1
|
Wei L, Li Z, Hong T, Zhang Q, Luo L, Tang Y, Ji J, Kong J, Ding X. Electricity production and nutrient recovery from waste activated sludge via microbial fuel cell and subsequent struvite crystallization: Effect of low temperature thermo-alkaline pretreatment. BIORESOURCE TECHNOLOGY 2024; 414:131575. [PMID: 39370010 DOI: 10.1016/j.biortech.2024.131575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Microbial fuel cell (MFC) and subsequent struvite crystallization are available low-carbon environmental- friendly techniques for resource utilization of waste activated sludge (WAS). In this study, low temperature thermo-alkaline pretreatment (LTTAP) was innovatively proposed for enhancing MFC electricity generation and subsequent struvite crystallization from WAS. The results indicated that LTTAP at 75 °C and pH 10 not only substantially shortened the start-up time of MFC to 3-4 days, but also significantly increased maximum power density to 5.38 W/m3. Moreover, thermo-alkaline pretreated WAS effectively exhibited stable and high output voltage over long period, compared to unpretreated WAS. Furthermore, pretreated WAS can provide an effective pH buffering function for MFC operation. In addition, about 90 % of phosphate in the pretreated WAS supernatant was recovered by struvite crystallization. The findings herein provided a new route for enhancing electricity production and nutrient recovery from WAS, which can realize the full-scale applicationof WAS resource utilization.
Collapse
Affiliation(s)
- Lin Wei
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Ziyue Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Tianqiu Hong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Zhang
- Instrumental Analysis Center, Hefei University of Technology, Hefei 230009, China
| | - Lei Luo
- College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiming Tang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Junjie Ji
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Jianyu Kong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xiaoke Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Ma P, Yin B, Wu M, Han M, Lv L, Li W, Zhang G, Ren Z. Synergistic enhancement of microbes-to-pollutants and inter-microbes electron transfer by Fe, N modified ordered mesoporous biochar in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135030. [PMID: 38944989 DOI: 10.1016/j.jhazmat.2024.135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Minhao Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
3
|
Zhang L, Huang X, Fu G, Zhang Z. Aerobic electrotrophic denitrification coupled with biologically induced phosphate precipitation for nitrogen and phosphorus removal from high-salinity wastewater: Performance, mechanism, and microbial community. BIORESOURCE TECHNOLOGY 2023; 372:128696. [PMID: 36731615 DOI: 10.1016/j.biortech.2023.128696] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Electrotrophic denitrification (ED) is a promising nitrogen removal technique; however, the potential of ED coupled with biologically induced phosphate precipitation (BIPP) has not been fully explored. In this study, the performances, mechanisms, and microbial communities of the coupled system were investigated. The results showed that excellent nitrogen and phosphorus removal (both exceeding 92 %) was achieved in the salinity range of 20-60 g/L. ED contributed to approximately 83.4 % of nitrogen removal. BIPP removed approximately 63.5 % of the phosphorus. Batch activity tests confirmed that aerobic/anoxic bio-electrochemical and autotrophic/heterotrophic denitrification worked together for nitrate removal. Sulfate reduction had a negative impact on denitrification. Moreover, phosphorus removal was controlled by ED and calcium ions. The alkaline solution environment created by denitrification may greatly promote the formation of hydroxyapatite. Microbial community analyses indicated that the key bacteria involved in aerobic ED was Arcobacter. These findings will aid in the advanced treatment of high-salinity wastewater.
