1
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
2
|
Zhao LX, Chen LL, Cheng D, Wu TY, Fan YG, Wang ZY. Potential Application Prospects of Biomolecule-Modified Two-Dimensional Chiral Nanomaterials in Biomedicine. ACS Biomater Sci Eng 2024; 10:2022-2040. [PMID: 38506625 DOI: 10.1021/acsbiomaterials.3c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chirality, one of the most fundamental properties of natural molecules, plays a significant role in biochemical reactions. Nanomaterials with chiral characteristics have superior properties, such as catalytic properties, optoelectronic properties, and photothermal properties, which have significant potential for specific applications in nanomedicine. Biomolecular modifications such as nucleic acids, peptides, proteins, and polysaccharides are sources of chirality for nanomaterials with great potential for application in addition to intrinsic chirality, artificial macromolecules, and metals. Two-dimensional (2D) nanomaterials, as opposed to other dimensions, due to proper surface area, extensive modification sites, drug loading potential, and simplicity of preparation, are prepared and utilized in diagnostic applications, drug delivery research, and tumor therapy. Current advanced studies on 2D chiral nanomaterials for biomedicine are focused on novel chiral development, structural control, and materials sustainability applications. However, despite the advances in biomedical research, chiral 2D nanomaterials still confront challenges such as the difficulty of synthesis, quality control, batch preparation, chiral stability, and chiral recognition and selectivity. This review aims to provide a comprehensive overview of the origins, synthesis, applications, and challenges of 2D chiral nanomaterials with biomolecules as cargo and chiral modifications and highlight their potential roles in biomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Di Cheng
- Dalian Gentalker Biological Technology Co., Ltd., Dalian 116699, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Ren X, Wu F, Wu M, Gao H, Wu C, Mu W, Liu S, Que L, Zhang H, Miao M, Chang D, Pan H. Sandwich-type immunosensor based on aminated 3D-rGOF-NH 2 and CMK-3-Fc-MgAl-LDH multilayer nanocomposites for detection of CA125. Bioelectrochemistry 2024; 156:108613. [PMID: 37995504 DOI: 10.1016/j.bioelechem.2023.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Cancer antigen 125 (CA125)1 is the most important biological screening indicator used to monitor epithelial ovarian cancers, and it plays a vital role in distinguishing ovarian cancers from benign diseases. Biosensors show great potential in the analysis and detection of disease markers. In this study, we designed electrochemical sensors based on three-dimensional amino-functionalized reduced graphene oxide (3D-rGOF-NH2),2 MgAl layered double hydroxide nanocomposites containing ordered mesoporous carbon (CMK-3),3 and ferrocene carboxylic acids(Fc-COOH)4for the detection of CA125. 3D-rGOF-NH2 possesses good conductivity, a large surface area, and high porosity, enabling more immobilized nanoparticles to be deposited on its surface with excellent stability. CMK-3@Fc@MgAl-LDH nanocomposite was used as a carrier to enhance the immobilization of antibodies and the loading of Fc, conductors to enhance conductivity, and enhancers to gradually amplify the signal of Fc. The surface morphology, elemental composition, and surface groups of the materials were characterized using scanning electron microscopy (SEM),5 transmission electron microscopy (TEM),6 and X-ray diffraction (XRD)7 techniques. The response signal of the electrochemical sensor was measured by DPV. Under the optimal conditions, the electrochemical sensor obtained a linear detection range of 0.01 U/mL-100 U/mL with a detection limit of 0.00417 U/mL.
