1
|
Čebron Ž, Djokić M, Petrič M, Čemažar M, Bošnjak M, Serša G, Trotovšek B. Intraoperative electrochemotherapy of the posterior resection surface after pancreaticoduodenectomy: Preliminary results of a hybrid approach treatment of pancreatic cancer. Bioelectrochemistry 2024; 155:108576. [PMID: 37748261 DOI: 10.1016/j.bioelechem.2023.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Despite extensive research in recent decades, pancreatic cancer continues to be among the most lethal forms of cancer, with no substantial increase in survival rates. Local recurrences account for approximately 30 per cent of all disease recurrences. With the intent to improve survival, we designed a novel, hybrid treatment strategy consisting of surgical resection and additional intraoperative electrochemotherapy of the posterior resection surface. We present the study protocols and preliminary findings of a prospective pilot study investigating this treatment approach. METHODS Consenting patients with resectable pancreatic head ductal adenocarcinoma who met the inclusion criteria were enrolled in the study. After surgical resection, electrochemotherapy with bleomycin was performed using plate electrodes to cover the area between anatomical landmarks. RESULTS Electrochemotherapy of the posterior resection surface was feasible in all 7 patients. We observed pancreatic fistula grade B in only one patient; all other noted complications were Clavien-Dindo grade 2 or less. The hospital mortality was 0%. CONCLUSIONS Our preliminary results suggest that a hybrid approach combining surgery with intraoperative electrochemotherapy is safe and feasible.
Collapse
Affiliation(s)
- Žan Čebron
- University Medical Centre Ljubljana, Department of Abdominal Surgery, Zaloska 7, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Medical Faculty, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Mihajlo Djokić
- University Medical Centre Ljubljana, Department of Abdominal Surgery, Zaloska 7, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Medical Faculty, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Miha Petrič
- University Medical Centre Ljubljana, Department of Abdominal Surgery, Zaloska 7, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Medical Faculty, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Maja Čemažar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia
| | - Maša Bošnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Blaž Trotovšek
- University Medical Centre Ljubljana, Department of Abdominal Surgery, Zaloska 7, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Medical Faculty, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Bosnjak M, Jesenko T, Markelc B, Cerovsek A, Sersa G, Cemazar M. Sunitinib potentiates the cytotoxic effect of electrochemotherapy in pancreatic carcinoma cells. Radiol Oncol 2022; 56:164-172. [PMID: 35344644 PMCID: PMC9122288 DOI: 10.2478/raon-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND One of the new treatment options for unresectable locally advanced pancreatic cancer is electrochemotherapy (ECT), a local ablative therapy that potentiates the entry of chemotherapeutic drugs into the cells, by the application of an electric field to the tumor. Its feasibility and safety were demonstrated in preclinical and clinical studies; however, there is a lack of preclinical studies assessing the actions of different drugs used in ECT, their mechanisms and interactions with other target drugs that are used in clinical practice. MATERIALS AND METHODS The aim of the study was to determine the cytotoxicity of two chemotherapeutic drugs usually used in ECT (bleomycin and cisplatin) in the BxPC-3 human pancreatic carcinoma cell line and evaluate the interactions of ECT with the targeted drug sunitinib. First, the cytotoxicity of ECT using both chemotherapeutics was determined. In the next part, the interactions of ECT and sunitinib were evaluated through determination of combined cytotoxicity, sunitinib targets and kinetics of cell death. RESULTS The results demonstrate that ECT is effective in pancreatic cancer cell line, especially when bleomycin is used, with the onset of cell death in the first hours after the treatment, reaching a plateau at 20 hours after the treatment. Furthermore, we provide the rationale for combining ECT with bleomycin and the targeted drug sunitinib to potentiate cytotoxicity. The combined treatment of sunitinib and ECT was synergistic for bleomycin only at the highest used concentration of bleomycin 0.14 μM, whereas with lower doses of bleomycin, this effect was not observed. The interaction of ECT and treatment with sunitinib was confirmed by course of the cell death, also indicating on synergism. CONCLUSIONS ECT and sunitinib combined treatment has clinical potential, and further studies are warranted.
