was similar, but adsorption onto the electrode and cell surfaces was different. A 1,1-diphenyl-2-picrylhydrazyl (DPPH) and an inhibition of microsomal lipoperoxidation assay were performed with same trend of results for silybin and 2,3-dehydrosilybin dimers. Silybin dimer showed better activity than the monomer, while on the contrary 2,3-dehydrosilybin dimer presented weaker antioxidant/antilipoperoxidant activity than its monomer. Cytotoxicity was evaluated on human umbilical vein endothelial cells, normal human adult keratinocytes, mouse fibroblasts (BALB/c 3T3) and human liver hepatocellular carcinoma cell line (HepG2). Silybin dimer was more cytotoxic than the parent compound and in the case of 2,3-dehydrosilybin its dimer showed weaker cytotoxicity than the monomer.
Collapse
|
26
|
Mikulski D, Eder K, Molski M. Quantum-chemical study on relationship between structure and antioxidant properties of hepatoprotective compounds occurring in Cynara scolymus and Silybum marianum. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614500047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Accurate quantum computations based on the density functional theory have been performed to study the relationship between the electronic geometry and antioxidant capacity of chlorogenic acid, silybin and all geometric stereoisomers of cynarine, isolated from plant extract of Cynara scolymus and Silybum marianum. To elucidate their antioxidant activity, the HOMO orbital distribution, adiabatic ionization potential (AIP), spin density in free radicals, homolytic dissociation enthalpies (BDE), and proton dissociation enthalpies (PDE) of the O – H bonds have been calculated. For minimum energy conformations, the antioxidative parameters were quantitatively analyzed at the B3LYP/6-311G(d,p) level of theory. The results have shown that the hydrogen transfer mechanism is more preferable in nonpolar medium than in water. From the results obtained we can conclude that SET-PT (single electron transfer followed by proton transfer) is the most preferred mechanism in water medium. The catechol moiety and planar geometry of trans-stilbene and cis-stilbene moieties in cynarine stereoisomers, chlorogenic acid and their phenoxy radicals strongly contribute to enhancement of the antioxidant activity of these compounds. Trans,trans-cynarine appears to be the best candidate for proton and hydrogen atom donor. It has been predicted that cis,cis, trans,cis and cis,trans stereoisomers of cynarine show antioxidant capacity. Our study shows that all of the investigated compounds reveal strong antioxidant activity.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Theoretical Chemistry, Faculty of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland
- Gen. Zamoyska and Helena Modrzejewska High School no. 2, ul. Matejki 8/10 60-766 Poznań, Poland
| | - Krzysztof Eder
- Gen. Zamoyska and Helena Modrzejewska High School no. 2, ul. Matejki 8/10 60-766 Poznań, Poland
| | - Marcin Molski
- Department of Theoretical Chemistry, Faculty of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland
| |
Collapse
|
27
|
Hrbac J, Jakubec P, Halouzka V, Matejka P, Pour M, Kopecky J, Vacek J. The permselective layer prepared onto carbon and gold surfaces by electropolymerization of phenolic cyclopentenedione-nostotrebin 6. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2013.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
28
|
Chen M, Xiong H, Wen W, Zhang X, Gu H, Wang S. Electrochemical biosensors for the assay of DNA damage initiated by ferric ions catalyzed oxidation of dopamine in room temperature ionic liquid. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.10.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Arciello M, Gori M, Balsano C. Mitochondrial dysfunctions and altered metals homeostasis: new weapons to counteract HCV-related oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:971024. [PMID: 24371505 PMCID: PMC3859171 DOI: 10.1155/2013/971024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) infection produces several pathological effects in host organism through a wide number of molecular/metabolic pathways. Today it is worldwide accepted that oxidative stress actively participates in HCV pathology, even if the antioxidant therapies adopted until now were scarcely effective. HCV causes oxidative stress by a variety of processes, such as activation of prooxidant enzymes, weakening of antioxidant defenses, organelle damage, and metals unbalance. A focal point, in HCV-related oxidative stress onset, is the mitochondrial failure. These organelles, known to be the "power plants" of cells, have a central role in energy production, metabolism, and metals homeostasis, mainly copper and iron. Furthermore, mitochondria are direct viral targets, because many HCV proteins associate with them. They are the main intracellular free radicals producers and targets. Mitochondrial dysfunctions play a key role in the metal imbalance. This event, today overlooked, is involved in oxidative stress exacerbation and may play a role in HCV life cycle. In this review, we summarize the role of mitochondria and metals in HCV-related oxidative stress, highlighting the need to consider their deregulation in the HCV-related liver damage and in the antiviral management of patients.
