1
|
Yun SH, Mansurov V, Yang L, Yoon J, Leblanc N, Craviso GL, Zaklit J. Modulating Ca 2+ influx into adrenal chromaffin cells with short-duration nanosecond electric pulses. Biophys J 2024; 123:2537-2556. [PMID: 38909279 PMCID: PMC11365113 DOI: 10.1016/j.bpj.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Isolated bovine adrenal chromaffin cells exposed to single 2-, 4-, or 5-ns pulses undergo a rapid, transient rise in intracellular Ca2+ mediated by Ca2+ entry via voltage-gated Ca2+ channels (VGCCs), mimicking the activation of these cells in vivo by acetylcholine. However, pulse durations 150 ns or longer elicit larger amplitude and longer-lived Ca2+ responses due to Ca2+ influx via both VGCCs and a yet to be identified plasma membrane pathway(s). To further our understanding of the differential effects of ultrashort versus longer pulse durations on Ca2+ influx, chromaffin cells were loaded with calcium green-1 and exposed to single 3-, 5-, 11-, 25-, or 50-ns pulses applied at their respective Ca2+ activation threshold electric fields. Increasing pulse duration from 3 or 5 ns to only 11 ns was sufficient to elicit increased amplitude and longer-lived Ca2+ responses in the majority of cells, a trend that continued as pulse duration increased to 50 ns. The amplification of Ca2+ responses was not the result of Ca2+ release from intracellular stores and was accompanied by a decreased effectiveness of VGCC inhibitors to block the responses and a reduced reliance on extracellular Na+ and membrane depolarization to evoke the responses. Inhibitors of pannexin channels, P2X receptors, or non-selective cation channels failed to attenuate 50-ns-elicited Ca2+ responses, ruling out these Ca2+-permeable channels as secondary Ca2+ entry pathways. Analytical calculations and numerical modeling suggest that the parameter that best determines the response of chromaffin cells to increasing pulse durations is the time the membrane charges to its peak voltage. These results highlight the pronounced sensitivity of a neuroendocrine cell to pulse durations differing by only tens of nanoseconds, which has important implications for the future development of nanosecond pulse technologies enabling electrostimulation applications for spatially focused and graded in vivo neuromodulation.
Collapse
Affiliation(s)
- Sung Hae Yun
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Vasilii Mansurov
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Jihwan Yoon
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Gale L Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Josette Zaklit
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada.
| |
Collapse
|
2
|
Carr L, Golzio M, Orlacchio R, Alberola G, Kolosnjaj-Tabi J, Leveque P, Arnaud-Cormos D, Rols MP. A nanosecond pulsed electric field (nsPEF) can affect membrane permeabilization and cellular viability in a 3D spheroids tumor model. Bioelectrochemistry 2021; 141:107839. [PMID: 34020398 DOI: 10.1016/j.bioelechem.2021.107839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/01/2022]
Abstract
Three-dimensional (3D) cellular models represent more realistically the complexity of in vivo tumors compared to 2D cultures. While 3D models were largely used in classical electroporation, the effects of nanosecond pulsed electric field (nsPEF) have been poorly investigated. In this study, we evaluated the biological effects induced by nsPEF on spheroid tumor model derived from the HCT-116 human colorectal carcinoma cell line. By varying the number of pulses (from 1 to 500) and the polarity (unipolar and bipolar), the response of nsPEF exposure (10 ns duration, 50 kV/cm) was assessed either immediately after the application of the pulses or over a period lasting up to 6 days. Membrane permeabilization and cellular death occurred following the application of at least 100 pulses. The extent of the response increased with the number of pulses, with a significant decrease of viability, 24 h post-exposure, when 250 and 500 pulses were applied. The effects were highly reduced when an equivalent number of bipolar pulses were delivered. This reduction was eliminated when a 100 ns interphase interval was introduced into the bipolar pulses. Altogether, our results show that nsPEF effects, previously observed at the single cell level, also occur in more realistic 3D tumor spheroids models.