Collapse
Affiliation(s)
- Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Cerovsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
4
|
The Downregulation of Both Giant HERCs, HERC1 and HERC2, Is an Unambiguous Feature of Chronic Myeloid Leukemia, and HERC1 Levels Are Associated with Leukemic Cell Differentiation. J Clin Med 2022; 11:jcm11020324. [PMID: 35054018 PMCID: PMC8778248 DOI: 10.3390/jcm11020324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Large HERC E3 ubiquitin ligase family members, HERC1 and HERC2, are staggeringly complex proteins that can intervene in a wide range of biological processes, such as cell proliferation, DNA repair, neurodevelopment, and inflammation. Therefore, mutations or dysregulation of large HERCs is associated with neurological disorders, DNA repair defects, and cancer. Though their role in solid tumors started to be investigated some years ago, our knowledge about HERCs in non-solid neoplasm is greatly lagging behind. Chronic Myeloid Leukemia (CML) is a model onco-hematological disorder because of its unique and unambiguous relation between genotype and phenotype due to a single genetic alteration. In the present study, we ascertained that the presence of the BCR-ABL fusion gene was inversely associated with the expression of the HERC1 and HERC2 genes. Upon the achievement of remission, both HERC1 and HERC2 mRNAs raised again to levels comparable to those of the healthy donors. Additionally, our survey unveiled that their gene expression is sensitive to different Tyrosine Kinases Inhibitors (TKIs) in a time-dependent fashion. Interestingly, for the first time, we also observed a differential HERC1 expression when the leukemic cell lines were induced to differentiate towards different lineages revealing that HERC1 protein expression is associated with the differentiation process in a lineage-specific manner. Taken together, our findings suggest that HERC1 might act as a novel potential player in blood cell differentiation. Overall, we believe that our results are beneficial to initiate exploring the role/s of large HERCs in non-solid neoplasms.
Collapse
|
5
|
Ali MS, Panuzzo C, Calabrese C, Maglione A, Piazza R, Cilloni D, Saglio G, Pergolizzi B, Bracco E. The Giant HECT E3 Ubiquitin Ligase HERC1 Is Aberrantly Expressed in Myeloid Related Disorders and It Is a Novel BCR-ABL1 Binding Partner. Cancers (Basel) 2021; 13:cancers13020341. [PMID: 33477751 PMCID: PMC7832311 DOI: 10.3390/cancers13020341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The pathological role/s of the HERC family members has recently been initiated to be explored in few solid tumors and the assessment of their transcript amount reveals that they might act as effective prognostic factors. However, evidence concerning the non-solid tumors, and especially myeloid related neoplasms, is currently lacking. In the present article for the first time we provide original data for a clear and well-defined association between the gene expression level of a giant HERC E3 ubiquitin ligase family member, HERC1, and some myeloid related disorders, namely Acute Myeloid Leukemia, Myeloproliferative neoplasms and Chronic Myeloid Leukemia. Furthermore, our findings unveil that the HERC1 protein physically interacts, likely forming a very large supramolecular complex, and it is a putative BCR-ABL1 tyrosine kinase substrate. We hope that this work will contribute to the advance of our understanding of the roles played by the giant HERCs in myeloid related neoplasms. Abstract HERC E3 subfamily members are parts of the E3 ubiquitin ligases and key players for a wide range of cellular functions. Though the involvement of the Ubiquitin Proteasome System in blood disorders has been broadly studied, so far the role of large HERCs in this context remains unexplored. In the present study we examined the expression of the large HECT E3 Ubiquitin Ligase, HERC1, in blood disorders. Our findings revealed that HERC1 gene expression was severely downregulated both in acute and in chronic myelogenous leukemia at diagnosis, while it is restored after complete remission achievement. Instead, in Philadelphia the negative myeloproliferative neoplasm HERC1 level was peculiarly controlled, being very low in Primary Myelofibrosis and significantly upregulated in those Essential Thrombocytemia specimens harboring the mutation in the calreticulin gene. Remarkably, in CML cells HERC1 mRNA level was associated with the BCR-ABL1 kinase activity and the HERC1 protein physically interacted with BCR-ABL1. Furthermore, we found that HERC1 was directly tyrosine phosphorylated by the ABL kinase. Overall and for the first time, we provide original evidence on the potential tumor-suppressing or -promoting properties, depending on the context, of HERC1 in myeloid related blood disorders.