Collapse
Affiliation(s)
- Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Medicine and Health Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangfang Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Mengdie Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Medicine and Health Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongmin Gao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chunyan Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wendi Mu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Simin Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Longbin Que
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Meng Miao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Dong Chang
- Department of Laboratory Medicine, Shanghai Pudong Hospital, Shanghai 201399, China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; The Affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
4
|
Huang H, Li J, Cai W, Wu D, Xu L, Kong Y. A chiral metal-organic framework/cyclodextrin sensing interface for the chiral discrimination of tryptophan enantiomers. Analyst 2024; 149:1753-1758. [PMID: 38363120 DOI: 10.1039/d4an00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A chiral metal-organic framework (CMOF) was synthesized by introducing L-histidine (L-His) to zeolitic imidazolate framework-8 (ZIF-8) and then grafting with carboxymethyl-β-cyclodextrin (CM-β-CD). Compared with L-His-ZIF-8, the CM-β-CD-functionalized L-His-ZIF-8 (L-His-ZIF-8-CD) showed significantly enhanced discrimination ability for the tryptophan (Trp) enantiomers owing to the inherent chirality of CM-β-CD. The specificity of the chiral interface was also studied, and the results indicated that the discrimination ability for Trp enantiomers is significantly stronger than that for the enantiomers of cysteine (Cys) and tyrosine (Tyr), which might be due to the better matching between the indole ring of Trp and the chiral cavity of CM-β-CD.
Collapse
Affiliation(s)
- Haowei Huang
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Laidi Xu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Wang X, Chen J, Xu H, Fan Y, Wang X, Zhang M, Liu Y, Li B, Liu J, Zhou H. Construction of an ultrasensitive dual-mode chiral molecules sensing platform based on molecularly imprinted polymer modified bipolar electrode. Biosens Bioelectron 2024; 243:115759. [PMID: 37857064 DOI: 10.1016/j.bios.2023.115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Chiral molecules are abundant in nature. Phenylketonuria (PKU) is caused by the abnormal transformation of chiral molecules L-phenylalanine (L-Phe) in the human blood, which can cause irreversible harm to the human body. In this work, we documented an electrochemiluminescent (ECL) dual-mode sensor platform based on molecularly imprinted polymer (MIP) modified closed bipolar electrodes for high sensitivity detection of L-Phe and D-phenylalanine (D-Phe). In the anode chamber of a bipolar electrode modified with phenylalanine imprinting, Ru (bpy)32+ underwent a redox reaction to produce a chemiluminescence response under the stimulation of a driving voltage. At the same time, the reduction of the cathode film of the bipolar electrode was promoted, and the color changed from dark blue to nearly white. Thus, the dual-mode detection of target molecules is realized. The detection range of the sensor for phenylalanine reached 0.01-10,000 nM, and the detection limits of L-Phe and D-Phe were 3.9 pM and 4.6 pM (S/N = 3), respectively. This dual-mode system achieved high stability and high specificity, and also successfully realized the detection of actual samples, which is expected to achieve future clinical applications.
Collapse
Affiliation(s)
- Xinli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jiahe Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Hui Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yufei Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xue Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Meng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yue Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
6
|
Hong T, Zhou W, Tan S, Cai Z. A cooperation tale of biomolecules and nanomaterials in nanoscale chiral sensing and separation. NANOSCALE HORIZONS 2023; 8:1485-1508. [PMID: 37656443 DOI: 10.1039/d3nh00133d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The cooperative relationship between biomolecules and nanomaterials makes up a beautiful tale about nanoscale chiral sensing and separation. Biomolecules are considered a fabulous chirality 'donor' to develop chiral sensors and separation systems. Nature has endowed biomolecules with mysterious chirality. Various nanomaterials with specific physicochemical attributes can realize the transmission and amplification of this chirality. We focus on highlighting the advantages of combining biomolecules and nanomaterials in nanoscale chirality. To enhance the sensors' detection sensitivity, novel cooperation approaches between nanomaterials and biomolecules have attracted tremendous attention. Moreover, innovative biomolecule-based nanocomposites possess great importance in developing chiral separation systems with improved assay performance. This review describes the formation of a network based on nanomaterials and biomolecules mainly including DNA, proteins, peptides, amino acids, and polysaccharides. We hope this tale will record the perpetual relation between biomolecules and nanomaterials in nanoscale chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| |