Collapse
Affiliation(s)
- Linfang Zhang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaodan Huang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guokai Fu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Zhang C, Zhang J, Xin X, Niu H, Liao X, Liu D. Reduced formation of biogenic amines in low-salt Zhacai via fermentation under CO 2-modified atmosphere. Food Res Int 2023; 163:112256. [PMID: 36596167 DOI: 10.1016/j.foodres.2022.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Reducing sodium salt content in traditional fermented vegetables and developing low-salt fermented products have attracted increasing attention.However, low-salt fermented vegetables are prone to accumulate toxic biogenic amines (BAs) caused by the undesirable metabolism of spoilage microorganisms. This study aimed to investigate the impact of a CO2-modified atmosphere (MA) approach to the fermentation of low-salt Zhacai and the accumulation of BAs. The results show CO2-MA effectively suppressed the production of excessive BAs in low-salt Zhacai, as evidenced by a decrease in the total BA content from 63.66 to 161.41 mg/ kg under natural air conditions to 1.88-24.76 mg/ kg under CO2-MA. Overall, the mechanism of hindering BA formation was closely related to the change in the microbial community and the downregulation of BA-producing enzymes. Lactic acid bacteria, including Lactiplantibacillus plantarum, Weissella spp., and Pediococcus spp., were enriched under CO2-MA, whereas amine-producing microorganisms (e.g., Halomonas spp., Psychrobacter spp., Corynebacterium spp., and Levilactobacillus brevis) were greatly inhibited. Moreover, metagenomic analysis revealed that genes encoding amino acid decarboxylase, amine deiminase, and amine synthase were downregulated, which could be the fundamental reason for BA reduction. This study provides an alternative method for reducing BA production in fermented food.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, PR China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Haiyue Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Sonawane JM, Mahadevan R, Pandey A, Greener J. Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon 2022; 8:e12353. [PMID: 36582703 PMCID: PMC9792797 DOI: 10.1016/j.heliyon.2022.e12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing untreated environmental outputs from industry and the rising human population have increased the burden of wastewater and other waste streams on the environment. The most prevalent wastewater treatment methods include the activated sludge process, which requires aeration and is, therefore, energy and cost-intensive. The current trend towards a circular economy facilitates the recovery of waste materials as a resource. Along with the amount, the complexity of wastewater is increasing day by day. Therefore, wastewater treatment processes must be transformed into cost-effective and sustainable methods. Microbial fuel cells (MFCs) use electroactive microbes to extract chemical energy from waste organic molecules to generate electricity via waste treatment. This review focuses use of MFCs as an energy converter using wastewater from various sources. The different substrate sources that are evaluated include industrial, agricultural, domestic, and pharmaceutical types. The article also highlights the effect of operational parameters such as organic load, pH, current, and concentration on the MFC output. The article also covers MFC functioning with respect to the substrate, and the associated performance parameters, such as power generation and wastewater treatment matrices, are given. The review also illustrates the success stories of various MFC configurations. We emphasize the significant measures required to fill in the gaps related to the effect of substrate type on different MFC configurations, identification of microbes for use as biocatalysts, and development of biocathodes for the further improvement of the system. Finally, we shortlisted the best performing substrates based on the maximum current and power, Coulombic efficiency, and chemical oxygen demand removal upon the treatment of substrates in MFCs. This information will guide industries that wish to use MFC technology to treat generated effluent from various processes.
