1
|
Cao X, Liu T, Wang X, Yu Y, Li Y, Zhang L. Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:6616. [PMID: 39460096 PMCID: PMC11511242 DOI: 10.3390/s24206616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Antioxidants are substances that have the ability to resist or delay oxidative damage. Antioxidants can be used not only for the diagnosis and prevention of vascular diseases, but also for food preservation and industrial production. However, due to the excessive use of antioxidants, it can cause environmental pollution and endanger human health. It can be seen that the development of antioxidant detection technology is important for environment/health maintenance. It is found that traditional detection methods, including high performance liquid chromatography, gas chromatography, etc., have shortcomings such as cumbersome operation and high cost. In contrast, the nanozyme-based detection method features advantages of low cost, simple operation, and rapidity, which has been widely used in the detection of various substances such as glucose and antioxidants. This article focuses on the latest research progress of nanozymes for antioxidant detection. Nanozymes for antioxidant detection are classified according to enzyme-like types. Different types of nanozyme-based sensing strategies and detection devices are summarized. Based on the summary and analysis, one can find that the development of commercial nanozyme-based devices for the practical detection of antioxidants is still challenging. Some emerging technologies (such as artificial intelligence) should be fully utilized to improve the detection sensitivity and accuracy. This article aims to emphasize the application prospects of nanozymes in antioxidant detection and to provide new ideas and inspiration for the development of detection methods.
Collapse
Affiliation(s)
- Xin Cao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
- College of Intelligent Manufacturing and Modern Industry, Xinjiang University, Urumqi 830017, China
| | - Tianyu Liu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Xianping Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Yueting Yu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Yangguang Li
- Bingtuan Energy Development Institute, Shihezi University, Shihezi 832000, China
| | - Lu Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| |
Collapse
|
2
|
Hurkul MM, Cetinkaya A, Kaya SI, Yayla S, Ozkan SA. Investigation of Health Effects of Major Phenolic Compounds in Foods: Extraction Processes, Analytical Approaches and Applications. Crit Rev Anal Chem 2024:1-35. [PMID: 38650305 DOI: 10.1080/10408347.2024.2336981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalating costs of healthcare services and a growing awareness of personal health responsibilities have led individuals to explore natural methods alongside conventional medicines for health improvement and disease prevention. The aging global population is experiencing increased health needs, notably related to conditions like diabetes, heart disease, and hypertension. Lifestyle-related diseases, poor dietary habits, and sedentary lifestyles underscore the importance of foods containing nutrients that can aid in preventing and managing these diseases. Phenolic compounds, a fundamental group of phytochemicals, are prominent in the chemical diversity of the natural world and are abundant in functional foods. Widely distributed in various plant parts, these compounds exhibit important functional and sensory properties, including color, taste, and aroma. Their diverse functionalities, particularly antioxidant activity, play a crucial role in mitigating cellular oxidative stress, potentially reducing damage associated with serious health issues such as cardiovascular disease, neurodegenerative disea23ses, and cancer. Phenolic compounds exist in different forms, some combined with glycosides, impacting their biological effects and absorption. Approximately 8000 polyphenols isolated from plants offer significant potential for natural medicines and nutritional supplements. Therefore, their extraction process and selective and sensitive food determination are very important. This review focuses on the extraction processes, analytical methods, and health effects of major phenolic compounds in foods. The examination encompasses a comprehensive analysis of analytical approaches and their applications in elucidating the presence and impact of these compounds on human health.