Collapse
|
7
|
Niu X, Yan S, Zhao R, Li H, Liu X, Wang K. Design and Electrochemical Chiral Sensing of the Robust Sandwich Chiral Composite d-His-ZIF-8@Au@ZIF-8. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22435-22444. [PMID: 37126450 DOI: 10.1021/acsami.3c03947] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the pursuit of chiral materials with significant chiral recognition effects and stability, various strategies have been explored, among which the integration of metal nanoparticles and chiral metal-organic frameworks (CMOFs) is highly promising. However, metal nanoparticles (MNPs)/CMOFs show high chiral properties but inferior stabilities due to the MNPs being easily detached from the outside layer under certain conditions. Sandwich MOFs@MNPs@CMOF chiral materials can overcome this dilemma because the sandwich structure can maximize the regulation of the chiral interface activity, while the controlled outer layer can stop the MNPs from falling off in the procedure of chiral recognition. Here, a novel sandwich chiral material (d-His-ZIF-8@Au@ZIF-8) was synthesized by a ligand-assisted strategy with a well-defined sandwich morphology and chiral recognition capabilities. The electrochemical chiral recognition showed that d-His-ZIF-8@Au@ZIF-8 was the most efficient for the enantiomer of phenylalanine (Phe). This experiment presents a novel perspective for the fabrication of a chiral electrochemical sensing platform based on a solid sandwich chiral nanocomposite.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xiaoyu Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| |
Collapse
|
8
|
He Y, Ye Z, Zhu F, Qiu T, Dai X, Xie Y, Zou S, Dong Q, Zhang W, Ma J, Mao X. Enantioselective Labeling of Zebrafish for D-Phenylalanine Based on Graphene-Based Nanoplatform. Molecules 2023; 28:3700. [PMID: 37175110 PMCID: PMC10180043 DOI: 10.3390/molecules28093700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Enantioselective labeling of important bioactive molecules in complex biological environments by artificial receptors has drawn great interest. From both the slight difference of enantiomers' physicochemical properties and inherently complexity in living organism point of view, it is still a contemporary challenge for preparing practical chiral device that could be employed in the model animal due to diverse biological interference. Herein, we introduce γ-cyclodextrin onto graphene oxide for fabricating γ-cyclodextrin and graphene oxide assemblies, which provided an efficient nanoplatform for chiral labelling of D-phenylalanine with higher chiral discrimination ratio of KD/KL = 8.21. Significantly, the chiral fluorescence quenching effect of this γ-CD-GO nanoplatform for D-phenylalanine enantiomer in zebrafish was 7.0-fold higher than L-isomer, which exhibiting real promise for producing practical enantio-differentiating graphene-based systems in a complex biological sample.
Collapse
Affiliation(s)
- Yuqing He
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ziqi Ye
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Life Science, Jianghan University, Wuhan 430056, China
| | - Fei Zhu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Science, Hubei University of Medicine, Shiyan 442000, China
| | - Tianxiang Qiu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xiyan Dai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yue Xie
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shibiao Zou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qingjian Dong
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Life Science, Jianghan University, Wuhan 430056, China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaowei Mao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
9
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
El-Maghrabi N, Fawzy M, Mahmoud AED. Efficient Removal of Phosphate from Wastewater by a Novel Phyto-Graphene Composite Derived from Palm Byproducts. ACS OMEGA 2022; 7:45386-45402. [PMID: 36530337 PMCID: PMC9753538 DOI: 10.1021/acsomega.2c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 05/17/2023]
Abstract
The increased demand for clean water especially in overpopulated countries is of great concern; thus, the development of eco-friendly and cost-effective techniques and materials that can remediate polluted water for possible reuse in agricultural purposes can offer a life-saving solution to improve human welfare, especially in view of climate change impacts. In the current study, the agricultural byproducts of palm trees have been used for the first time as a carbon source to produce graphene functionalized with ferrocene in a composite form to enhance its water treatment potential. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), ultraviolet-visible, Fourier transform infrared spectroscopy, zeta potential, thermogravimetric analysis, and Raman techniques have been used to characterize the produced materials. SEM investigations confirmed the formation of multiple sheets of the graphene composite. Data collected from the zeta potential revealed that graphene was supported with a negative surface charge that maintains its stability while XRD elucidated that graphene characteristic peaks were evident at 2θ = 22.4 and 22.08° using palm leaves and fibers, respectively. Batch adsorption experiments were conducted to find out the most suitable conditions to remove PO4 3- from wastewater by applying different parameters, including pH, adsorbent dose, initial concentration, and time. Their effect on the adsorption process was also investigated. Results demonstrated that the best adsorption capacity was 58.93 mg/g (removal percentage: 78.57%) using graphene derived from palm fibers at 15 mg L-1 initial concentration, pH = 3, dose = 10 mg, and 60 min contact time. Both linear and non-linear forms of kinetic and isotherm models were investigated. The adsorption process obeyed the pseudo-second-order kinetic model and was well fitted to the Langmuir isotherm.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- ,
| | - Manal Fawzy
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
- National
Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo11694, Egypt
| | - Alaa El Din Mahmoud
- Environmental
Sciences Department, Faculty of Science, Alexandria University, Alexandria21511, Egypt
- Green
Technology Group, Faculty of Science, Alexandria
University, Alexandria21511, Egypt
| |
Collapse
|
11
|
Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: Recent advances and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Xing C, Chen H, Guan Y, Zhang S, Tong T, Ding N, Luo T, Kang Y, Pang J. Cyclodextrin-based supramolecular nanoparticles break the redox balance in chemodynamic therapy-enhanced chemotherapy. J Colloid Interface Sci 2022; 628:864-876. [PMID: 36029600 DOI: 10.1016/j.jcis.2022.08.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Drug delivery based on abnormal features of the tumor microenvironment (TME) has attracted considerable interest worldwide. In this study, we proposed an applicable strategy to increase the reactive oxygen species (ROS) and inhibit glutathione (GSH), in an effort to amplify oxidative damage in prostate cancer cells. Specifically, we developed dual-responsive supramolecular self-assembled nanoparticles (NPs) based on polymerized methacrylic acid (MA) and polymerized poly(ethylene glycol) dimethyl acrylate-modified β-cyclodextrin (CD) with ferrocene (Fc)-connected (S) (+)-camptothecin (CPT) (designated as MA-CD/Fc-CPT NPs). The as-prepared negatively charged supramolecular NPs can be taken up by tumor cells successfully owing to their reversible negative-to-positive charge transition capacity at acidic pH. The supramolecular NPs increased ROS generation and decreased GSH to amplify oxidative stress and improve the therapeutic effect of chemotherapy. As expected, MA-CD/Fc-CPT NPs displayed good drug delivery capabilities to tumor cells or tissues. MA-CD/Fc-CPT NPs also inhibited cancer cell proliferation in both the cells and tissues. This result was partially due to increased ROS generation and decreased GSH, which contributed to more pronounced oxidative stress. The as-prepared supramolecular NPs displayed great biosafety to normal tissues. According to our results, negatively charged supramolecular MA-CD/Fc-CPT NPs are well-suited for drug delivery and improved cancer treatment in TMEs.
Collapse
Affiliation(s)
- Chengyuan Xing
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Huikun Chen
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tongyu Tong
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ni Ding
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tingting Luo
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
13
|
Hou Y, Liang J, Kuang X, Kuang R. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Carbohydr Polym 2022; 290:119474. [DOI: 10.1016/j.carbpol.2022.119474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/02/2022]
|
14
|
Li H, Wang L, Yan S, Chen J, Zhang M, Zhao R, Niu X, Wang K. Fusiform-like metal-organic framework for enantioselective discrimination of tryptophan enantiomers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Narafu S, Takashima Y, Niwa O, Yajima T, Ueno Y. Electrochemical analysis of ferrocene in bicontinuous microemulsions using β- cyclodextrin modified monolayer graphene electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Sathya V, Srinivasadesikan V, Lee SL, Padmini V. Effective Detection of Phenylalanine Using Pyridine Based Sensor. J Fluoresc 2022; 32:1481-1488. [DOI: 10.1007/s10895-022-02944-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/24/2022] [Indexed: 01/23/2023]
|
17
|
Niu Q, Jin P, Huang Y, Fan L, Zhang C, Yang C, Dong C, Liang W, Shuang S. A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Analyst 2022; 147:880-888. [DOI: 10.1039/d1an02262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium@gold nanoparticle modified three-dimensional-reduced graphene oxide was coupled with carboxymethyl-β-cyclodextrin to form a novel nanocomposite, which served as an effective chiral sensing interface for electrochemical enantiorecognition.