Collapse
Affiliation(s)
- Jayesh M. Sonawane
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Jesse Greener
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
- CHU de Québec, Centre de recherche, Université Laval, 10 rue de l'Espinay, Québec, QC, Canada
| |
Collapse
|
6
|
Zhang Z, Asefaw BK, Xiong Y, Chen H, Tang Y. Evidence and Mechanisms of Selenate Reduction to Extracellular Elemental Selenium Nanoparticles on the Biocathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16259-16270. [PMID: 36239462 DOI: 10.1021/acs.est.2c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intracellular selenium nanoparticles (SeNPs) production is a roadblock to the recovery of selenium from biological water treatment processes because it is energy intensive to break microbial cells and then separate SeNPs. This study provided evidence of significantly more extracellular SeNP production on the biocathode (97-99%) compared to the conventional reactors (1-90%) using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. The cathodic microbial community analysis showed that relative abundance of Azospira oryzae, Desulfovibrio, Stenotrophomonas, and Rhodocyclaceae was <1% in the inoculum but enriched to 10-21% for each group when the bioelectrochemical reactor reached a steady state. These four groups of microorganisms simultaneously produce intracellular and extracellular SeNPs in conventional biofilm reactors per literature review but prefer to produce extracellular SeNPs on the cathode. This observation may be explained by the cellular energetics: by producing extracellular SeNPs on the biocathode, microbes do not need to transfer selenate and the electrons from the cathode into the cells, thereby saving energy. Extracellular SeNP production on the biocathode is feasible since we found high concentrations of C-type cytochrome, which is well known for its ability to transfer electrons from electrodes to microbial cells and reduce selenate to SeNPs on the cell membrane.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Benhur K Asefaw
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Yi Xiong
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida32310, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| |
Collapse
|
7
|
Li C, Ding A, Guo J, Song F, Lu P. Response of denitrifying anaerobic methane oxidation enrichment to salinity stress: Process and microbiology. ENVIRONMENTAL RESEARCH 2022; 214:114069. [PMID: 35964668 DOI: 10.1016/j.envres.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) is a novel biological process which could decrease nitrogen pollution and methane emission simultaneously in wastewater treatment. Salinity as a key environmental factor has important effects on microbial community and activity, however, it remains unclear for DAMO microorganisms. In this study, response of the enrichment of DAMO archaea and bacteria to different salinity was investigated from the aspect of process and microbiology. The results showed that the increasing salinity from 0.14% to 25% evidently deteriorated DAMO process, with the average removal rate of nitrate and methane decreased from 1.91 mg N/(L·d) to 0.07 mg N/(L·d) and 3.22 μmol/d to 0.59 μmol/d, respectively. The observed IC50 value of salinity on the DAMO culture was 1.73%. Further microbial analyses at the gene level suggested that the relative abundance of DAMO archaea in the enrichment decreased to 46%, 39%, 38% and 33% of the initial value. However, DAMO bacteria suffered less impact with the relative abundance maintaining over 75% of the initial value (except 1% salinity). In functional genes of DAMO bacteria, pmoA, decreased gradually from 100% to 86%, 43%, 15% and 2%, while mcrA (DAMO archaea) maintained at 67%-97%. This difference probably indicated DAMO bacteria appeared functional inhibition prior to community inhibition, which was opposite for the DAMO archaea. Results above-mentioned concluded that, though the process of nitrate-dependent anaerobic methane oxidation was driven by the couple of DAMO archaea and bacteria, they individually featured different response to high salinity stress. These findings could be helpful for the application of DAMO-based process in high salinity wastewater treatment, and also the understanding to DAMO microorganisms.
Collapse
Affiliation(s)
- Chaoyang Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Junliang Guo
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fuzhong Song
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
8
|
Hypersaline Wastewater Produced from Pickled Mustard Tuber (Chinese Zhacai): Current Treatment Status and Prospects. WATER 2022. [DOI: 10.3390/w14091508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pickled mustard tuber, a worldwide condiment, is increasing at a fast growth rate. Its production generates a considerable amount of hypersaline wastewater containing NaCl of 7 wt.%, COD of 30,000 mg L−1, NH3-N of 400 mg L−1, and TP of 300 mg L−1. Pickled mustard tuber wastewater (PMTW) has severe effects on crops, deterioration of water quality, soil infertility and ecological systems. Due to the technic difficulties and insufficient support from the local governments; however, PMTW has not yet been widely investigated and well summarized. Therefore, this manuscript reviewed the relatively latest advances in PMTW. Physicochemical and biological hybrid processes mainly treat PMTW and the corresponding cost is 6.00 US dollars per ton. In the context of double carbon capture capacity in China and the development of the pickled mustard industry, PMTW sauce and sustainable reuse such as nutrient recovery, acid and alkaline regeneration and renewable energy may be bright prospects.