Collapse
Affiliation(s)
- M Mesud Hurkul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Gurgel D, Vieira YA, Henriques RO, Machado R, Oechsler BF, Junior AF, de Oliveira D. A Comprehensive Review on Core‐Shell Polymeric Particles for Enzyme Immobilization. ChemistrySelect 2022. [DOI: 10.1002/slct.202202285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Danyelle Gurgel
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Yago Araujo Vieira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Ricardo Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| |
Collapse
|
4
|
Zhang J, Lei J, Liu Z, Chu Z, Jin W. Nanomaterial-based electrochemical enzymatic biosensors for recognizing phenolic compounds in aqueous effluents. ENVIRONMENTAL RESEARCH 2022; 214:113858. [PMID: 35952740 DOI: 10.1016/j.envres.2022.113858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industrial society, phenolic pollutants already identified in water are severe threats to human health. Traditional detection techniques like chromatography are poor in the ability of cost-effectiveness and on-site detection. In recent years, electrochemical enzymatic biosensors have attracted increasing attention for use in the recognition of phenolic compounds, which is considered an effective strategy for the product transfer of portable analytical devices. Although electrochemical enzymatic biosensors provide a fast, accurate on-site detection technique, the difficulties of enzyme deactivation, poor stability and low sensitivity remain to be solved. Thus, effective immobilization methods of enzymes and nanomaterials with excellent properties have been extensively researched to obtain a high-sensitivity and high-stability biosensing platform. Simultaneous detection of multiple phenols may become the focus of further research. In this review, we provide an overview of recent progress toward electrochemical enzymatic biosensors for the detection of phenolic compounds, including enzyme immobilization approaches and advanced nanomaterials, especially nanocomposites with attractive properties such as good conductivity, high specific surface area, and porous structure. We will comprehensively discuss the features and mechanisms of the main enzymes adopted in the construction of different phenolic biosensors, as well as traditional methods (e.g., adsorption, covalent bonding, entrapment, encapsulation, cross-linking) of enzyme immobilization. The most effective method is based on the properties of enzymes, supports and application objective because there is no one-size-fits-all method of enzymatic immobilization. The emphasis will be given to various advanced nanomaterials, including their special nanostructures, preparation methods and performance. Finally, the main challenges in future research on electrochemical phenolic biosensors will be discussed to provide further perspectives for practical applications in dynamic and on-site monitoring. We believe this review will deliver an important inspiration for the construction of novel and high-performance electrochemical biosensors from enzyme selection to nanomaterial design for the detection of various hazardous materials. We believe this review will deliver an important inspiration on the construction of novel and high-performance electrochemical biosensors from the enzyme selection to the nanomaterial design for detections of various hazardous materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jing Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhengkun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
5
|
Plekhanova YV, Rai M, Reshetilov AN. Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect. 3 Biotech 2022; 12:231. [PMID: 35996672 PMCID: PMC9391563 DOI: 10.1007/s13205-022-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
Electrochemical biosensors and biofuel cells are finding an ever-increasing practical application due to several advantages. Biosensors are miniature measuring devices, which can be used for on-the-spot analyses, with small assay times and sample volumes. Biofuel cells have dual benefits of environmental cleanup and electric energy generation. Application of nanomaterials in biosensor and biofuel-cell devices increases their functioning efficiency and expands spheres of use. This review discusses the potential of nanomaterials in improving the basic parameters of bioelectrochemical systems, including the sensitivity increase, detection lower-limit decrease, detection-range change, lifetime increase, substrate-specificity control. In most cases, the consideration of the role of nanomaterials links a certain type of nanomaterial with its effect on the bioelectrochemical device upon the whole. The review aims at assessing the effects of nanomaterials on particular analytical parameters of a biosensor/biofuel-cell bioelectrochemical device.
Collapse
Affiliation(s)
- Yulia V. Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH 444602 India
| | - Anatoly N. Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
- Tula State University, 300012 Tula, Russian Federation
| |
Collapse
|
6
|
Zheng Y, Karimi-Maleh H, Fu L. Evaluation of Antioxidants Using Electrochemical Sensors: A Bibliometric Analysis. SENSORS 2022; 22:s22093238. [PMID: 35590927 PMCID: PMC9103690 DOI: 10.3390/s22093238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The imbalance of oxidation and antioxidant systems in the biological system can lead to oxidative stress, which is closely related to the pathogenesis of many diseases. Substances with antioxidant capacity can effectively resist the harmful damage of oxidative stress. How to measure the antioxidant capacity of antioxidants has essential application value in medicine and food. Techniques such as DPPH radical scavenging have been developed to measure antioxidant capacity. However, these traditional analytical techniques take time and require large instruments. It is a more convenient method to evaluate the antioxidant capacity of antioxidants based on their electrochemical oxidation and reduction behaviors. This review summarizes the evaluation of antioxidants using electrochemical sensors by bibliometrics. The development of this topic was described, and the research priorities at different stages were discussed. The topic was