Collapse
Affiliation(s)
- Qingfang Niu
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Pengyue Jin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Yu Huang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caihong Zhang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Chuan Dong
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
18
|
Li T, Wang Y, Kan X. Electrochemical chiral recognition of tryptophan enantiomers based on copper-modified β-cyclodextrin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Du Y, Mo Z, Shuai C, Pei H, Wang J, Chen Y, Yue R, He S. Construction of a novel highly electroactive nano-composite film modified with cellulose gum for the electrochemical recognition of tryptophan isomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Ning G, Wang H, Fu M, Liu J, Sun Y, Lu H, Fan X, Zhang Y, Wang H. Dual Signals Electrochemical Biosensor for Point‐of‐care Testing of Amino Acids Enantiomers. ELECTROANAL 2021. [DOI: 10.1002/elan.202100240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Guyang Ning
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Haiyang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Mingxuan Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Jiaxian Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Yuena Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Haijun Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Xinyu Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Yufan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| | - Huan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis Ministry of Education Hebei University 071002 Baoding P. R. China
| |
Collapse
|
21
|
Du Y, Mo Z, Wang J, Shuai C, Pei H, Chen Y, Yue R. A novel chiral carbon nanocomposite based on cellulose gum modifying chiral tri-electrode system for the enantiorecognition of tryptophan. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Xu W, Cheng M, Zhang S, Wu Q, Liu Z, Dhinakaran MK, Liang F, Kovaleva EG, Li H. Recent advances in chiral discrimination on host-guest functionalized interfaces. Chem Commun (Camb) 2021; 57:7480-7492. [PMID: 34264255 DOI: 10.1039/d1cc01501j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral discrimination has gained much focus in supramolecular chemistry, since it is one of the fundamental processes in biological systems, enantiomeric separation and biochemical sensors. Though most of the biochemical processes can routinely recognize biological enantiomers, enantioselective identification of chiral molecules in artificial systems is currently one of the challenging topics in the field of chiral discrimination. Inaccuracy, low separation efficiency and expensive instrumentation were considered typical problems in artificial systems. Recently, chiral recognition on the interfaces has been widely used in the fields of electrochemical detection and biochemical sensing. For the moment, a series of macrocyclic host functionalized interfaces have been developed for use as chiral catalysts or for enantiomeric separation. Here, we have briefly exposited the most recent advances in the fabrication of supramolecular functionalized interfaces and their application for chiral recognition.
Collapse
Affiliation(s)
- Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu D, Ma C, Fan GC, Pan F, Tao Y, Kong Y. Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. J Sep Sci 2021; 45:325-337. [PMID: 34117714 DOI: 10.1002/jssc.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| |
Collapse
|
24
|
Sun YX, Zhang DD, Sheng Y, Xu D, Zhang R, Bradley M. Supramolecular assembly induced chiral interface for electrochemical recognition of tryptophan enantiomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2011-2020. [PMID: 33955988 DOI: 10.1039/d1ay00222h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The β-CD@PEI-Fc chiral interface was prepared based on the supramolecular host-guest interaction between ferrocene (Fc) grafted polyethyleneimine (PEI-Fc) and chiral β-cyclodextrin (β-CD). SEM results show that β-CD@PEI-Fc interface has a regular spatial structure, which can effectively distinguish tryptophan (Trp) enantiomers. Under the optimal conditions, differential pulse voltammetry shows that the peak current ratio (Id/Il) of Trp enantiomers can reach 2.84 at 15 °C. More interestingly, the β-CD@PEI-Fc/GCE exhibited chiral recognition of d-Trp and l-Trp via water contact angle measurements. There was a good linear relationship between the peak current and the concentration of Trp enantiomers in the range from 0.005 mM to 0.10 mM. Finally, the chiral interface can be applied for quick detection of the proportion of isomers in Trp racemic solution, which is very important for chiral recognition in racemic mixture of chiral compounds. Meanwhile, the β-CD@PEI-Fc/GCE showed good stability and reproducibility.