Collapse
Affiliation(s)
- Mario Arciello
- Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, Via del Policlinico 155, 00161 Rome, Italy
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
| | - Manuele Gori
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
| | - Clara Balsano
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM); CNR, Piazzale Aldo Moro 7, 00185 Rome, Italy
| |
Collapse
|
30
|
Popa OM, Diculescu VC. On the adsorption and electrochemical oxidation of flavones apigenin and acacetin at a glassy carbon electrode. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M. Square-Wave Voltammetry: A Review on the Recent Progress. ELECTROANAL 2013. [DOI: 10.1002/elan.201300369] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Vacek J, Zatloukalová M, Desmier T, Nezhodová V, Hrbáč J, Kubala M, Křen V, Ulrichová J, Trouillas P. Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin. Chem Biol Interact 2013; 205:173-80. [PMID: 23872255 DOI: 10.1016/j.cbi.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/18/2013] [Accepted: 07/10/2013] [Indexed: 01/01/2023]
Abstract
Besides the well-known chemoprotective effects of polyphenols, their prooxidant activities via interactions with biomacromolecules as DNA and proteins are of the utmost importance. Current research focuses not only on natural polyphenols but also on synthetically prepared analogs with promising biological activities. In the present study, the antioxidant and prooxidant properties of a semi-synthetic flavonolignan 7-O-galloylsilybin (7-GSB) are described. The presence of the galloyl moiety significantly enhances the antioxidant capacity of 7-GSB compared to that of silybin (SB). These findings were supported by electrochemistry, DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity, total antioxidant capacity (CL-TAC) and DFT (density functional theory) calculations. A three-step oxidation mechanism of 7-GSB is proposed at pH 7.4, in which the galloyl moiety is first oxidized at Ep,1=+0.20V (vs. Ag/AgCl3M KCl) followed by oxidation of the 20-OH (Ep,2=+0.55V) and most probably 5-OH (Ep,3=+0.95V) group of SB moiety. The molecular orbital analysis and the calculation of O-H bond dissociation enthalpies (BDE) fully rationalize the electrooxidation processes. The metal (Cu(2+)) complexation of 7-GSB was studied, which appeared to involve both the galloyl moiety and the 5-OH group. The prooxidant effects of the metal-complexes were then studied according to their capacity to oxidatively induce DNA modification and cleavage. These results paved the way towards the conclusion that 7-O-galloyl substitution to SB concomitantly (i) enhances antioxidant (ROS scavenging) capacity and (ii) decreases prooxidant effect/DNA damage after Cu complexation. This multidisciplinary approach provides a comprehensive mechanistic picture of the antioxidant vs. metal-induced prooxidant effects of flavonolignans at the molecular level, under ex vivo conditions.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zatloukalová M, Enache TA, Křen V, Ulrichová J, Vacek J, Oliveira-Brett AM. Effect of 3-O-Galloyl Substitution on the Electrochemical Oxidation of Quercetin and Silybin Galloyl Esters at Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201300102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Valentová K, Vidlář A, Zatloukalová M, Stuchlík M, Vacek J, Šimánek V, Ulrichová J. Biosafety and antioxidant effects of a beverage containing silymarin and arginine. A pilot, human intervention cross-over trial. Food Chem Toxicol 2013; 56:178-83. [DOI: 10.1016/j.fct.2013.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/27/2022]
|
35
|