Collapse
Affiliation(s)
- Lynn Carr
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; School of Electronic Engineering, Bangor University, Bangor, UK
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Rosa Orlacchio
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Geraldine Alberola
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | | | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| |
Collapse
|
3
|
5 ns electric pulses induce Ca 2+-dependent exocytotic release of catecholamine from adrenal chromaffin cells. Bioelectrochemistry 2021; 140:107830. [PMID: 33965669 DOI: 10.1016/j.bioelechem.2021.107830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Previously we reported that adrenal chromaffin cells exposed to a 5 ns, 5 MV/m pulse release the catecholamines norepinephrine (NE) and epinephrine (EPI) in a Ca2+-dependent manner. Here we determined that NE and EPI release increased with pulse number (one versus five and ten pulses at 1 Hz), established that release occurs by exocytosis, and characterized the exocytotic response in real-time. Evidence of an exocytotic mechanism was the appearance of dopamine-β-hydroxylase on the plasma membrane, and the demonstration by total internal reflection fluorescence microscopy studies that a train of five or ten pulses at 1 Hz triggered the release of the fluorescent dye acridine orange from secretory granules. Release events were Ca2+-dependent, longer-lived relative to those evoked by nicotinic receptor stimulation, and occurred with a delay of several seconds despite an immediate rise in Ca2+. In complementary studies, cells labeled with the plasma membrane fluorescent dye FM 1-43 and exposed to a train of ten pulses at 1 Hz underwent Ca2+-dependent increases in FM 1-43 fluorescence indicative of granule fusion with the plasma membrane due to exocytosis. These results demonstrate the effectiveness of ultrashort electric pulses for stimulating catecholamine release, signifying their promise as a novel electrostimulation modality for neurosecretion.
Collapse
|
4
|
Monitoring the molecular composition of live cells exposed to electric pulses via label-free optical methods. Sci Rep 2020; 10:10471. [PMID: 32591612 PMCID: PMC7319994 DOI: 10.1038/s41598-020-67402-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
The permeabilization of the live cells membrane by the delivery of electric pulses has fundamental interest in medicine, in particular in tumors treatment by electrochemotherapy. Since underlying mechanisms are still not fully understood, we studied the impact of electric pulses on the biochemical composition of live cells thanks to label-free optical methods: confocal Raman microspectroscopy and terahertz microscopy. A dose effect was observed after cells exposure to different field intensities and a major impact on cell peptide/protein content was found. Raman measurements reveal that protein structure and/or environment are modified by the electric pulses while terahertz measurements suggest a leakage of proteins and other intracellular compounds. We show that Raman and terahertz modalities are a particularly attractive complement to fluorescence microscopy which is the reference optical technique in the case of electropermeabilization. Finally, we propose an analytical model for the influx and efflux of non-permeant molecules through transiently (electro)permeabilized cell membranes.
Collapse
|
5
|
Yang L, Pierce S, Chatterjee I, Craviso GL, Leblanc N. Paradoxical effects on voltage-gated Na+ conductance in adrenal chromaffin cells by twin vs single high intensity nanosecond electric pulses. PLoS One 2020; 15:e0234114. [PMID: 32516325 PMCID: PMC7282663 DOI: 10.1371/journal.pone.0234114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
We previously reported that a single 5 ns high intensity electric pulse (NEP) caused an E-field-dependent decrease in peak inward voltage-gated Na+ current (INa) in isolated bovine adrenal chromaffin cells. This study explored the effects of a pair of 5 ns pulses on INa recorded in the same cell type, and how varying the E-field amplitude and interval between the pulses altered its response. Regardless of the E-field strength (5 to 10 MV/m), twin NEPs having interpulse intervals ≥ than 5 s caused the inhibition of TTX-sensitive INa to approximately double relative to that produced by a single pulse. However, reducing the interval from 1 s to 10 ms between twin NEPs at E-fields of 5 and 8 MV/m but not 10 MV/m decreased the magnitude of the additive inhibitory effect by the second pulse in a pair on INa. The enhanced inhibitory effects of twin vs single NEPs on INa were not due to a shift in the voltage-dependence of steady-state activation and inactivation but were associated with a reduction in maximal Na+ conductance. Paradoxically, reducing the interval between twin NEPs at 5 or 8 MV/m but not 10 MV/m led to a progressive interval-dependent recovery of INa, which after 9 min exceeded the level of INa reached following the application of a single NEP. Disrupting lipid rafts by depleting membrane cholesterol with methyl-β-cyclodextrin enhanced the inhibitory effects of twin NEPs on INa and ablated the progressive recovery of this current at short twin pulse intervals, suggesting a complete dissociation of the inhibitory effects of twin NEPs on this current from their ability to stimulate its recovery. Our results suggest that in contrast to a single NEP, twin NEPs may influence membrane lipid rafts in a manner that enhances the trafficking of newly synthesized and/or recycling of endocytosed voltage-gated Na+ channels, thereby pointing to novel means to regulate ion channels in excitable cells.