Collapse
Affiliation(s)
- Yi-Xin Sun
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Dan-Dan Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Yang Sheng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, Jiangsu, P.R. China
| | - Rong Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH93JJ, UK.
| |
Collapse
|
25
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
26
|
Niu X, Yang X, Li H, Liu J, Liu Z, Wang K. Application of chiral materials in electrochemical sensors. Mikrochim Acta 2020; 187:676. [DOI: 10.1007/s00604-020-04646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
|
27
|
Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Mikrochim Acta 2020; 187:636. [PMID: 33141322 DOI: 10.1007/s00604-020-04606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 01/28/2023]
Abstract
A novel chiral sensing platform, 6-O-α-maltosyl-β-cyclodextrin (Mal-βCD)-based film, is proposed for selective electrochemical recognition of tyrosine (Tyr) enantiomers. Black phosphorus nanosheets (BP NSs) and Mal-βCD modified glassy carbon electrode (Mal-βCD/BP NSs/GCE) were prepared by a layer-to-layer drop-casting method, and the platform was easy to fabricate and facile to operate. It is proposed that the amino and hydroxyl groups of the Tyr enantiomers and the chiral hydroxyl groups of Mal-βCD selectively form intermolecular hydrogen bonds to dominate effective chiral recognition. Two linear equations of Ip (μA) = 11.40 CL-Tyr (mM) + 0.28 (R2 = 0.99147) and Ip (μA) = 7.96 CD-Tyr (mM) + 0.22 (R2 = 0.99583) in the concentration range 0.01-1.00 mM have been obtained. The limits of detection (S/N=3) for L-Tyr and D-Tyr were 4.81 and 6.89 µM, respectively. An interesting phenomenon was that the value of IL-Tyr/ID-Tyr (1.51) in this work was slightly higher than the value of IL-Trp/ID-Trp (1.49) reported in our previous study, where tryptophan (Trp) enantiomers were electrochemically recognized by Nafion (NF)-stabilized BPNSs-G2-β-CD composite. The two similar sensors fabricated by different methods showed different recognition ability toward either Tyr or Trp enantiomers, and the underlying mechanism was discussed in detail. More importantly, the proposed chiral sensor enables prediction of the percentages of D-Tyr in racemic Tyr mixtures. The chiral sensor may provide a novel approach for the fabrication of novel chiral platforms in the practical detection of L- or D-enantiomer in racemic Tyr mixtures.Graphical abstract.
Collapse
|
28
|
Ma Y, Shi L, Yue H, Gao X. Recognition at chiral interfaces: From molecules to cells. Colloids Surf B Biointerfaces 2020; 195:111268. [DOI: 10.1016/j.colsurfb.2020.111268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
|
29
|
Wu D, Pan F, Gao L, Tao Y, Kong Y. Enantioselective Limiting Transport into a Fixed Cavity via Supramolecular Interaction for the Chiral Electroanalysis of Amino Acids Regardless of Electroactive Units. Anal Chem 2020; 92:13711-13717. [DOI: 10.1021/acs.analchem.0c00554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Li Gao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
30
|
Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110910. [DOI: 10.1016/j.msec.2020.110910] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
|
31
|
Hobbs C, Řezanka P, Řezanka M. Cyclodextrin‐Functionalised Nanomaterials for Enantiomeric Recognition. Chempluschem 2020; 85:876-888. [DOI: 10.1002/cplu.202000187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Hobbs
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Pavel Řezanka
- Department of Analytical ChemistryUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Michal Řezanka
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| |
Collapse
|
32
|
A Review on Electrochemical Sensors and Biosensors Used in Phenylalanine Electroanalysis. SENSORS 2020; 20:s20092496. [PMID: 32354070 PMCID: PMC7249663 DOI: 10.3390/s20092496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Phenylalanine is an amino acid found in breast milk and in many foods, being an essential nutrient. This amino acid is very important for the human body because it is transformed into tyrosine and, subsequently, into catecholamine neurotransmitters. However, there are individuals who were born with a genetic disorder called phenylketonuria. The accumulation of phenylalanine and of some metabolites in the body is dangerous and may cause convulsions, brain damage and mental retardation. Determining the concentration of phenylalanine in different biologic fluids is very important because it can provide information about the health status of the individuals envisaged. Since such determinations may be made by using electrochemical sensors and biosensors, numerous researchers have developed such sensors for phenylalanine detection and different sensitive materials were used in order to improve the selectivity, sensitivity and detection limit. The present review aims at presenting the design and performance of some electrochemical bio (sensors) traditionally used for phenylalanine detection as reported in a series of relevant scientific papers published in the last decade.