investigated in 1999 and became popular after 2010 and has remained popular ever since. A total of 758 papers were published during this period. In the early stages, electrochemical techniques were used only as quantitative techniques and other analytical techniques. Subsequently, cyclic voltammetry was used to directly study the electrochemical behavior of different antioxidants and evaluate antioxidant capacity. With methodological innovations and assistance from materials science, advanced electrochemical sensors have been fabricated to serve this purpose. In this review, we also cluster the keywords to analyze different investigation directions under the topic. Through co-citation of papers, important papers were analyzed as were how they have influenced the topic. In addition, the author’s country distribution and category distribution were also interpreted in detail. In the end, we also proposed perspectives for the future development of this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 610056, China;
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 17011, South Africa
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
7
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
8
|
Zanin S, Molinari S, Cozza G, Magro M, Fedele G, Vianello F, Venerando A. Intracellular protein kinase CK2 inhibition by ferulic acid-based trimodal nanodevice. Int J Biol Macromol 2020; 165:701-712. [PMID: 33010276 DOI: 10.1016/j.ijbiomac.2020.09.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Protein kinase CK2, a pleiotropic and constitutively active kinase, is strictly involved in different diseases, especially in cancer. Many efforts have been carried out to develop specific CK2 inhibitors and recently, it has been evidenced that ferulic acid (FA) represents a promising, albeit cell impermeable, CK2 inhibitor. In the present study, the potential of a nanotechnological approach to cope with intracellular CK2 regulation was explored. Surface-Active Maghemite Nanoparticles (SAMNs), coupling magnetism with photoluminescence, a new feature of SAMNs here described for the first time, were chosen as dual imaging nanocarrier for FA. The self-assembled nanodevice (SAMN@FA) displayed a significant CK2 inhibitory activity in vitro. Moreover, effective cellular internalization of SAMN@FA in cancer cells was proved by direct visualization of the photoluminescent nanocarrier by confocal microscopy and was corroborated by phosphorylation levels of endogenous CK2 targets. The proposed trimodal nanodevice, representing the first example of cellular CK2 nano-inhibition, paves the way for novel active nanocarriers as appealing theranostic tool for future biomedical applications.
Collapse
Affiliation(s)
- Sofia Zanin
- Department of Molecular Medicine, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - Simone Molinari
- Department of Geosciences, University of Padova, via Gradenigo 6, 35131 Padova, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy
| | - Giorgio Fedele
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
9
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
10
|
Electrochemical Sensor Based on Prussian Blue Electrochemically Deposited at ZrO 2 Doped Carbon Nanotubes Glassy Carbon Modified Electrode. NANOMATERIALS 2020; 10:nano10071328. [PMID: 32646042 PMCID: PMC7407494 DOI: 10.3390/nano10071328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
In this work, a new hydrogen peroxide (H2O2) electrochemical sensor was fabricated. Prussian blue (PB) was electrodeposited on a glassy carbon (GC) electrode modified with zirconia doped functionalized carbon nanotubes (ZrO2-fCNTs), (PB/ZrO2-fCNTs/GC). The morphology and structure of the nanostructured system were characterized by scanning and transmission electron microscopy (TEM), atomic force microscopy (AFM), specific surface area, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman and Fourier transform infrared (FTIR) spectroscopy. The electrochemical properties were studied by cyclic voltammetry (CV) and chronoamperometry (CA). Zirconia nanocrystallites (6.6 ± 1.8 nm) with cubic crystal structure were directly synthesized on the fCNTs walls, obtaining a well dispersed distribution with a high surface area. The experimental results indicate that the ZrO2-fCNTs nanostructured system exhibits good electrochemical properties and could be tunable by enhancing the modification conditions and method of synthesis. The fabricated sensor could be used to efficiently detect H2O2, presenting a good linear relationship between the H2O2 concentration and the peak current, with quantification limit (LQ) of the 10.91 μmol·L-1 and detection limit (LD) of 3.5913 μmol·L-1.
Collapse
|
11
|
Bare Iron Oxide Nanoparticles: Surface Tunability for Biomedical, Sensing and Environmental Applications. NANOMATERIALS 2019; 9:nano9111608. [PMID: 31726776 PMCID: PMC6915624 DOI: 10.3390/nano9111608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
Surface modification is widely assumed as a mandatory prerequisite for the real applicability of iron oxide nanoparticles. This is aimed to endow prolonged stability, electrolyte and pH tolerance as well as a desired specific surface chemistry for further functionalization to these materials. Nevertheless, coating processes have negative consequences on the sustainability of nanomaterial production contributing to high costs, heavy environmental impact and difficult scalability. In this view, bare iron oxide nanoparticles (BIONs) are arousing an increasing interest and the properties and advantages of pristine surface chemistry of iron oxide are becoming popular among the scientific community. In the authors’ knowledge, rare efforts were dedicated to the use of BIONs in biomedicine, biotechnology, food industry and environmental remediation. Furthermore, literature lacks examples highlighting the potential of BIONs as platforms for the creation of more complex nanostructured architectures, and emerging properties achievable by the direct manipulation of pristine iron oxide surfaces have been little studied. Based on authors’ background on BIONs, the present review is aimed at providing hints on the future expansion of these nanomaterials emphasizing the opportunities achievable by tuning their pristine surfaces.
Collapse
|