Collapse
|
9
|
Ding A, Quan L, Guo X, Wang H, Wen Y, Liu J, Zhang L, Zhang D, Lu P. Storage strategy for shale gas flowback water based on non-bactericide microorganism control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149187. [PMID: 34340077 DOI: 10.1016/j.scitotenv.2021.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Shale gas is a promising unconventional natural gas in the world, however the produced flowback water have severe challenges to surrounding water resource. Conventional reuse technology uses bactericide to control corrosive microorganism, which might bring uncontrolled drug resistance and other secondary pollution. In this study, storage strategy of flowback water was designed as a pre-control stage to decline corrosive microorganism. Dissolved oxygen and temperature were chosen as two key parameters based on microbial physiological and biochemical characteristics. Results showed that under the cross effect of temperature and dissolved oxygen, 15 °C and anaerobic condition had the optimal microorganism control effectiveness. Microorganism amount and live/dead cell ratio decreased by 63.7% and 68.74% respectively compared raw water. COD removal efficiency reduced to only 20%, indicating that the microorganism activity was extremely inhibited. However, microorganism in flowback water was more sensitive to dissolved oxygen compared to temperature. Redundancy analysis confirmed that dissolved oxygen contribution was as high as 91.5% while temperature was not significant (p > 0.05), the contribution rate was only 8.5%. Thermococcus, Archaeoglobus, Thermovirga, Thermotoga and Moorella were the dominated thermophilic, anaerobic and sulfate reduction or metal corrosion microorganism in flowback water, so all these identified microorganisms were control targets. Importantly, all the target microorganisms detected in flowback water were declined after different storage strategies. This study provides an effective storage strategy for flowback water to inhibit the microbial amount and activity without biocides addition, which could help promote the green exploitation of shale gas.
Collapse
Affiliation(s)
- Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Lin Quan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Xu Guo
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Haoqi Wang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Yiyi Wen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Liu
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
10
|
Greenman J, Gajda I, You J, Mendis BA, Obata O, Pasternak G, Ieropoulos I. Microbial fuel cells and their electrified biofilms. Biofilm 2021; 3:100057. [PMID: 34729468 PMCID: PMC8543385 DOI: 10.1016/j.bioflm.2021.100057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/29/2021] [Accepted: 08/19/2021] [Indexed: 11/06/2022] Open
Abstract
Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical bioreactor is the Microbial Fuel Cell and with the exception of MDCs, it is the only type of BES that actually produces harvestable amounts of electricity, rather than requiring an electrical input to function. For these reasons, this review article, with previously unpublished supporting data, focusses primarily on MFCs. Of relevance is the architecture of these bioreactors, the type of membrane they employ (if any) for separating the chambers along with the size, as well as the geometry and material composition of the electrodes which support biofilms. Finally, the structure, properties and growth rate of the microbial biofilms colonising anodic electrodes, are of critical importance for rendering these devices, functional living 'engines' for a wide range of applications.
Collapse
Affiliation(s)
- John Greenman
- Bristol BioEnergy Centre, BRL, University of the West of England, Frenchay Campus, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, BRL, University of the West of England, Frenchay Campus, BS16 1QY, UK
| | - Jiseon You
- Bristol BioEnergy Centre, BRL, University of the West of England, Frenchay Campus, BS16 1QY, UK
| | - Buddhi Arjuna Mendis
- Bristol BioEnergy Centre, BRL, University of the West of England, Frenchay Campus, BS16 1QY, UK
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, BRL, University of the West of England, Frenchay Campus, BS16 1QY, UK
| | | | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, BRL, University of the West of England, Frenchay Campus, BS16 1QY, UK
| |
Collapse
|
11
|
Abstract
The building block of all economies across the world is subject to the medium in which energy is harnessed. Renewable energy is currently one of the recommended substitutes for fossil fuels due to its environmentally friendly nature. Wind energy, which is considered as one of the promising renewable energy forms, has gained lots of attention in the last few decades due to its sustainability as well as viability. This review presents a detailed investigation into this technology as well as factors impeding its commercialization. General selection guidelines for the available wind turbine technologies are presented. Prospects of various components associated with wind energy conversion systems are thoroughly discussed with their limitations equally captured in this report. The need for further optimization techniques in terms of design and materials used for the development of each component is highlighted.