Collapse
|
33
|
Niu X, Yang X, Mo Z, Wang J, Pan Z, Liu Z, Shuai C, Liu G, Liu N, Guo R. Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Bioelectrochemistry 2020; 131:107396. [DOI: 10.1016/j.bioelechem.2019.107396] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 01/15/2023]
|
34
|
Shishkanova TV, Habanová N, Řezanka M, Broncová G, Fitl P, Vrňata M, Matějka P. Molecular Recognition of Phenylalanine Enantiomers onto a Solid Surface Modified with Electropolymerized Pyrrole‐β‐Cyclodextrin Conjugate. ELECTROANAL 2019. [DOI: 10.1002/elan.201900615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatiana V. Shishkanova
- Department of Analytical ChemistryUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nina Habanová
- Department of Analytical ChemistryUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Michal Řezanka
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Gabriela Broncová
- Department of Analytical ChemistryUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Přemysl Fitl
- Department of Physics and MeasurementsUniversity of Chemical Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Martin Vrňata
- Department of Physics and MeasurementsUniversity of Chemical Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Pavel Matějka
- Department of Physical ChemistryUniversity of Chemistry and Technology in Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
35
|
Electrochemical chiral interface based on the Michael addition/Schiff base reaction of polydopamine functionalized reduced graphene oxide. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Xu JW, Cui ZM, Liu ZQ, Xu F, Chen YS, Luo YL. Organic-Inorganic Nanohybrid Electrochemical Sensors from Multi-Walled Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles and In-Situ Wrapped with Poly(2-methacryloyloxyethyl ferrocenecarboxylate) for Detection of the Content of Food Additives. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1388. [PMID: 31569770 PMCID: PMC6835561 DOI: 10.3390/nano9101388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022]
Abstract
An electrochemical sensor for detection of the content of aspartame was developed by modifying a glassy carbon electrode (GCE) with multi-walled carbon nanotubes decorated with zinc oxide nanoparticles and in-situ wrapped with poly(2-methacryloyloxyethyl ferrocenecarboxylate) (MWCNTs@ZnO/PMAEFc). MWCNTs@ZnO/PMAEFc nanohybrids were prepared through reaction of zinc acetate dihydrate with LiOH·H2O, followed by reversible addition-fragmentation chain transfer polymerization of 2-methacryloyloxyethyl ferrocenecarboxylate, and were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), scanning electron microscope (SEM), and transmission electron microscope (TEM) techniques. The electrochemical properties of the prepared nanohybrids with various composition ratios were examined by cyclic voltammetry (CV), and the trace additives in food and/or beverage was detected by using differential pulse voltammetry (DPV). The experimental results indicated that the prepared nanohybrids for fabrication of electrochemical modified electrodes possess active electroresponse, marked redox current, and good electrochemical reversibility, which could be mediated by changing the system formulations. The nanohybrid modified electrode sensors had a good peak current linear dependence on the analyte concentration with a wide detection range and a limit of detection as low as about 1.35 × 10-9 mol L-1, and the amount of aspartame was measured to be 35.36 and 40.20 µM in Coke zero, and Sprite zero, respectively. Therefore, the developed nanohybrids can potentially be used to fabricate novel electrochemical sensors for applications in the detection of beverage and food safety.
Collapse
Affiliation(s)
- Jing-Wen Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
- School of Food & Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zhuo-Miao Cui
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhan-Qing Liu
- Shaanxi Province Engineering Research Center of Coal Conversion Alcohol, College of Chemistry and materials, Weinan Normal University, Weinan 710114, China.
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
37
|
Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Mikrochim Acta 2019; 186:557. [DOI: 10.1007/s00604-019-3682-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
|