1
|
Zhou L, Wu F, Lai Y, Zhao B, Zhang W, Rittmann BE. Cooperation and competition between denitrification and chromate reduction in a hydrogen-based membrane biofilm reactor. WATER RESEARCH 2024; 259:121870. [PMID: 38843627 DOI: 10.1016/j.watres.2024.121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Competition and cooperation between denitrification and Cr(VI) reduction in a H2-based membrane biofilm reactor (H2-MBfR) were documented over 55 days of continuous operation. When nitrate (5 mg N/L) and chromate (0.5 mg Cr/L) were fed together, the H2-MBfR maintained approximately 100 % nitrate removal and 60 % chromate Cr(VI) removal, which means that nitrate outcompeted Cr(VI) for electrons from H2 oxidation. Removing nitrate from the influent led to an immediate increase in Cr(VI) removal (to 92 %), but Cr(VI) removal gradually deteriorated, with the removal ratio dropping to 14 % after five days. Cr(VI) removal resumed once nitrate was again added to the influent. 16S rDNA analyses showed that bacteria able to carry out H2-based denitrification and Cr(VI) reduction were in similar abundances throughout the experiment, but gene expression for Cr(VI)-reduction and export shifted. Functional genes encoding for energy-consuming chromate export (encoded by ChrA) as a means of bacterial resistance to toxicity were more abundant than genes encoding for the energy producing Cr(VI) respiration via the chromate reductase ChrR-NdFr. Thus, Cr(VI) transport and resistance to Cr(VI) toxicity depended on H2-based denitrification to supply energy. With Cr(VI) being exported from the cells, Cr(VI) reduction to Cr(III) was sustained. Thus, cooperation among H2-based denitrification, Cr(VI) export, and Cr(VI) reduction led to sustained Cr(VI) removal in the presence of nitrate, even though Cr(VI) reduction was at a competitive disadvantage for utilizing electrons from H2 oxidation.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Fei Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongzhou Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States of America.
| |
Collapse
|
2
|
Tian Y, Wang H, Xu G, Tu Y, Zhang Y, Zhang W, Liang Y, Li A, Xie X, Peng Z, Wang Y, Xie X. Novel covalently bound organic silicon-ferrum hybrid coagulant with excellent coagulation performance and bacteriostatic ability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Nidheesh PV, Khan FM, Kadier A, Akansha J, Bote ME, Mousazadeh M. Removal of nutrients and other emerging inorganic contaminants from water and wastewater by electrocoagulation process. CHEMOSPHERE 2022; 307:135756. [PMID: 35917977 DOI: 10.1016/j.chemosphere.2022.135756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The continual discharge of emerging inorganic pollutants into natural aquatic systems and their negative effects on the environment have motivated the researchers to explore and develop clean and efficient water treatment strategies. Electrocoagulation (EC) is a rapid and promising pollutant removal approach that does not require any chemical additives or complicated process management. Therefore, inorganic pollutant treatment via the EC process is considered one of the most feasible processes. The potential developments of EC process may make the process a wise choice for water treatment in the future. Thus, the present study mainly focuses on the use of EC technology to remove nutrients and other emerging inorganic pollutants from water medium. The operating factors that influence EC process efficiency are explained. The major advancement of the EC technique as well as field-implemented units are also discussed. Overall, this study mainly focuses on emerging issues, present advancements, and techno-economic considerations in EC process.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India.
| | - Farhan M Khan
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - J Akansha
- School of Civil Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632 014, India
| | - Million Ebba Bote
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, PoBox - 378, Ethiopia
| | - Milad Mousazadeh
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
Benekos AK, Tziora FE, Tekerlekopoulou AG, Pavlou S, Qun Y, Katsaounis A, Vayenas DV. Nitrate removal from groundwater using a batch and continuous flow hybrid Fe-electrocoagulation and electrooxidation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113387. [PMID: 34332344 DOI: 10.1016/j.jenvman.2021.113387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
During the last two decades nitrate contaminated groundwater has become an extensive worldwide problem with wide-reaching negative effects on human health and the environment. In this study, a combination of electrocoagulation (EC) and electrooxidation (EO) was studied as a denitrification process to efficiently remove nitrates and ammonium (a by-product produced during EC) from real polluted groundwater. Initially, EC experiments under batch operating mode were performed using iron electrodes at different applied current density values (20-40 mA cm-2). Nitrate percentage removal of 100 % was recorded, however high ammonium concentrations were performed (4.5-6.5 mg NH4+-Ν L-1). Therefore, a continuous flow system was examined for the complete removal of both nitrates and EC-generated ammonium cations. The system comprised an EC reactor, a settling tank and an EO reactor. The applied current densities to the EC process were the same as those in the batch experiments, while the volumetric flow rates were 4, 6 and 8 mL min-1. Regarding the current density of the EO process was kept constant at the value of 75 mA cm-2. The percentage nitrate removal recorded during the EC process ranged between 52.0 and 100 %, while the NH4+-N concentration at the outlet of the EO reduced significantly (53-100 %) depending on the applied current density and the volumetric flow rate. Also, the dissolved iron concentration in the treated water was always below the legislated limit of 0.2 mg L-1 (up to 0.027 mg L-1). These results indicate that the proposed hybrid system is capable of denitrifying real nitrate contaminated groundwater without generating toxic by-products, therefore making the water suitable for human consumption.
Collapse
Affiliation(s)
- Andreas K Benekos
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece
| | - Foteini E Tziora
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece
| | | | - Stavros Pavlou
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece; Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, GR-26504, Patras, Greece
| | - Yan Qun
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, China
| | - Alexandros Katsaounis
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece; Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, GR-26504, Patras, Greece
| |
Collapse
|