Collapse
|
12
|
Rasheed T, Anwar MT, Ahmad N, Sher F, Khan SUD, Ahmad A, Khan R, Wazeer I. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112257. [PMID: 33690013 DOI: 10.1016/j.jenvman.2021.112257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The economic developments around the globe resulted in the increased demand of energy, which overburdened the supply chain sources of energy. Fossil fuel reserves are exploited to meet the high demand of energy and their combustion is becoming the main source of environmental pollution. So there is dire need to find safe, renewable and sustainable energy resources. Waste to energy (WtE) may be viewed as a possible alternate source of energy, which is economically and environmentally sustainable. Municipal solid waste (MSW) is a major contributor to the development of renewable energy and sustainable environment. At present the scarcity of renewable energy resources and disposal of MSW is a challenging problem for the developing countries, which has generated a wide ranging socioeconomic and environmental problems. This situation stimulates the researchers to develop alternatives for converting WtE under a variety of scenarios. Herein, the present scenario in developing the WtE technologies such as, thermal conversion methods (Incineration, Gasification, Pyrolysis, Torrefaction), Plasma technology, Biochemical methods, Chemical and Mechanical methods, Bio-electrochemical process, Mechanical biological treatment (MBT), Photo-biological processes for efficacious energy recovery and the challenges confronted by developing and developed countries. In this review, a framework for the evaluation of WtE technologies has been presented for the ease of researchers working in the field. Furthermore, this review concluded that WtE is a potential renewable energy source that will partially satisfy the demand for energy and ensure an efficient MSW management to overcome the environmental pollution.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Tuoqeer Anwar
- COMSATS University Islamabad (Sahiwal Campus), Off G.T. Rd., Sahiwal, Punjab, 57000, Pakistan
| | - Naeem Ahmad
- Department of Chemistry, School of Natural Sciences National University of Science and Technology, H-12, Islamabad, Pakistan
| | - Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry, CV1 5FB, United Kingdom
| | - Salah Ud-Din Khan
- Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, PO-Box 800, Riyadh, 11421, Saudi Arabia.
| | - Ashfaq Ahmad
- Department of Chemistry, College of Science, King Saud University Riyadh, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, 11545, Saudi Arabia
| | - Irfan Wazeer
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
13
|
Guo F, Luo H, Shi Z, Wu Y, Liu H. Substrate salinity: A critical factor regulating the performance of microbial fuel cells, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143021. [PMID: 33131858 DOI: 10.1016/j.scitotenv.2020.143021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 05/11/2023]
Abstract
Substrate salinity is a critical factor influencing microbial fuel cells (MFCs) performance and various studies have suggested that increasing substrate salinity first improves MFC performance. However, a further increase in salinity that exceeds the salinity tolerance of exoelectrogens shows negative effects because of inhibited bacterial activity and increased activation losses. In this review, electricity generation and contaminant removal from saline substrates using MFCs are summarized, and results show different optimal salinities for obtaining maximum performance. Then, electroactive bacteria capable of tolerating saline environments and strategies for improving salinity tolerance are discussed. In addition to ohmic resistance and bacterial activity, membrane resistance and catalyst performance will also be affected by substrate salinity, all of which jointly contribute the final overall MFC performance. Therefore, the combined effect of salinity is analyzed to illustrate how the MFC performance changes with increasing salinity. Finally, the challenges and perspectives of MFCs operated in saline environments are discussed.