Heinrich J, Valentová K, Vacek J, Palíková I, Zatloukalová M, Kosina P, Ulrichová J, Vrbková J, Šimánek V. Metabolic profiling of phenolic acids and oxidative stress markers after consumption of Lonicera caerulea L. fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4526-4532. [PMID: 23581742 DOI: 10.1021/jf304150b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study investigated the effect of one-week consumption of 165 g/day fresh blue honeysuckle berries (208 mg/day anthocyanins) in 10 healthy volunteers. At the end of intervention, levels of benzoic (median 1782 vs 4156), protocatechuic (709 vs 2417), vanillic (2779 vs 4753), 3-hydroxycinnamic (143 vs 351), p-coumaric (182 vs 271), isoferulic (805 vs 1570), ferulic (1086 vs 2395), and hippuric (194833 vs 398711 μg/mg creatinine) acids by LC/MS were significantly increased in the urine. Clinical chemistry safety markers were not altered. Oxidative stress markers, erythrocyte glutathione peroxidase (0.73 vs 0.88 U/g Hb) and catalase (2.5 vs 2.8 μkat/g Hb) activities, and erythrocyte/plasma thiobarbituric acid reactive substance (522 vs 612/33 vs 38 μmol/g Hb/protein) levels were significantly increased, without change in plasma antioxidant status. Nonsignificant changes of advanced oxidation protein products and oxidized LDL were observed. The results provide a solid base for further study of metabolite excretion and antioxidant parameters after ingestion of anthocyanins.
Collapse
Affiliation(s)
- Jan Heinrich
- Department of Medical Chemistry and Biochemistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Bussy U, Tea I, Ferchaud-Roucher V, Krempf M, Silvestre V, Galland N, Jacquemin D, Andresen-Bergström M, Jurva U, Boujtita M. Voltammetry coupled to mass spectrometry in the presence of isotope 18O labeled water for the prediction of oxidative transformation pathways of activated aromatic ethers: Acebutolol. Anal Chim Acta 2013; 762:39-46. [DOI: 10.1016/j.aca.2012.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 01/11/2023]
|
38
|
Jakubec P, Bancirova M, Halouzka V, Lojek A, Ciz M, Denev P, Cibicek N, Vacek J, Vostalova J, Ulrichova J, Hrbac J. Electrochemical sensing of total antioxidant capacity and polyphenol content in wine samples using amperometry online-coupled with microdialysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7836-7843. [PMID: 22834989 DOI: 10.1021/jf3019886] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work describes the method for total antioxidant capacity (TAC) and/or total content of phenolics (TCP) analysis in wines using microdialysis online-coupled with amperometric detection using a carbon microfiber working electrode. The system was tested on 10 selected wine samples, and the results were compared with total reactive antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), and chemiluminescent determination of total antioxidant capacity (CL-TAC) methods using Trolox and catechin as standards. Microdialysis online-coupled with amperometric detection gives similar results to the widely used cyclic voltammetry methodology and closely correlates with ORAC and TRAP. The problem of electrode fouling is overcome by the introduction of an electrochemical cleaning step (1-2 min at the potential of 0 V vs Ag/AgCl). Such a procedure is sufficient to fully regenerate the electrode response for both red and white wine samples as well as catechin/Trolox standards. The appropriate size of microdialysis probes enables easy automation of the electrochemical TAC/TCP measurement using 96-well microtitration plates.
Collapse
Affiliation(s)
- Petr Jakubec
- Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zatloukalová M, Orolinová E, Kubala M, Hrbáč J, Vacek J. Electrochemical Determination of Transmembrane Protein Na+/K+-ATPase and Its Cytoplasmic Loop C45. ELECTROANAL 2012. [DOI: 10.1002/elan.201200165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|