Collapse
Affiliation(s)
- Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Sophia Pierce
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Indira Chatterjee
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, NV, United States of America
| | - Gale L. Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| |
Collapse
|
6
|
Bagalkot TR, Leblanc N, Craviso GL. Stimulation or Cancellation of Ca 2+ Influx by Bipolar Nanosecond Pulsed Electric Fields in Adrenal Chromaffin Cells Can Be Achieved by Tuning Pulse Waveform. Sci Rep 2019; 9:11545. [PMID: 31395918 PMCID: PMC6687888 DOI: 10.1038/s41598-019-47929-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
Exposing adrenal chromaffin cells to single 150 to 400 ns electric pulses triggers a rise in intracellular Ca2+ ([Ca2+]i) that is due to Ca2+ influx through voltage-gated Ca2+ channels (VGCC) and plasma membrane electropores. Immediate delivery of a second pulse of the opposite polarity in which the duration and amplitude were the same as the first pulse (a symmetrical bipolar pulse) or greater than the first pulse (an asymmetrical bipolar pulse) had a stimulatory effect, evoking larger Ca2+ responses than the corresponding unipolar pulse. Progressively decreasing the amplitude of the opposite polarity pulse while also increasing its duration converted stimulation to attenuation, which reached a maximum of 43% when the positive phase was 150 ns at 3.1 kV/cm, and the negative phase was 800 ns at 0.2 kV/cm. When VGCCs were blocked, Ca2+ responses evoked by asymmetrical and even symmetrical bipolar pulses were significantly reduced relative to those evoked by the corresponding unipolar pulse under the same conditions, indicating that attenuation involved mainly the portion of Ca2+ influx attributable to membrane electropermeabilization. Thus, by tuning the shape of the bipolar pulse, Ca2+ entry into chromaffin cells through electropores could be attenuated while preserving Ca2+ influx through VGCCs.
Collapse
Affiliation(s)
- Tarique R Bagalkot
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Gale L Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
7
|
Different Membrane Pathways Mediate Ca 2+ Influx in Adrenal Chromaffin Cells Exposed to 150-400 ns Electric Pulses. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9046891. [PMID: 29789806 PMCID: PMC5896273 DOI: 10.1155/2018/9046891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/18/2018] [Indexed: 12/21/2022]
Abstract
Exposing adrenal chromaffin cells to 5 ns electric pulses (nsPEF) causes a rapid rise in intracellular Ca2+ ([Ca2+]i) that is solely the result of Ca2+ influx through voltage-gated Ca2+ channels (VGCCs). This study explored the effect of longer duration nsPEF on [Ca2+]i. Single 150, 200, or 400 ns pulses at 3.1 kV/cm evoked rapid increases in [Ca2+]i, the magnitude of which increased linearly with pulse width and electric field amplitude. Recovery of [Ca2+]i to prestimulus levels was faster for 150 ns exposures. Regardless of pulse width, no rise in [Ca2+]i occurred in the absence of extracellular Ca2+, indicating that the source of Ca2+ was from outside the cell. Ca2+ responses evoked by a 150 ns pulse were inhibited to varying degrees by ω-agatoxin IVA, ω-conotoxin GVIA, nitrendipine or nimodipine, antagonists of P/Q-, N-, and L-type VGCCs, respectively, and by 67% when all four types of VGCCs were blocked simultaneously. The remaining Ca2+ influx insensitive to VGCC inhibitors was attributed to plasma membrane nanoporation, which comprised the E-field sensitive component of the response. Both pathways of Ca2+ entry were inhibited by 200 μM Cd2+. These results demonstrate that, in excitable chromaffin cells, single 150-400 ns pulses increased the permeability of the plasma membrane to Ca2+ in addition to causing Ca2+ influx via VGCCs.
Collapse
|
8
|
Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study. J Membr Biol 2017; 250:535-552. [PMID: 28840286 DOI: 10.1007/s00232-017-9983-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
Abstract
Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca2+ mobilization from Ca2+-storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.
Collapse
|
9
|
Yang L, Craviso GL, Vernier PT, Chatterjee I, Leblanc N. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells. PLoS One 2017; 12:e0181002. [PMID: 28700658 PMCID: PMC5507283 DOI: 10.1371/journal.pone.0181002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/23/2017] [Indexed: 11/18/2022] Open
Abstract
This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V) relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa), whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa), a Ca2+-activated K+ current (IK(Ca)), and a sustained voltage-dependent delayed rectifier K+ current (IKV). A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E)-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca) as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.
Collapse
Affiliation(s)
- Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Gale L. Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - P. Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States of America
| | - Indira Chatterjee
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, NV, United States of America
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- * E-mail:
| |
Collapse
|