Collapse
Affiliation(s)
- Fei Guo
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huiqin Luo
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Zongyang Shi
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Yan Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
14
|
Zhang L, Fu G, Zhang Z. Long-term stable and energy-neutral mixed biofilm electrode for complete nitrogen removal from high-salinity wastewater: Mechanism and microbial community. BIORESOURCE TECHNOLOGY 2020; 313:123660. [PMID: 32562967 DOI: 10.1016/j.biortech.2020.123660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The steady mixed biofilm electrode (MBE) was investigated for the removal of nitrogen from mustard tuber wastewater. Results showed that complete nitrogen removal occurred over a wide initial chemical oxygen demand (COD)/total nitrogen (TN) ratio ranging from 2.8 to 9.8 using MBE. MBE revealed broad-spectrum applicability for the treatment of high-salinity wastewater containing different forms of nitrogen. Bio-electrochemical process, in-situ heterotrophic nitrogen reduction, ammonia stripping, nitrogen assimilation, and endogenous denitrification coexisted for the removal of nitrogen. Batch activity tests and functional microorganism analysis confirmed that autotrophic/heterotrophic nitrification, anoxic/aerobic denitrification, and nitrogen bio-electrochemical reduction cooperated to achieve efficient nitrogen conversion. More importantly, the analysis of the preliminary energy balance demonstrated that MBE was self-sustaining. The long-term operation stability of MBE was of great importance for its practical application. The results provided herein offer new insights into bioelectrochemical nitrogen removal and resource treatment of high-salinity wastewater.
Collapse
Affiliation(s)
- Linfang Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Zhang J, Chu L, Wang Z, Guo W, Zhang X, Zhang X, Chen R, Dong S, Sun J. Dynamic evolution of electrochemical and biological features in microbial fuel cells upon chronic exposure to increasing oxytetracycline dosage. Bioelectrochemistry 2020; 136:107623. [PMID: 32795941 DOI: 10.1016/j.bioelechem.2020.107623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
Dynamic changes in power generation and electrochemical properties were compared between the control microbial fuel cells (C-MFC) and an oxytetracycline (OTC)-treated MFC (O-MFC) on days 84, 139, 174, 224, 295, 307 and 353. The results showed that a high concentration of OTC (>5 mg·L-1) could inhibit microbial activity and result in a decline of voltage output and power density compared with the same C-MFC. However, with the prolongation of incubation time, the inhibitory effect was gradually weakened. Electrochemical analyses demonstrated that long-term OTC acclimation reduced the ohmic and polarisation resistance of the anode, which was conducive to the recovery of electrochemical performance. More than 99% of 10 mg·L-1 OTC could be removed within 48 h, and the antibacterial activity of the MFC effluent on Escherichia coli DH5α was conclusively eliminated. High-throughput sequencing analysis revealed that the diversity and richness of the microbial community decreased significantly after long-term OTC enrichment. Acinetobacter, Petrimonas, Spirochaetaceae and Delftia were enriched and played a dominant role in C-MFC stability and power generation. The promotion by Cupriavidus, Geobacter and Stenotrophomonas in simultaneous OTC degradation and bioelectricity generation in the O-MFC was demonstrated.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Sanmenxia Polytechnic, Sanmenxia, Henan 472000, PR China
| | - Liangliang Chu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Xinxiang University, Xinxiang, Henan 453007, PR China
| | - Zongwu Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Department of Environment Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng, Henan 475004, PR China
| | - Wei Guo
- Department of Chemistry, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xiao Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Xiao Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Ruyan Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
16
|
Gajda I, Obata O, Jose Salar-Garcia M, Greenman J, Ieropoulos IA. Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry 2020; 133:107459. [PMID: 32126486 PMCID: PMC7132540 DOI: 10.1016/j.bioelechem.2020.107459] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/30/2022]
Abstract
In order to improve the potential of Microbial Fuel Cells (MFCs) as an applicable technology, the main challenge is to engineer practical systems for bioenergy production at larger scales and to test how the prototypes withstand the challenges occurring during the prolonged operation under constant feeding regime with real waste stream. This work presents the performance assessment of low-cost ceramic MFCs in the individual, stacked (modular) and modular cascade (3 modules) configurations during long term operation up to 19 months, utilising neat human urine as feedstock. During 1 year, the performance of the individual MFC units reached up to 1.56 mW (22.3 W/m3), exhibiting only 20% power loss on day 350 which was significantly smaller in comparison to conventional proton or cation exchange membranes. The stack module comprising 22 MFCs reached up to 21.4 mW (11.9 W/m3) showing power recovery to the initial output levels after 580 days, whereas the 3-module cascade reached up to 75 mW (13.9 W/m3) of power, showing 20% power loss on day 446. In terms of chemical oxygen demand (COD) removal, the 3-module cascade configuration achieved a cumulative reduction of >92%, which is higher than that observed in the single module (56%).