Collapse
Affiliation(s)
- Muhammad Shahzad Ali
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Chiara Calabrese
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Alessandro Maglione
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Rocco Piazza
- Department of Health Sciences, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Giuseppe Saglio
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
- Correspondence: (B.P.); (E.B.)
| | - Enrico Bracco
- Department of Oncology, Medical School, University of Torino, 10043 Orbassano, Italy
- Correspondence: (B.P.); (E.B.)
| |
Collapse
|
6
|
Chenaghlou S, Khataee A, Jalili R, Rashidi MR, Khalilzadeh B, Woo Joo S. Gold nanostar-enhanced electrochemiluminescence immunosensor for highly sensitive detection of cancer stem cells using CD133 membrane biomarker. Bioelectrochemistry 2020; 137:107633. [PMID: 32891010 DOI: 10.1016/j.bioelechem.2020.107633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Gold nanostars (AuNSs) demonstrate an intense electromagnetic field around tip of branches. In this research, we employed AuNSs-enhanced electrochemiluminescence (ECL) emission from graphitic carbon nitride nanosheets (g-CN nanosheets) to detect CD133 peptide as a cancer stem cell membrane biomarker. In this biosensor, the g-CN nanosheets were decorated with AuNSs (AuNSs@g-CN nanosheets). AuNSs@g-CN nanosheets exhibited strong and stable cathodic ECL emission compared to that of pure g-CN nanosheets. The ECL intensity from the AuNSs@g-CN nanosheets was over 30% higher than that of spherical gold nanoparticles (spherical AuNPs) decorated g-CN nanosheets. The additional ECL enhancement of AuNSs was due to the localized surface plasmon resonance (LSPR) effect located around multiple branch tips of AuNSs. The RSD of ECL curves intensities, obtained from successive potential scans for 10 cycles, were less than 4%, indicating the superior stability of the AuNSs@g-CN nanosheets. Under optimum conditions, the ECL intensity of GCE/AuNSs@g-CN nanosheets/anti-CD133 decreased linearly with CD133 peptide concentration in the range of 0.05-100 ng mL-1. The LOD achieved was 0.257 ng mL-1 (S/N = 3). The applicability of the designed biosensor in real samples was examined through the determination of CD133 peptide in spiked serum samples, from which satisfactory results were obtained.
Collapse
Affiliation(s)
- Salimeh Chenaghlou
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, 51666-14711 Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, 51666-14711 Tabriz, Iran; Biosensors and Bioelectronics Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea.
| |
Collapse
|
7
|
Abstract
Electrochemotherapy is gaining recognition as an effective local therapy that uses systemically or intratumorally injected bleomycin or cisplatin with electroporation as a delivery system that brings drugs into the cells to exert their cytotoxic effects. Preclinical work is still ongoing, testing new drugs, seeking the best treatment combination with other treatment modalities, and exploring new sets of pulses for effective tissue electroporation. The applications of electrochemotherapy are being fully exploited in veterinary oncology, where electrochemotherapy, because of its simple execution, has a relatively good cost-benefit ratio and is used in the treatment of cutaneous tumors. In human oncology, electrochemotherapy is fully recognized as a local therapy for cutaneous tumors and metastases. Its effectiveness is being explored in combination with immunomodulatory drugs. However, the development of electrochemotherapy is directed into the treatment of deep-seated tumors with a percutaneous approach. Because of the vast number of reports, this review discusses the articles published in the past 5 years.
Collapse
Affiliation(s)
- Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|