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Maria Jose Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Centre For Research in Biosciences, University of the West of England, BS16 1QY, UK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Centre For Research in Biosciences, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
17
|
Obata O, Salar-Garcia MJ, Greenman J, Kurt H, Chandran K, Ieropoulos I. Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:109992. [PMID: 31929046 PMCID: PMC7001104 DOI: 10.1016/j.jenvman.2019.109992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 05/20/2023]
Abstract
The Microbial fuel cell (MFC) technology harnesses the potential of some naturally occurring bacteria for electricity generation. Digested sludge is commonly used as the inoculum to initiate the process. There are, however, health hazards and practical issues associated with the use of digested sludge depending on its origin as well as the location for system deployment. This work reports the development of an efficient electroactive bacterial community within ceramic-based MFCs fed with human urine in the absence of sludge inoculum. The results show the development of a uniform bacterial community with power output levels equal to or higher than those generated from MFCs inoculated with sludge. In this case, the power generation begins within 2 days of the experimental set-up, compared to about 5 days in some sludge-inoculated MFCs, thus significantly reducing the start-up time. The metagenomics analysis of the successfully formed electroactive biofilm (EAB) shows significant shifts between the microbial ecology of the feeding material (fresh urine) and the developed anodic biofilm. A total of 21 bacteria genera were detected in the urine feedstock whilst up to 35 different genera were recorded in the developed biofilm. Members of Pseudomonas (18%) and Anaerolineaceae (17%) dominate the bacterial community of the fresh urine feed while members of Burkholderiaceae (up to 50%) and Tissierella (up to 29%) dominate the anodic EAB. These results highlight a significant shift in the bacterial community of the feedstock towards a selection and adaptation required for the various electrochemical reactions essential for survival through power generation.
Collapse
Affiliation(s)
- Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| | - Maria J Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Halil Kurt
- Department of Earth and Environmental Engineering, Columbia University, NY, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, NY, USA
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
18
|
Biotreatment of high-salinity wastewater: current methods and future directions. World J Microbiol Biotechnol 2020; 36:37. [DOI: 10.1007/s11274-020-02815-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
19
|
Xin X, Chen BY, Hong J. Unraveling interactive characteristics of microbial community associated with bioelectric energy production in sludge fermentation fluid-fed microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 289:121652. [PMID: 31252317 DOI: 10.1016/j.biortech.2019.121652] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
This first-attempt study deciphered the interactive characteristics of anodophilic microbial community-associated bioelectricity production in waste activated sludge (WAS) fermentation fluid-fed microbial fuel cells (MFCs). A novel schematic elucidation for illustrating synergistic interactions in anodic microbial consortia towards electrogenesis was proposed. Moreover, the specific genera of Pseudomonas, Desulfovibrio, Phyllobacterium, Desulfuromonas, Chelatococcus and Aminivibrio were dominant in anodic biofilms, leading to an electrogenesis efficiency of 1.254 kWh/kg COD and peak power density of 0.182 W/m2 (at feeding level of 1.20 g COD/L). It was apparently higher than those MFCs fed with glucose/acetate. The fermentative species contributed positively in reorganizing microbial community structure in anodic biofilms, positively relating to electrogenesis via interactions with exoeletrogens in MFCs. Finally, a more electrogenesis was positively associated to larger anodic microbial diversity, relatively medium anodic community evenness, together with higher abundance of functional genes related to electrogenesis in functional species in MFCs fed with WAS fermentation fluid.
Collapse
Affiliation(s)
- Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Bor-Yann Chen
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
20
|
Zhang L, Fu G, Zhang Z. High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 289:121630. [PMID: 31252315 DOI: 10.1016/j.biortech.2019.121630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Considering there is no study involving simultaneous salt, sulfate and nitrogen removal from high-salinity mustard tuber wastewater (MTWW), biocathode microbial desalination cell (BMDC) was first constructed and used to treat MTWW. The results showed that 97.4% of salt, 99.7% of sulfate and 99.8% of nitrogen could be removed from MTWW. The relative abundances of electrgenic bacteria in anode and cathode were 15.95% and 15.10%, respectively, which greatly promoted the electricity generation and desalination. The bacteria involved in sulfate reduction in anode were the dominant population, with relative abundance of 13.94%. Microbial community analysis of cathode biofilm indicated that autotrophic nitrification-anaerobic denitrification, electrochemical reduction and anaerobic ammonium oxidation might coexist for high-efficiency nitrogen removal. Besides, the BMDC showed stable power output for 150 days. These findings provide a promising approach for efficient treatment of MTWW.
Collapse
Affiliation(s)
- Linfang Zhang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
21
|
Liu Z, Xiang P, Duan Z, Fu Z, Zhang L, Zhang Z. Electricity generation, salinity, COD removal and anodic biofilm microbial community vary with different anode CODs in a microbial desalination cell for high-salinity mustard tuber wastewater treatment. RSC Adv 2019; 9:25189-25198. [PMID: 35528677 PMCID: PMC9069894 DOI: 10.1039/c9ra04184b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/22/2019] [Indexed: 11/21/2022] Open
Abstract
A three-chamber microbial desalination cell (MDC) was constructed for high-salinity mustard tuber wastewater (MTWW) treatment. The effect of anode COD on electricity generation, salinity, COD removal and the anodic biofilm microbial community in MDC for the MTWW treatment was investigated. The results showed that electricity generation was better when the anode COD was 900 mg L−1versus when it was 400 or 1400 mg L−1. The ionic strength and conductivity of the anolyte were higher than those at 400 mg L−1; thus, the ohmic internal resistance was lower. In addition, the mass transfer internal resistance was lower than that at 1400 mg L−1, which made the system internal resistance the lowest; consequently, the voltage and power density were the highest. The output voltage, power density and coulombic efficiency of the 1000 Ω external resistors were 555 mV, 3.03 W m−3 and 26.5% ± 0.4%, respectively. Desalination was the highest when the anode COD was 400 mg L−1. The lowest ionic strength and osmotic pressure of the anolyte resulted in the strongest osmosis, thereby producing the highest desalination rate; the desalination rate was 5.33 mg h−1. When MDC was coupled with the dual-chamber microbial fuel cell (MFC), the desalinated MTWW could be used as the anode substrate of the MFC; its high COD could be removed continuously, and the COD removal values were 86.2% ± 2.5%, 83.0% ± 2.0% and 84.3% ± 2.4%. High-throughput sequencing analysis indicated that hydrolytic and fermentative bacteria were the core anode bacteria of MDC. The abundances of electrochemically active bacteria in the anode biofilms of the three groups were 11.78% (400 mg L−1 COD), 14.06% (900 mg L−1 COD) and 13.68% (1400 mg L−1 COD). Therefore, the differences in anode CODs impacted the abundance of electrochemically active bacteria, which led to differences in electricity generation performances. A three-chamber microbial desalination cell (MDC) was constructed for high-salinity mustard tuber wastewater (MTWW) treatment.![]()
Collapse
Affiliation(s)
- Zhe Liu
- College of Environment and Ecology
- Chongqing University
- Chongqing 400045
- China
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment
| | - Ping Xiang
- College of Environment and Ecology
- Chongqing University
- Chongqing 400045
- China
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment
| | - Zhuang Duan
- Zhuhai Planning and Design Institute
- Zhuhai
- China
| | - Zhaohui Fu
- Zhuhai Planning and Design Institute
- Zhuhai
- China
| | - Linfang Zhang
- College of Environment and Ecology
- Chongqing University
- Chongqing 400045
- China
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment
| | - Zhi Zhang
- College of Environment and Ecology
- Chongqing University
- Chongqing 400045
- China
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment
| |
Collapse
|